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Abstract—Modern reconfigurable technologies can have a
number of inherent advantages for cryptanalytic applications.
Aimed at the cryptanalysis of the SHA-1 hash function, this work
explores this potential showing new approaches inherently based
on hardware reconfigurability, enabling algorithm and archi-
tecture exploration, input-dependent system specialization, and
low-level optimizations based on static/dynamic reconfiguration.
As a result of this approach, we identified a number of new
techniques, at both the algorithmic and architectural level, to
effectively improve the attacks against SHA-1. We also defined
the architecture of a high-performance FPGA-based cluster, that
turns out to be the solution with the highest speed/cost ratio
for SHA-1 collision search currently available. A small-scale
prototype of the cluster enabled us to reach a real collision for
a 72-round version of the hash function.

I. INTRODUCTION

Modern FPGAs can be used to build application-specific
high-performance computing (HPC) machines at costs that
are several orders of magnitude lower than standard HPC
platforms. This has some important implications for those
applications where the (un)availability of suitable computing
resources is an essential underlying assumption. Cryptographic
algorithms are perhaps the most remarkable example, since
most of them are based on some hard problems, supposed to be
intractable with ordinary computing resources. Cost is not the
only factor that may give reconfigurable technologies a special
role for cryptanalysis. In fact, reconfigurable hardware, by its
nature, can be used “interactively”, changing the hardware
design over time more than once. So, not only can FPGAs
be used for the cryptanalytic computation in itself, but also
for supporting the study of the problem, enabling large-scale
computation efforts just aimed at algorithm and architecture
exploration.

This paper, in particular, addresses the possibility of break-
ing the most important cryptographic hash function currently
in use, SHA-1, a hot topic in today’s cryptanalytic research.
The background in hardware cryptanalysis and attacks against
cryptographic hash functions is reviewed in Section II, while a
deeper presentation of the SHA-1 algorithm and the cryptanal-
ysis methods used in this work is provided in Section III. Start-
ing from the current state-of-the-art, Section IV then investi-
gates innovative approaches, inherently based on hardware re-
configurability, enabling extensive algorithm and architecture
exploration for the cryptanalysis of SHA-1 and identifying
new techniques for building effective attacks. In addition, it
demonstrates how static and dynamic circuit specialization can
play a key role to maximize the performance of the hard-
ware system by customizing it for specific parameters. These
opportunities are extensively exploited by a set of software
tools we developed to automatically generate highly optimized
HDL code for specific input collision search parameters. To
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demonstrate our approach, we have developed a prototypical
FPGA cluster, built on top of a highly optimized dedicated
unit for SHA-1 collision search, described in Section V. A
quantitative evaluation of performance and implementation
efficiency confirms the impact of the different techniques
employed. As shown in Section VI, in fact, the FPGA-based
architecture can reach the same levels of performance as an
optimized collision search application run on a massively
parallel HPC cluster, while costing two orders of magnitude
less. By using a small-scale prototypical cluster, made of only
20 very low-cost FPGAs, we were able to find an actual
collision for a 72-round version of SHA-1, outperforming the
best achievement presented in the technical literature.

II. BACKGROUND

Cryptanalysis usually requires massive computations and
often relies on special-purpose hardware solutions exhibiting
much better performance/cost ratios than off-the-shelf comput-
ers. While there would be countless examples in the literature
of hardware acceleration for cryptanalysis, there are few
contributions that deliberately use reconfigurable devices as
the underlying technology. Some commercial clusters relying
on FPGAs, for example, have been recently suggested for
use in cryptanalytic applications, including Copacobana, made
of 120 Spartan-3 1000 or Virtex-4 SX35 FPGAs [1], and
its successor Rivyera, made of 16 to 128 Spartan-3 5000
FPGAs [2]. Other contributions in the literature focus on
low-level aspects. For instance, it has been shown how some
FPGA-specific resources can accelerate RSA encryptions [3]
as well as attacks on RSA [4].

Among the numerous works on hardware-accelerated crypt-
analysis, very few target collision search for cryptographic
hash functions, in spite of the serious threats to security
created by vulnerabilities in hash functions such as MD5 [5].
Reference [6], in particular, presents a special-purpose micro-
processor to speedup collision search for MD4-family hash
functions. The core has minimal area requirements but it
basically uses a software-like implementation of the collision
search algorithm and, in fact, it only shows significant im-
provements if implemented as an ASIC. Many works exist,
on the other hand, on theoretical or software-based attacks
to SHA-1. They are especially relevant here for comparisons
of attack performance and costs. After some early studies by
Chabaud and Joux [7] on SHA-1’s predecessor SHA-0, based
on a differential approach, and by Biham et al. [8], Wang et
al. [9] showed in 2005, for the first time, a method to find a
collision for SHA-1 with a theoretical complexity lower than
the bound of 280 of a simple birthday attack, namely 269. De
Cannière et al. [10] then described a way to automatically find
complex Non-Linear characteristics and used it to determine
a two-block colliding message pair for a weakened 64-round
version of SHA-1. A collision for a 70-round version of



SHA-1 was presented by the same researchers in [11] and an
equivalent result was obtained by T. Peyrin in [12]. Finally,
Cilardo et al. [13] presented a study of vulnerabilities in the
SHA family, namely the SHA-0 and SHA-1 hash functions,
based on a high-performance computing application run on a
massively parallel cluster. They were able to identify the first
collision for a 71-round version of SHA-1.

