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Abstract—We present a high-level analytical model for chip-
multiprocessors (CMPs) that encompasses processors, memory,
and communication in an area-constrained, global optimization
process. Applying this analytical model to the design of a symmet-
ric CMP for speech recognition, we demonstrate a methodology
for estimating model parameters prior to design exploration.
Then we present an automated approach for finding the optimal
high-level CMP architecture. The result is the ability to find
the allocation of silicon resources for each architectural element
that maximizes overall system performance. This balances the
performance gains from parallelism, processor microarchitecture,
and cache memory with the energy-delay costs of computation
and communication.

I. INTRODUCTION

As integrated circuit technology steadily progresses, the
capability to build chip-multiprocessors (CMPs) with hundreds
or thousands of processor cores is imminent. This prospect
poses daunting hurdles for the electronic design automation
(EDA) industry. With systems of such massive scale and
complexity, manual design is unreasonable. Moreover, current
design methodologies, such as instruction set simulators (ISS)
and cycle accurate simulators, are too detailed to quickly ex-
plore the system-level design space. Analytical models are one
approach to quickly identifying advantageous architectures.

In this work, we present a high-level analytical model for
CMPs that encompasses processors, memory, and communi-
cation in an area-constrained, global optimization process. We
detail a methodology for estimating the model parameters in
order to tailor CMPs to specific applications, as well as an
automated method for solving to find the optimal architecture.

Briefly, large vocabulary continuous speech recognition
requires significant computational power, even by today’s
microprocessor standards, to reach real-time recognition rates.
Applications benefiting from improved real-time speech recog-
nition performance range from hand-held wireless devices
to robots using speech as a human-computer interface to
call mining and call monitoring. We use this application
domain as an example to demonstrate design exploration and
optimization of an application specific CMP.

A. Background

Recently, there have been a variety of high-level analytical
models for CMPs. Hill and Marty introduced an analytical
model for processor performance and the number of cores
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Fig. 1. Methodology overview for optimizing Application Specific CMPs.
Actual data, tools, models, and parameters used in our design example are
given in the shaded blocks.

in symmetric, asymmetric, and dynamic multicore chips [1].
Another approach [2] extended Hill and Marty’s model to in-
clude energy. Other research investigates the tradeoff between
the number of CMP cores and cache architecture, including
parameters such as cache size, L2 and L3 cache effects,
shared vs. private vs. hybrid caches, and uniform vs. non-
uniform caches [3]. Two other works explore the performance
degradation due to inter-thread cache contention in shared
cache CMPs [4], [5]. In contrast to all of these works, we
present an analytical model that jointly evaluates the tradeoffs
between the number of cores, the processor performance,
cache memory size (and hit rate), and communications inter-
connect in an area-constrained, global optimization process.

Others have considered constrained optimization, including
power and thermal constraints [6], [7]. These approaches em-
phasize the importance of joint optimization across interrelated
variables and inclusion of constraints during optimization.
However, both approaches are based on simulators, instead
of analytical models. Our approach incorporates the area
constraint directly into the analytical model.

II. METHODOLOGY

Fig. 1 depicts the overall view of our methodology for
optimizing application specific CMPs. Beginning with the
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memory controller to external DRAM.

four entities given in the ovals, the targeted application or
algorithms and data set govern the application characteristics,
while the technology parameters and lower-level models gov-
ern the architecture characteristics. The lower-level models
are parameterized to facilitate customization and optimiza-
tion of the architecture given the specific application. We
combine the input data, algorithms, and technology with
the estimation tools, experiments, simulations, and manual
analysis in order to estimate the parameter values for the
lower-level models. The models and parameters are combined
in the CMP objective function. Architectural optimization is
performed by minimizing the objective function subject to the
area constraint. We use the method of Lagrange multipliers
and Newton’s method as an automated method to find the
minimum cost solution. The optimization is iterated in order
to refine the estimate of the queueing model parameter λ.
When optimization is finished, we have found the high-level
specification of the CMP architecture, namely the number of
cores N , the processor core size AP , and the L2 cache size
AL2. The actual data, tools, models, and parameters used in
the experiments here are given in the shaded blocks. Each step
of this methodology flow is described in detail in the following
sections.

