
Component-Based Design for the Future
Edward A. Lee¶ and Alberto L. Sangiovanni-Vincentelli‖

¶University of California at Berkeley ‖University of California at Berkeley and University of Trento

Motivation. The specific root causes of the design problems
that are haunting system companies such as automotive and
avionics companies are complex and relate to a number of
issues ranging from design processes and relationships with
different departments of the same company and with suppliers1

to incomplete requirement specification and testing.2

Further, there is a widespread consensus in the industry
that there is much to gain by optimizing the implementation
phase that today is only considering a very small subset of the
design space. Some attempts at a more efficient design space
exploration have been afoot but there is a need to formalize
the problem better and to involve in major ways the different
players of the supply chain. Information about the capabilities
of the subsystems in terms of timing, power consumed, size,
weight and other physical aspects transmitted to the system
assemblers during design time would go a long way in
providing a better opportunity to design space exploration. In
this landscape, a wrong turn in a system design project could
cause so much economic, social and organizational upheaval
that it may imperil the life of an entire company. No wonder
that there is much interest in risk management approaches to
assess risks associated to design errors, delays, recalls and
liabilities. Finding appropriate countermeasures to lower risks
and to develop contingency plans is then a mainstay of the way
large projects are managed today. The overarching issue is the
need of a substantive evolution of the design methodology
in use today in system companies. The issue to address is the
understanding of the principles of system design, the necessary
change to design methodologies, and the dynamics of the
supply chain. Developing this understanding is necessary to
define a sound approach to the needs of the system companies
as they try to serve their customers better, to develop their
products faster and with higher quality.

An important approach to tackle in part these issues is
component-based design.

Component-based Design. Whereas layered designs decom-
pose complexity of systems "vertically", by splitting the design
into multiple design layers, component-based approaches re-
duce complexity "horizontally" whereby designs are obtained
by assembling strongly encapsulated design entities called

This work was funded in part by the European STREP-COMBEST project
number 215543, by the Artist Design NoC and by the MuSyC MARCOFCRP
Center.

1Toyota sticky accelerator problem came in part from components provided
by two contractors whose interaction was not verified appropriately, Airbus
delay problems were in part due to contractors who had different versions of
the CAD software

2Boeing stated that a structural problem was discovered latein the design
process

"components" equipped with concise and rigorous interface
specifications. Re-use can be maximized by finding the weak-
est assumptions on the environment sufficient to establish the
guarantees on a given component implementation.

One challenge, then, for component-based design of em-
bedded systems, is to provide interface specifications thatare
rich enough to cover all phases of the design cycle. This
calls for including non-functional characteristics as part of
the component interface specifications. Current component
interface models, in contrast, are typically restricted topurely
functional characterization of components, and thus cannot
capitalize on the benefits of contract-based virtual integration
testing.

The second challenge is related to product line design,
which allows for the joint design of a family of variants of
a product. The aim is to balance the contradicting goals of
striving for generality versus achieving efficient component
implementations.

Platform-based design [52] has been formulated to help to
achieve this balance and to support component-based design.
To do so, the design is seen as a meet-in-the-middle approach
where the bottom-up part is related to the characterizationand
re-use of components. The ’rules’ for composing components
are an essential part of the methodology.

In all cases, a mathematically rigorous form (language)
for expressing heterogeneous components and their interfaces
together with their non functional characteristics is necessary.

Present State of Design Methodologies and Languages. De-
spite considerable progress in languages, notations, and tools
for model-based design [57] and model-driven development
[56], major problems persist. In practice, system integration,
adaptation of existing designs, and inter-operation of hetero-
geneous subsystems remain major stumbling blocks that cause
project failures. We believe that model-based design, as widely
practiced today, largely fails to benefit from the principles
of component-based design and platform-based design [52]
as a consequence of its lack of attention to the semantics of
heterogeneous subsystem composition.