III. THE SHA-1 HASH FUNCTION

Issued by NIST in 1995 as a Federal Information Processing
Standard [14], SHA-1 is the most popular hash function
currently in use for cryptographic applications. The hash
function SHA-1 takes a message of length less than 264 bits
and produces a 160-bit hash value. The input message is
padded and then processed in 512-bit blocks in the Merkle-
Damgård iterative structure. Each iteration invokes a so-called
compression function which takes a 160-bit chaining value
and a 512-bit message block and outputs another 160-bit
chaining value. The initial chaining value (called IV ) is a
set of fixed constants, and the final chaining value is the hash
of the message. The compression function of SHA-1 works as
follows. For each 512-bit block of the padded message, divide
it into sixteen 32-bit words, (W0,W1, . . . ,W15). The message
words are first expanded as follows: for i = 16 . . . 79

Wi = (Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) << 1 (1)

where the ‘<< x’ notation is used for a left rotation of x bits.
The 160-bit chaining value is stored into five internal 32-bit
variables, called A, B, C, D, E. The expanded message words
Wi are then processed in 80 rounds, divided into four groups
of 20 consecutive rounds. Each of these 80 steps applies the
following round function: For i = 1 . . . 80

Ai = (Ai−1 << 5)+fi (Bi−1, Ci−1, Di−1)+Ei−1+Wi−1+Ki

Bi = Ai−1 Ci = Bi−1 << 30 Di = Ci−1 Ei = Di−1 (2)

where the ‘+’ symbol denotes the integer addition performed
modulo-32. Each group of 20 rounds uses a different Boolean
function fi and constant Ki, as summarized in the following
table.

round Boolean function fi(x, y, z) constant Ki

0− 19 IF : (x · y) + (x · z) 0x5A827999
20− 39 XOR : x⊕ y ⊕ z 0x6ED6EBA1
40− 59 MAJ : (x · y) + (x · z) + (y · z) 0x8FABBCDC
60− 79 XOR : x⊕ y ⊕ z 0xCA62C1D6

The chaining value IV = (A0, B0, C0, D0, E0) for the
first application of the compression function is defined by
the standard as (0x67452301, 0xEFCDAB89, 0x98BADCFE,
0x10325476, 0xC3D2E1F0).

A. Cryptanalysis of SHA-1
The essential idea behind the attack to SHA-1 is to constrain

the values of the messages and registers A . . . E in order to
reach a collision with a certain probability. Such set of bit-
level constraints on the difference of two messages is called
“differential characteristic” (an example is shown in Figure 1).
A differential characteristic is comprised of two sections. The
W part defines the constraints imposed to the bits of the
two messages in each position, while the A part contains the
constraints imposed to the internal registers A . . . E during the
hashing process. In fact, the characteristic only considers the A

round A(i) W(i) Dw(i) Pu(i) N(i)
/--..-----32bit----/ /--..-----32bit----/ . (log2) .