III. HIGH LEVEL MODEL

For optimization, we begin by defining the high-level
characteristics of the CMP. In this example, we assume
a symmetric CMP, dedicated L1 and L2 caches per core,
and a shared interface to main memory. Fig. 2 depicts a
block diagram of this configuration for a CMP with twelve
cores. Each core has a dedicated communication channel to
the memory controller. The memory controller acts as an
arbitrator between contending cores for the shared resource
(main memory). We proceed to find the number of cores,
processor core size/performance, and the L2 cache memory
size that maximizes the performance of the CMP for speech
recognition.

A. Theory

We use the symmetric CMP objective function for high-
level optimization presented in [8]. Summarizing, the objective
function JD·E is composed of two parts. The outer summation
in the objective function accounts for the parallel performance
of the CMP, while the inner summation accounts for the
performance of individual components within the architecture.

JD·E =
K−1∑
j=0

FjN
γ−1
j

M−1∑
i=0

GijDijE
γ
ij (1)

In the outer summation, Fj is the fraction of the algorithm
that has parallelism of Nj . In the inner summation, each of
the algorithm fractions, Fj , are subdivided into constituent
cost components. Gij is the fraction of Fj that has the ith
cost component DijEij . The ith delay is Dij and the ith
energy cost is Eij for the jth fraction of the algorithm.
Fj and Gij are fractions, such that

∑K−1
j=0 Fj = 1 and∑M−1

i=0 Gij = 1; The exponent γ weights the effect of energy
with respect to delay in the cost function. A value of γ = 1.0
reflects equal weighting of energy and delay, while a value
of γ = 0 corresponds to no contribution of energy to the
cost function1. The fractions Fj represent task or thread level
parallelism, while parallelism due to data level and instruction
level parallelism (ILP) are modeled by the terms in the inner
summation (GijDij).

IV. LOWER LEVEL MODELS

In this section, we specify the lower-level models of proces-
sors, memory, and communication to be used in the objective
function.

A. Processor Models

Pollack’s Rule [9] observes that the performance of a
processor is proportional to the square root of the area of the
processor, or inversely:

CPI ∝ A− 1
2

P (2)

where CPI is the average cycles-per-instruction, a measure
of time per instruction. This observation is based on the
diminishing effect of microarchitectural techniques, such as
those associated with super-scalar microarchitecture (number
of arithmetic or logic functional units, instruction issue width,
in vs. out of order execution, etc.) Adding a proportionality
constant β and an offset constant φP yields a parameterized
equality that we can use as a lower level relationship between
processor performance and processor area:

CPI = βA
− 1

2
P + φP (3)

If CPI is estimated using an ideal memory hierarchy (all
instructions and data hit in L1 cache), then CPI is a good

1Strictly speaking, DijEij is no longer the energy-delay product, rather it
is the energy-delay dot product, combining the energy-delay products of the
constituent components.



estimate for the time or delay for instructions at the first level
of the architecture:

D0 = CPI = βA
− 1

2
P + φP (4)

The parameters β and φP are estimated in Section V.

B. Cache Memory Models

An approximate rule of thumb for caches is that miss rate
MR is inversely proportional to the square root of the size
(or area, ACM ) of the cache memory [10]:

MR ∝ 1√
ACM

(5)

The basis for this relation was extensively studied by [11].
Adding a proportionality constant κ and an offset constant
φCM gives us a parameterized equality that we can use as a
lower level relationship between cache memory miss rate and
cache memory size:

MR = κA
− 1

2
CM + φCM (6)

The L2 cache memory hit rate HR is:

HRL2 = 1−MRL2 = 1− κA− 1
2

L2 − φL2 (7)

The hit rate modulates the fraction of instructions that hit in
the register file or L1 cache (G0), the L2 cache (G1), and main
memory (G2):

G0 = HRRF,L1 (8)
G1 = (1−G0)HRL2

= (1−G0)(1− κA− 1
2

L2 − φL2) (9)
G2 = (1−G0)MRL2 HRmem

= (1−G0)(κA− 1
2

L2 + φL2)100% (10)

Section V details the estimation of the parameters κ and φL2.