Consider for example a widely-used software system de-
scription language such as UML 2 [4], [5], or more directly
its derivative SysML [47]. The internal block diagram no-
tation of SysML, which is based on the UML 2 composite
structure diagrams, particularly with the use of flow ports,has
severe weaknesses to address system design problems. The
SysML standard defines the syntax of these diagrams, not their
semantics. Although the SysML standard asserts that “flow
ports are intended to be used for asynchronous, broadcast, or



send-and-forget interactions” [47], the standard fails todefine
the semantics of such interactions. Implementers of tools are
free to interpret this intent, resulting in a modeling language
whose semantics is defined by the tools rather than by the
language itself. There are many semantic alternatives [30],
consequently the same SysML diagram may be interpreted
very differently by different observers. MARTE (Modeling
and Analysis of Real-Time and Embedded systems) [46]
also specifically avoids “constraining” (or even defining) the
execution semantics of models. Instead it focuses on providing
alternative ways of expressing today’s ad-hoc, non-composable
design practices such as concurrency based on threads [28].
Standardizingnotation is not sufficient to achieve effective
analysis methods and unambiguous communication among
designers. More importantly, without semantics, the modeling
framework fails to provide aplatform for design. Further,
the very flexibility of these modeling notations may account
for some of their success, because designers can become
“standards compliant” without changing their existing practice.
They merely have to adapt their notation. Moreover, the
notations can be freely reinterpreted by defining a “profile,”
greatly weakening the value of the notation as an effective
communication vehicle and design tool. We believe thatcon-
straints that lead to well-defined and inter-operable models
have potentially far greater value. More importantly, such
constraints are essential for these modeling frameworks to
become a central part of a platform-based engineering practice
[53].

The inclusion by OMG of Statecharts [20] in the UML
standard has helped to narrow the variability, but in many
cases, the exact semantics are determined by the implementa-
tion details of the supporting tools rather than by an agreed-
upon standard semantics. In fact, Statecharts also suffers
from inadequate standardization. Despite their common origin,
variants have proliferated [59]. Even the most widely used
implementations of Statecharts that claim to be standards-
compliant have subtle semantic differences big enough “that
a model written in one formalism could be ill-formed in
another formalism” [12]. In many implementations, including
the widely used RHAPSODY tool from IBM, the semantics is
(probably inadvertently) nondeterminate [55].

Over the last 20 years, we at Berkeley have been developing
model-based design techniques with sufficiently well-defined
semantics to provide an effective basis for platform-basedde-
sign and engineering. Components can be designed to operate
with a model, and when deployed, will operate in predictable
ways with the deployed system. The rigorous foundations of
the models [34] provide a solid basis for integration across
design domains, design adaptation and evolution, and analysis
and verification. Our work has been demonstrated in the open-
source software frameworks Ptolemy Classic [8], Ptolemy II
[16], Polis [1], Metropolis [2] and MetroII [13]. Many of the
techniques that we developed have been deployed in a wide
range of domain-specific applications, including hardwareand
FPGA synthesis, signal processing, automotive system design,
computer architecture design and evaluation, instrumentation,

wireless system design, mixed signal circuit design, network
simulation and design, building system simulation and design,
financial engineering, and scientific workflows. We believe
these approaches can be successfully applied to defense system
design. The goal of this extended abstract is to highlight the
key applicable ideas.

Models of Computation. At Berkeley, we have established
that models should be built using well-defined models of com-
putation (MoCs) [14]. An MoC gives semantics to concurrency
in the model, defining for example whether components in the
model execute simultaneously, whether they share a notion of
time, and whether and how they share state. An MoC also
defines the communication semantics, specifying for example
whether data is exchanged for example using publish-and-
subscribe protocols, synchronous or asynchronous message
transmission, or time-stamped events. We have provided a
formal framework within which the semantics of a variety
of models of computation can be understood and compared,
and within which heterogeneous interactions across modelsof
computation can be defined [34]. This formal foundation has
been elaborated and applied to multi-clock (latency insensi-
tive) systems [10], globally asynchronous, locally synchronous
(GALS) designs [3], and to timed models of computation
capable of reflecting real-time dynamics [41].