C. Communications Models

Queueing theory provides an analytical model for the rela-
tionship between bandwidth and delay in stochastic systems.
In addition to network analyses, queueing theory has been
successfully applied to modeling multiprocessor server per-
formance [12]. In our approach, N processor cores produce
transactions requesting access to the finite bandwidth main
memory bus, while the shared memory controller arbitrates
between the requesting cores. If the bus is busy, transactions
must wait in a FIFO queue until they are granted access to
the bus. Each core has a dedicated queue and channel to the
memory controller. The average time spent in a Markovian
M/M/1 queue [13] is:

t̄ =
1

µ− λ
(11)

where µ is the average service rate of the queue, and λ is the
average rate at which transactions arrive, going into the queue.

TABLE I
PROCESSOR CONFIGURATIONS

Point Configuration Integer Float Point
ALU/Mult ALU/Mult

A half ALU 2/1 1/1
B baseline (4-way) 4/1 2/1
C double ALU 8/2 4/2
D quad ALU + (16-way) 8/4 8/4

With λ = α0N , the main memory latency D2 as a function
of N is:

D2 = α1 + t̄ = α1 +
1

µ− α0N
(12)

where α0 = G2/CPI is a constant scaling the rate of arrival,
and α1 is a constant defining the minimum latency in cycles
of a memory access.

D. Area Parameters

Decomposing the total area Atot into its fundamental com-
ponents, we form the fixed area constraint:

Atot = N(AP +AL2) +Afix (13)

where N is the number of cores in the CMP, AP is area of
a processor core, AL2 are the area of the L2 cache, and Afix
accounts for the fixed area functions (I/O, memory controller,
test and debug circuitry, etc.) We constrain our optimization
to find the solution that satisfies this fixed area constraint. The
L1 cache could be explicitly modeled, instead of aggregated
into AP . However, we chose not to because the typical L1
cache size is 16 to 64 times smaller than an L2 cache, and
thus is a much smaller variable in the overall optimization.

V. PARAMETER ESTIMATION

In this section, we estimate the constant parameters for each
of the lower-level models using empirical data from speech
recognition applications. The theory lines are fit to the data by
choosing parameters values that minimize the mean squared
error (MSE) between the collected data and the theory line.

A. Processor Models

In order to estimate the parameters β and φP for (3),
we need two pieces of information: processor performance
for various processor microarchitectural configurations and
the corresponding die area for those processor configurations.
We use the SimpleScalar ISS [14] to estimate the processor
performance for each configuration while running the Sphinx
3.0 speech recognizer [15], following the approach of [16].

The baseline processor is a single core of an Intel
Core2Duo. Important SimpleScalar values for the baseline
processor configuration include: 64KB eight-way associative
IL1 and DL1 caches, a 2MB four-way L2 cache, an out-
of-order core, four instruction fetch/issue/decode per cycle,
four integer ALUs, single integer multiply, two floating-point
ALUs, and a single floating-point multiplier. To measure the
processor performance for different chip areas, we evaluated
the configurations summarized in Table I.
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Fig. 4. L2 cache miss rate as a function of cache size

We estimated the corresponding superscalar processor mi-
croarchitecture areas using labeled die photos of comparable
superscalar microarchitectures, the AMD64 dual core CMP
[17] and the PPC 604 single core processor [18]. After mea-
suring the area of the labeled functional units, including integer
and floating point execution units, fetch and load/store logic,
we linearly scale the area in terms of the number of functional
units or fetch/issue width. The results from combining the
CPI results with the estimated processor areas are plotted in
Fig. 3. The theory line is plotted with the following minimum
MSE parameters: φP = 0.415 and β = 117.8.

B. Cache Memory Models

Like the processor model parameters, we estimate the
cache memory model parameters κ and φL2 for (7) using
SimpleScalar running Sphinx 3.0. For these experiments we
start with the baseline configuration and vary the L2 cache
size to measure the effect on the miss rate. In Fig. 4 we plot
the miss rate for the L2 cache with sizes ranging from 256KB
to 16MB. The minimum MSE parameters are: φL2 = 0.02
and κ = 430, resulting in the theory line plotted in the figure.

C. Communications Models

For the M/M/1 queue model of off-chip memory delay (12),
we have to estimate the queue service rate µ, as well as
two free parameters: α0 and α1. In order to estimate these
values, we assume a 2.4GHz CMP clock frequency and a
DDR2-800 main memory interface [19]. The DDR2 memory
interface supports seamless burst read or write accesses back-
to-back. However, the turn around time between read and
write accesses is 4 cycles (R to W) and 10 cycles (W to
R). Assuming balanced reads and writes, the average R/W
turnaround time is 7 cycles. The additional overhead time for
DRAM refresh is negligible (less than 1% of the time). If we
are able to make back-to-back accesses 40% of the time and
the DDR2 transfer rate is three times slower than the CMP
clock frequency, then the average service rate in cycles is:
µ = (0.4× 3 + 0.6× 3× 7)−1 = 0.0725.

The average rate at which transactions arrive at the queue
is λ. It is the fraction of instructions accessing main memory
G2 divided by the average cycles per instruction (CPI) of the
processor multiplied by the number of processor cores in the
CMP N , or: λ = Nα0 = N×G2/CPI . Now CPI = G0D0+
G1D1 +G2D2 and G2 = (1−G0)(κA− 1

2
L2 +φL2), containing

the variables that we are trying to solve for in the optimization.
This apparent recursive relationship is solved using an iterative
approach analogous to the Expectation Maximization (EM)
algorithm. Given an initial guess for CPI and G2, we find
the optimal architecture. Then we use the optimal architectural
parameters to re-estimate CPI and G2. After a few iterations,
the value of α0 converges. (Within two iterations it converges
to within less than 0.5% of its final value).

The parameter α1 accounts for the latency of the memory
access. For a recent CMP, the Cell processor [20], the min-
imum latency to write to memory is 290 cycles, while the
minimum read latency is 580 cycles. Without differentiating
between the read and write latency and a 25% lower clock
frequency than the Cell processor, we use a minimum main
memory latency of α1 = 325 cycles.

D. Application Parameters

The parameter Fj in (1) accounts for the parallelism in the
application. Using only two algorithm fractions (K = 2), then
F0 is the serial fraction of the algorithm and F1 is the parallel
fraction of the algorithm. With a symmetric architecture,
the Fj parameters are estimated independent of the other
microarchitectural parameters. First, we run the algorithm
multiple times using a range (1 to 50) of traditional parallel
processors (1 core per chip). For each run, we observe the
number of processors used and the time to decode the full
speech dataset. The parallel speedup is the ratio of the single
processor execution time to the N processor execution time:

S =
t1proc
tNproc

=
1(

F0 + F1
N

) (14)

N, t1proc, and tNproc are empirically measured, and since
F0 = 1 − F1, we can solve for F1, by finding the value
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that will minimize the MSE between the empirically measured
execution times and the theory line.

For our CMP optimization example, we estimated F1 on
a speech digit recognition task using the TIDIGITS speech
corpus. We used the HTK speech recognizer [21] to decode
each spoken string of numerical digits, a task that involved
evaluating Gaussian Mixture Models followed by Hidden
Markov Models. We created three different datasets, differing
by the amount of evaluation data used (100%, 10%, 1%
respectively). The number of parallel processors N and the
corresponding speedup S for each trial and each data set
size is plotted in Fig. 5. F1 is estimated for each dataset by
fitting (14) in a least squares sense to the data. The fitted
curve and estimated value of F1 for each dataset is shown
in the legend of Fig. 5. As the dataset gets smaller, the time
spent in the serial fraction of the algorithm increases relative
to the total execution time. This is intuitive because tasks
such as initializing the GMM and HMM model parameters
must be done and take the same amount of time regardless of
the decoded dataset size. Notice that F1 is close to 1.0, and
therefore decoding large speech datasets has a significant level
of parallelism.

The final parameter to estimate is the fraction of hits at each
level of the memory hierarchy Gij . We estimated the number
of memory accesses by counting the number of instructions
in the assembly code that contain a memory reference. We
compiled the GMM computation code from HTK using gcc
for the x86 microarchitecture with the assembly flag set. Using
the resulting assembly code, we manually counted the memory
references, taking into account the number of loop iterations
and code that conditionally was or was not executed. From
[16], we have an L1 D-cache hit rate of 0.975 for a 128KB L1
D-cache and assume a 1.0 hit rate in the L1 instruction cache.
Using a memory access frequency of 0.55 from Table II, the
fraction of instructions whose data is found only in the register

TABLE II
MEMORY ACCESS FREQUENCY

Configuration 1 Mixture 8 Mixtures
# Instructions 437 3070
# Memory Accesses 237 1704
Memory Access Frequency 0.5423 0.5550

file or L1 cache is: G0 = (1−0.55) + 0.975×0.55 = 0.9862.
The other 0.0138 fraction of instructions retrieve their data
from the L2 cache or beyond in main memory.