Abstract Semantics. In many situations, using a single gen-
eral MoC for an entire design requires giving up any pos-
sibility of property checking except by extensive simulation.
More restricted (less expressive) MoCs yield better to analysis,
enabling systematic exploration of properties of the design,
often including formal verification. But less expressive MoCs
cannot capture the richness and diversity of complex designs.
The solution is heterogeneous mixtures of MoCs. Indeed, the
heterogeneous nature of most defense systems makes multiple
MoCs a necessity.

In addition, during the design process, the abstraction level,
detail, and specificity in different parts of the design vary.
The skill sets and design styles that engineers use on the
project are likely to differ. The net result is that, during
the design process, many different specification and modeling
techniques will be used. The challenge is how to combine
heterogeneous MoCs and determine what the composition’s
behavior is. Unfortunately, the semantics of different MoCs
are typically incompatible.

A way to solve this problem is to embed the detailed
models into a framework that can understand the models being
composed. A theoretical approach to this view, which is well
beyond the scope of this article, can be found in [9] who
used an abstract algebra approach to define the interactions
among incompatible models. In some sense, we are looking
at an abstraction of the MoC concept that can be refined
into any of the MoCs of interest. We call this abstraction
an abstract semantics, first introduced in [33], [26]. The
inspiration on how to define the abstract semantics comes
from the consideration that MoCs are built by combining three
largely orthogonal aspects: sequential behavior, concurrency,

2



and communication. Similar to the way that a MoC abstracts
a class of behavior, abstract semantics abstract the semantics
The concept is called a “semantics meta-model” in [54], but
since the term “meta-model” is more widely used in software
engineering to refer instead to models of the structure of
models (see [45] and http://www.omg.org/mof/), we prefer to
use the term “abstract semantics” here. The concept of abstract
semantics is leveraged in Ptolemy II [16], Metropolis [2],
and Ptolemy Classic [8] to achieve heterogeneous mixtures
of MoCs with well-defined interactions.

Hybrid Systems. Cyber-Physical Systems (CPS) integrate
computation, networking, and physical dynamics. As a con-
sequence, modeling techniques that address only the concerns
of software are inadequate [27], [29]. Integrations of contin-
uous physical dynamics expressed with ordinary differential
equations with the discrete behaviors expressed using finite
automata are known ashybrid systems[43]. At Berkeley,
we have previously done a detailed study and comparison of
tools supporting hybrid systems modeling and simulation [11].
Moreover, we have developed a rigorous MoC that provides
determinate semantics to such hybrid systems [39], [42], [36].
This work has influenced development of commercial tools
such a Simulink and LabVIEW and has been realized in the
open-source tool HyVisual [6]. Moreover, we have leveraged
the notation of abstract semantics to integrate such hybrid
systems with other MoCs such as synchronous/reactive and
discrete-event models [37]. This integration enables hetero-
geneous models that capture the interactions of software and
networks with continuous physical processes.

Heterogeneity. Integrating multiple MoCs such that they
can inter-operate, which is far from trivial, has been called
“multimodeling” [44], [18], [7]. Many previous efforts have
focused on tool integration, where tools from multiple vendors
are made to inter-operate [40], [19], [22]. This approach is
challenging, however, resulting in fragile tool chains. Many
tools do not have adequate published extension points, and
maintaining such integration requires considerable effort. At
Berkeley, our approach has been to focus on the interfaces
between MoCs. We have built a variety of modeling, analysis,
and simulation tools based on different MoCs [14], and have
shown how such interfaces can facilitate more robust inter-
operability. These include discrete-event [25] (useful for mod-
eling networks, hardware architecture, and real-time systems),
synchronous-reactive [15] (useful for modeling and designing
safety-critical concurrent software), dataflow [32] (useful for
signal processing), process networks [48] (useful for asyn-
chronous distributed systems), and continuous-time models
[37] (useful for physical dynamics). Influenced in part by our
work, SystemC, a widely used language in hardware design,
is capable of realizing multiple MoCs [50], [21], although less
attention in that community has been given to inter-operability.