VI. OPTIMIZATION

Combining the high-level objective function (1), with the
lower-level models of processors (4), cache memory (8–10),
and shared access communication (12), we form the high-level
cost function for our architectural model:

JD =
(
F0 +

F1

N

)[
G0(βA− 1

2
P + φP )+ (15)

(1−G0)(1− κA− 1
2

L2 − φL2)D1 +

(1−G0)(κA− 1
2

L2 + φL2)
(
α1 +

1
µ− α0N

)]
Combining the cost function (15) with the area constraint (13),
we form the Lagrangian for constrained optimization:

L(AP , AL2, N, λ) = JD + (16)
λ[N(AP +AL2) +Afix −Atot]

To find the optimal architecture, we differentiate the La-
grangian with respect to the four variables2, resulting in a
system of non-linear equations with four equations and four
unknowns (AP , AL2, N, λ). The closed form solution to this
particular system is intractable. As a result, we use Newton’s
method [22] to find the optimal values of the four unknowns.
With these optimal values, the cost function JD is at a
minimum3 and corresponds to the optimal CMP architecture.
Fig. 6 depicts the cost surface JD graphed for two of the
variables AP and AL2. The third variable N , takes the value
that satisfies the area constraint (13). The optimal architecture
is designated by the black dot. Similar graphs exist for AP
vs. N and AL2 vs. N .

The update rule for the variables X for each iteration k of
Newton’s method is:

X(k + 1) = X(k)− (F/J)T (17)

where X = [AP , AL2, N, λ]T and F =
[
∂L
∂AP

, ∂L
∂AL2

, ∂L∂N ,
∂L
∂λ

]
and J is the Jacobian of F.

2This differentiation is automatically performed using symbolic math
software such as Maple or Sage.

3In this example, JD is convex, resulting in a global minimum. If JD is
non-convex, simulated annealing or stochastic gradient descent can be used
to find the global minimum.
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VII. RESULTS

For the given parameters, the optimal symmetric CMP
architecture is: N = 23.04 ≈ 23 processor cores, AP = 218.87

which is approximately the area of a 512KB cache memory,
and AL2 = 221.4 ≈ 3MB. We can see two clear effects. First,
since the parallel fraction of the algorithm is close to 1.0,
then the optimal architecture consists of many cores of smaller
size. Second, the L2 cache is roughly six times larger than the
processor area. This is due to the high L2 miss rate and the
role of the L2 cache in reducing the number of expensive
off-chip memory accesses.

From Fig. 6, we can make several observations about the
cost surface. First, the cost surface resembles an “L” shaped
canyon, with a sharp (nearly vertical) back wall and a front
wall that rises to the left and right. The back wall occurs
at small values of AP and AL2, and thus large values of
N . With large N , the shared memory interface becomes a
bottleneck, rapidly increasing the delay due to congestion
on the communication interface. The front wall occurs for
large values of AP or AL2, corresponding to small values
of N . In this region, the cost primarily increases because
the architectures could utilize more parallelism to increase
performance, but do not. The two sides of the front wall
increase as either AP or AL2 become unbalanced with respect
to the other. The front wall is bounded by the architectures that
exceed the total area Atot as indicated by the thick black line.

VIII. CONCLUSION

In summary, we have presented three significant advance-
ments. First, we present a CMP objective function with models
of processors, cache memory, and communication in an area-
constrained, global optimization process. Second, we apply
the objective function to the task of optimizing a symmetric
CMP for a specific application, automatic speech recognition,
and demonstrate methods for estimating the parameters of the
underlying models. Third, we present an automated approach
to solving the objective function for the optimal architecture.

We have assumed parallel decoding on a symmetric ar-
chitecture, where each core is running an identical instance
of the speech recognizer. Alternatively, we could assume
an asymmetric case and partition the recognizer algorithm
over different cores. This would yield a different optimal
architecture. Our current research is focused on extending our
objective function to asymmetric architectures.
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