For nearly all of these MoCs, the emphasis in our design
has been on providing determinate behavior (where the same
inputs always result in the same outputs, and introducing
nondeterminacy only where it is needed by the application

(for example to model faults). The result is a family of far
better concurrency models than the widely used thread-based
models that dominate software engineering [28].

Modularity. Key to effective design of complex systems is
modular design, where modules have well-defined interfaces,
and composition of modules can be checked for compati-
bility. We have shown that object-oriented concepts such as
classes, inheritance, and polymorphism can be adapted to
concurrent, actor-oriented components [31] (see also [23]).
We have developed advanced type systems for such compo-
nent compositions, enabling type inference and type checking
across large models with polymorphic components [60]. We
have adapted such type systems to capture domain-specific
ontology information, checking for correct usage and correct
interpretation of shared data [38]. And we have shown how
to check for compatibility of protocols in compositions [35]
and to synthesize interface adapters for separately defined
components [49].

Linking Behavior to Implementation: Quantity Managers.
To support evaluation of design choices, modeling frameworks
need to enable weaving together a multiplicity of models that
cover different aspects of a system. For example, a choice of
networking fabric will affect temporal behavior, power usage,
and vulnerability to faults. The Metropolis project [2], [13]
introduced the notion of “quantity manager,” a component
of a model that functions as a gateway to another model.
For example, a purely functional model that describes only
idealized behavioral properties of a flight control system
could be endowed with a quantity manager that binds that
functional model to a model of a distributed hardware archi-
tecture using a particular network fabric. By binding these
two models, designers can evaluate how properties of the
hardware implementation affect the functional behavior ofthe
system. For example, how does a time-triggered bus protocol
affect timing in a distributed control system, and how do the
timing effects change the dynamics of the system? Similarly,
a functional model could be endowed with a quantity manager
that measures power usage and identifies potential overloads
that may result from unexpectedly synchronized interactions
across a distributed system.

The notion of quantity managers brings to model-based
design a capability analogous to aspect-oriented programming
in software engineering [24]. Separately designed models can
be woven together using quantity managers in a manner
similar to the weaving of separately designed classes in aspect-
oriented design.

Semantics-Preserving Transformation and Implementa-
tion. Effective use of models requires well-defined relation-
ships between the models and systems being modeled. In many
cases, models can be used as specifications, and implementa-
tions can be synthesized from these specifications. The key
challenge is that such synthesis must preserve the semantics
of the implementation. We have many years of experience
with semantics-preserving code generation [51], [61], [58] and
model transformation [17].

3



Conclusion. Tools and techniques for model-based design are
evolving rapidly and show considerable promise for deliver-
ing robust, adaptable, platform-based design techniques that
include formal ways of dealing with components, abstractions
and non functional characteristics.

The range of application of these methods is also evolving to
include on one side large, complex distributed systems of sys-
tems such as traffic management systems, water management
systems and smart grids and on the other biological systems
including synthetic biology and hybrid systems that involve
real neurons controlling a mechatronic system. The future is
bright!

REFERENCES

[1] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and
B. Tabbara.Hardware-Software Co-Design of Embedded Systems–The
Polis Approach. Kluwer, 1997.

[2] F. Balarin, H. Hsieh, L. Lavagno, C. Passerone, A. L. Sangiovanni-
Vincentelli, and Y. Watanabe. Metropolis: an integrated electronic
system design environment.Computer, 36(4), 2003.

[3] Albert Benveniste, Benoï¿1
2

t Caillaud, Luca P. Carloni, and Alberto
Sangiovanni-Vincentelli. Tag machines. InEMSOFT, Jersey City, New
Jersey, USA, 2005. ACM.

[4] Conrad Bock. SysML and UML 2 support for activity modeling. Systems
Engineering, 9(2):160 –185, 2006.

[5] G. Booch, I. Jacobson, and J. Rumbaugh.The Unified Modeling
Language User Guide. Addison-Wesley, 1998.

[6] C. Brooks, A. Cataldo, C. Hylands, E. A. Lee, J. Liu, X. Liu,
S. Neuendorffer, and H. Zheng. HyVisual: A hybrid system
visual modeler. Technical Report UCB/ERL M05/24, Univer-
sity of California, Berkeley, July 15 2005. Available from:
http://ptolemy.eecs.berkeley.edu/publications/papers/05/hyvisual/
index.htm.

[7] Christopher Brooks, Chihhong Cheng, Thomas Huining Feng, Ed-
ward A. Lee, and Reinhard von Hanxleden. Model engineering using
multimodeling. InInternational Workshop on Model Co-Evolution and
Consistency Management (MCCM), Toulouse, France, 2008.

[8] Joseph T. Buck, Soonhoi Ha, Edward A. Lee, and David G. Messer-
schmitt. Ptolemy: A framework for simulating and prototyping hetero-
geneous systems.Int. Journal of Computer Simulation, special issue on
“Simulation Software Development”, 4:155–182, 1994. Available from:
http://ptolemy.eecs.berkeley.edu/publications/papers/94/JEurSim/.

[9] J. R. Burch, R. Passerone, and A. L. Sangiovanni-Vincentelli. Over-
coming heterophobia: Modeling concurrency in heterogeneous systems.
In International Conference on Application of Concurrency toSystem
Design, page 13, 2001.

[10] L.P. Carloni, K.L. McMillan, and A.L. Sangiovanni-Vincentelli. The
theory of latency insensitive design.IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 20(3), 2001.

[11] Luca P. Carloni, Roberto Passerone, Alessandro Pinto,and Alberto
Sangiovanni-Vincentelli. Languages and tools for hybrid systems design.
Foundations and Trends in Electronic Design Automation, 1(1/2), 2006.
Available from: http://dx.doi.org/10.1561/1000000001.

[12] Michelle L. Crane and Juergen Dingel. Uml vs. classicalvs. rhapsody
statecharts: Not all models are created equal. InInternational Conference
on Model Driven Engineering Languages and Systems (MODELS),
volume LNCS 3713, pages 97–112, Montego Bay, Jamaica, 2005.
Springer.

[13] Abhijit Davare, Douglas Densmore, Trevor Meyerowitz,Alessandro
Pinto, Alberto Sangiovanni-Vincentelli, Guang Yang, and Qi Zhu. A
next-generation design framework for platform-based design. In Design
Verification Conference (DVCon), San Jose’, California, 2007.

[14] S. Edwards, L. Lavagno, E.A. Lee, and A. Sangiovanni-Vincentelli.
Design of embedded systems: formal models, validation, andsynthesis.
Proceedings of the IEEE, 85(3):366–390, 1997.

[15] Stephen A. Edwards and Edward A. Lee. The semantics and
execution of a synchronous block-diagram language.Science
of Computer Programming, 48(1):21–42, 2003. Available from:
http://dx.doi.org/10.1016/S0167-6423(02)00096-5.

[16] Johan Eker, Jï¿1
2

rn W. Janneck, Edward A. Lee, Jie Liu, Xiao-
jun Liu, Jozsef Ludvig, Stephen Neuendorffer, Sonia Sachs,and
Yuhong Xiong. Taming heterogeneity—the Ptolemy approach.Pro-
ceedings of the IEEE, 91(2):127–144, 2003. Available from:
http://www.ptolemy.eecs.berkeley.edu/publications/papers/03/
TamingHeterogeneity/.

[17] Thomas Huining Feng and Edward A. Lee. Scalable models using
model transformation. InWorkshop on Model Based Architecting and
Construction of Embedded Systems (ACES-MB), 2008. Available from:
http://chess.eecs.berkeley.edu/pubs/487.html.

[18] Paul A. Fishwick and Bernard P. Zeigler. A multimodel methodology
for qualitative model engineering.ACM Transactions on Modeling and
Computer Simulation, 2(1):52–81, 1992.

[19] Zonghua Gu, Shige Wang, S Kodase, and K. G. Shin. An end-to-end
tool chain for multi-view modeling and analysis of avionicsmission
computing software. InReal-Time Systems Symposium (RTSS), pages
78 – 81, 2003.

[20] David Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8(3):231–274, 1987.

[21] Fernando Herrera and Eugenio Villar. A framework for embedded
system specification under different models of computationin SystemC.
In Design Automation Conference (DAC), San Francisco, 2006. ACM.

[22] Gabor Karsai, Andras Lang, and Sandeep Neema. Design patterns for
open tool integration.Software and Systems Modeling, 4(2):157–170,
2005. Available from: http://dx.doi.org/10.1007/s10270-004-0073-y.

[23] Gï¿1

2
bor Karsai, Miklos Maroti, ï¿1

2
kos Lï¿1

2
deczi, Jeff Gray, and Janos

Sztipanovits. Type hierarchies and composition in modeling and meta-
modeling languages.IEEE Transactions on Control System Technology,
to appear, 2003.

[24] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. InECOOP, European Conference in Object-
Oriented Programming, volume LNCS 1241, Finland, 1997. Springer-
Verlag.

[25] Edward A. Lee. Modeling concurrent real-time processes using discrete
events.Annals of Software Engineering, 7:25–45, 1999. Available from:
http://dx.doi.org/10.1023/A:1018998524196.

[26] Edward A. Lee. Overview of the Ptolemy project.
Technical Report UCB/ERL M03/25, University of
California, Berkeley, July 2 2003. Available from:
http://ptolemy.eecs.berkeley.edu/publications/papers/03/overview/.

[27] Edward A. Lee. Cyber-physical systems - are computing foundations
adequate? InNSF Workshop On Cyber-Physical Systems: Research Mo-
tivation, Techniques and Roadmap, Austin, TX, 2006. Available from:
http://ptolemy.eecs.berkeley.edu/publications/papers/06/CPSPositionPaper/.

[28] Edward A. Lee. The problem with threads.Computer, 39(5):33–42,
2006. Available from: http://dx.doi.org/10.1109/MC.2006.180.

[29] Edward A. Lee. Cyber physical systems: Design challenges. In Inter-
national Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC),, pages 363 – 369, Orlando, Florida,
2008. IEEE. Available from: http://dx.doi.org/10.1109/ISORC.2008.25.

[30] Edward A. Lee. Disciplined heterogeneous modeling. InD. C. Petriu,
N. Rouquette, and O. Haugen, editors,Model Driven Engineering,
Languages, and Systems (MODELS), pages 273–287. IEEE, 2010.
Available from: http://chess.eecs.berkeley.edu/pubs/679.html.

[31] Edward A. Lee, Xiaojun Liu, and Stephen Neuendorffer. Classes and
inheritance in actor-oriented design.ACM Transactions on Embedded
Computing Systems (TECS), 8(4):29:1–29:26, 2009. Available from:
http://ptolemy.eecs.berkeley.edu/publications/papers/07/
classesandInheritance/index.htm.

[32] Edward A. Lee and Eleftherios Matsikoudis. The semantics of dataflow
with firing. In Gï¿1

2
rard Huet, Gordon Plotkin, Jean-Jacques Lévy, and

Yves Bertot, editors,From Semantics to Computer Science: Essays in
memory of Gilles Kahn. Cambridge University Press, 2009. Available
from: http://ptolemy.eecs.berkeley.edu/publications/papers/08/
DataflowWithFiring/.

[33] Edward A. Lee, Stephen Neuendorffer, and Michael J. Wirthlin. Actor-
oriented design of embedded hardware and software systems.Journal
of Circuits, Systems, and Computers, 12(3):231–260, 2003.

[34] Edward A. Lee and Alberto Sangiovanni-Vincentelli. A
framework for comparing models of computation. IEEE
Transactions on Computer-Aided Design of Circuits
and Systems, 17(12):1217–1229, 1998. Available from:
http://ptolemy.eecs.berkeley.edu/publications/papers/98/framework/.

4



[35] Edward A. Lee and Yuhong Xiong. A behavioral type systemand
its application in Ptolemy II. Formal Aspects of Computing Journal,
16(3):210 – 237, 2004.

[36] Edward A. Lee and Haiyang Zheng. Operational semantics
of hybrid systems. In Manfred Morari and Lothar Thiele,
editors, Hybrid Systems: Computation and Control (HSCC),
volume LNCS 3414, pages 25–53, Zurich, Switzerland, 2005.
Springer-Verlag. http://dx.doi.org/10.1007/978-3-540-31954-
22doi : 10.1007/978 − 3 − 540 − 31954 − 22.

[37] Edward A. Lee and Haiyang Zheng. Leveraging synchronous lan-
guage principles for heterogeneous modeling and design of em-
bedded systems. InEMSOFT, pages 114 – 123, Salzburg,
Austria, 2007. ACM. http://dx.doi.org/10.1145/1289927.1289949
doi:10.1145/1289927.1289949.

[38] Man-Kit Leung, Thomas Mandl, Edward A. Lee, Elizabeth Latronico,
Charles Shelton, Stavros Tripakis, and Ben Lickly. Scalable semantic
annotation using lattice-based ontologies. InInternational Conference on
Model Driven Engineering Languages and Systems (MODELS), Denver,
CO, USA, 2009. ACM/IEEE.

[39] Jie Liu. Responsible frameworks for heterogeneous modeling and design
of embedded systems. Ph.D. Thesis Technical Memorandum UCB/ERL
M01/41, University of California, Berkeley, December 20 2001. Avail-
able from: http://ptolemy.eecs.berkeley.edu/publications/papers/01/
responsibleFrameworks/.

[40] Jie Liu, Bicheng Wu, Xiaojun Liu, and Edward A. Lee. Interoperation
of heterogeneous cad tools in Ptolemy II. InSymposium on Design,
Test, and Microfabrication of MEMS/MOEMS, Paris, France, 1999.

[41] Xiaojun Liu and Edward A. Lee. CPO semantics of timed
interactive actor networks. Theoretical Computer Science,
409(1):110–125, 2008. http://dx.doi.org/10.1016/j.tcs.2008.08.044
doi:10.1016/j.tcs.2008.08.044.

[42] Xiaojun Liu, Jie Liu, Johan Eker, and Edward A. Lee. Heterogeneous
modeling and design of control systems. In Tariq Samad and Gary
Balas, editors,Software-Enabled Control: Information Technology for
Dynamical Systems. Wiley-IEEE Press, 2003.

[43] Oded Maler, Zohar Manna, and Amir Pnueli. From timed to hybrid
systems. InReal-Time: Theory and Practice, REX Workshop, pages
447–484. Springer-Verlag, 1992.

[44] Pieter J. Mosterman and Hans Vangheluwe. Computer automated multi-
paradigm modeling: An introduction.Simulation: Transactions of the
Society for Modeling and Simulation International Journalof High
Performance Computing Applications, 80(9):433ï¿1

2
450, 2004.

[45] G. Nordstrom, Janos Sztipanovits, G. Karsai, and A. Ledeczi. Meta-
modeling - rapid design and evolution of domain-specific modeling
environments. InProc. of Conf. on Engineering of Computer Based
Systems (ECBS), pages 68–74, Nashville, Tennessee, 1999.

[46] Object Management Group (OMG), . A UML profile for MARTE,
beta 2. OMG Adopted Specification ptc/08-06-09, OMG, August2008.
Available from: http://www.omg.org/omgmarte/.

[47] Object Management Group (OMG), . System modeling language
specification v1.2. Standard specification, OMG, June 2010.Available
from: http://www.sysmlforum.com.

[48] Thomas M. Parks and David Roberts. Distributed processnetworks in
Java. InInternational Parallel and Distributed Processing Symposium,
Nice, France, 2003.

[49] Roberto Passerone, Luca de Alfaro, Thomas A. Henzinger, and Alberto
Sangiovanni-Vincentelli. Convertibility verification and converter syn-
thesis: Two faces of the same coin. InProceedings of International
Conference on Computer Aided Design, San Jose, CA., 2002.

[50] H. D. Patel and S. K. Shukla.SystemC Kernel Extensions for Hetero-
geneous System Modelling. Kluwer, 2004.

[51] Josï¿1
2

L. Pino, Soonhoi Ha, Edward A. Lee, and Joseph T. Buck.
Software synthesis for DSP using Ptolemy.Journal on VLSI Signal
Processing, 9(1):7–21, 1995.

[52] Alberto Sangiovanni-Vincentelli. Defining platform-based design.
EEDesign of EETimes, 2002.

[53] Alberto Sangiovanni-Vincentelli. Quo vadis, sld? reasoning about the
trends and challenges of system level design.Proceedings of the IEEE,
95(3):467–506, 2007.

[54] Alberto Sangiovanni-Vincentelli, Guang Yang, Sandeep Kumar Shukla,
Deepak A. Mathaikutty, and Janos Sztipanovits. Metamodeling: An
emerging representation paradigm for system-level design. IEEE Design
and Test of Computers, 2009.

[55] Wladimir Schamai, Uwe Pohlmann, Peter Fritzson, Christiaan J.J. Pare-
dis, Philipp Helle, and Carsten Strobel. Execution of umlstate machines
using modelica. In3rd International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools (EOOLT), volume 47,
pages 1–10, Oslo, Norway, 2010. Linköping University Electronic Press,
Linköping University. Available from: http://www.ep.liu.se/ecp/047/.

[56] B. Selic. The pragmatics of model-driven development.IEEE Software,
20(5):19–25, 2003.

[57] Janos Sztipanovits and Gabor Karsai. Model-integrated computing.
IEEE Computer, page 110ï¿1

2
112, 1997.

[58] Stavros Tripakis, Dai Bui, Marc Geilen, Bert Rodiers, and Edward A.
Lee. Compositionality in synchronous data flow: Modular code gener-
ation from hierarchical sdf graphs. Technical Report UCB/EECS-2010-
52„ EECS Department, University of California, Berkeley, May 7 2010.

[59] Michael von der Beeck. A comparison of Statecharts variants. In
H. Langmaack, W. P. de Roever, and J. Vytopil, editors,Third Inter-
national Symposium on Formal Techniques in Real-Time and Fault-
Tolerant Systems, volume 863 ofLecture Notes in Computer Science,
pages 128–148, Lübeck, Germany, 1994. Springer-Verlag.

[60] Y. Xiong, E. A. Lee, X. Liu, Y. Zhao, and L. C. Zhong. The design
and application of structured types in Ptolemy II. InIEEE International
Conference on Granular Computing (GrC), Beijing, China, 2005.

[61] Gang Zhou, Man-Kit Leung, and Edward A. Lee. A code generation
framework for actor-oriented models with partial evaluation. In Y.-
H. Lee et al., editor,Internation Conference on Embedded Software and
Systems (ICESS), volume LNCS 4523, page 786ï¿1

2
799, Daegu, Korea,

2007. Springer-Verlag.

5


	978-3-9810801-7-9/DATE11/©2011 EDAA: 978-3-9810801-7-9/DATE11/©2011 EDAA