-4: 00..000011111000011 . . .
-3: 01..101000111011000 . . .
-2: 01..111001111111010 . . .
-1: 11..010101110001001 . . .
00: 01..010001100000001 u1..11-1-010u0n10un 3 0.00 2ˆ -9.16
01: n1..00-0-0111uu110u 01..0----001000n010 7 -4.19 2ˆ -2.16
02: 1n..0--u-n10011u1u0 01..-------1n1011nu 11 -6.06 2ˆ4.65
03: 11..u----0-uu0uuu0u nn..--00---1uun10u1 10 -9.19 2ˆ8.59
04: n0..1un0u1000011111 n1..0----0-000u0010 6 -6.00 2ˆ5.4
05: 10..u110111110000n0 uu..-------0nn010u1 9 -10.00 2ˆ8.4
06: 11..110000n100011uu un..---0-0-0u1011u0 5 -5.00 2ˆ3.4
07: u1..nu00-01n0n01n1u 11..11-------uu0001 8 -7.00 2ˆ6.4
08: 11..1n11-01011u1u01 nu..--1--111u1111u0 6 -4.00 2ˆ5.4
09: 10..0-1n-111u001un0 11..001----1nu11000 7 -6.00 2ˆ9.4
10: 01..1nu0-000001n10n nn..-------0n10110n 9 -4.19 2ˆ11.4
11: u1..-0-1nu-1u000un0 01..---011-1u0n0010 11 -6.94 2ˆ18.21
12: u0..---u000u0nu0111 nu..-------0u01100u 13 -5.00 2ˆ24.27
13: 10..-----1001u1u1uu nu..--------unu00u0 15 -6.00 2ˆ34.27
14: 00..-----1--10u1u11 u0..--------11101nn 14 -3.27 2ˆ42.27
15: u0..--------0011001 nn..---------1u00u0 14 0.00 2ˆ53
16: -0..---------1n101u 0n..-------1n01011u 0 -2.00 2ˆ53
17: u1..-------010-111- nn..-------01nn10u0 0 -1.00 2ˆ51
18: -1..----------100-- 00..--------100001n 0 0.00 2ˆ50
19: --..-----------10-- nu..------1011010u1 0 -2.00 2ˆ52<=AP
20: --..-----------1-n- nu..------01u0111u1 0 -2.00 2ˆ50
21: --..-------------n- 1n..--------u0101n0 0 0.00 2ˆ48

...... ...... ...... ......
68: --..-----------u--- --..----00n0-1xn-ux 0 -3.00 2ˆ11
69: --..-----------n--- --..-----1u0-u-xx-u 0 -3.00 2ˆ8
70: --..---------u----- --..----n0-1--nxxx- 0 -4.00 2ˆ5
71: --..----------n---- --..-----u0-0x--u-- 0 -1.00 2ˆ1
72: --..--------------- 0 1

Fig. 1. An example of differential characteristic

register, since the remaining four variables B . . . E, and related
constraints, can be easily obtained from A by simple rotations
and round shifts (e.g. Di = Ai−3 << 30). The constraints
are expressed by a set of symbols: ‘1’ and ‘0’ indicate that
both bits in the two messages must take on the values 1 and
0, respectively, ‘u’ and ‘n’ indicate a signed difference (1/0
or 0/1, respectively), ‘x’ an unspecified difference, ‘−’ two
unspecified equal values.

As a preliminary work, we developed some support tools
for the generation of the characteristic, based on both existing
and original techniques. We will not give the details of these
tools here, as they would be out of the scope of the paper. For
each round i, the support tools evaluate the probability that
the subsequent Ai+1 complies with the characteristic, given
that the current word Wi and the previous five Ai . . . Ai−4

(i.e., registers Ai . . . Ei) do as much. This probability is called
Pu(i). For the first sixteen Wi, which are in fact a part of
the message to be hashed, some bits are not constrained by
the characteristic (those indicated as ‘−’) so that they can be
controlled by the attacker. They are called degrees of freedom
and their number for each round is denoted as Dw(i). Clearly,
Dw(i) = 0 for i ≥ 16 due to the expansion function (1) for
computing words Wi. The collision search proceeds by setting
the degrees of freedom and evaluating pairs of messages
whose difference complies with a given characteristic.

In order to evaluate the performance of the attack, it is
important to estimate the expected number of executions for
each round i, denoted as N(i). This parameter can be com-
puted from Pu(i) and Dw(i) starting from the bottom of the
characteristic, by using the recursive relationship N(i+ 1) =
N(i) ·Pu(i) ·2Dw(i+1) ⇒ N(i) = N(i+1) ·2−Dw(i+1)/Pu(i)
with the initial value of N(i+1), i.e. the number of execution
of the last round (72 for the characteristic in the figure) equal
to 1, since we will stop the search process as soon as we
reach the last round for the first time. Since the execution of



each round, i.e. the computation of all relationships (1) and (2)
for Wi and Ai . . . Ei and the corresponding register updates,
can be performed in parallel, possibly in a single clock cycle
for a hardware implementation, we call this set of steps an
Elementary Operation (EO), and the expected total number of
round executions, i.e. the summation of parameters N(i) for
all rounds i, the Mean number of EOs to Collision (MEOC).

Due to the exponential complexity of the search process,
it is essential to find out efficient ways to enumerate all
available message pairs in the search space, possibly by
identifying “more probable” message pairs and by pruning
as early as possible large subspaces not containing collisions.
An improvement to the algorithm is provided by the use of
Auxiliary Paths (APs, see [15]). An AP is a set of bits in the
message pair which, if flipped, produce another message pair
satisfying the characteristic until a certain round rAP . Thus,
once a message pair is tested to be compliant to the char-
acteristic until round rAP , it is possible to generate another
message pair that will certainly be compliant in that round.
In effect, since rAP is located late in the round sequence,
when the probability of execution has already decreased by
several orders of magnitude, the fork produced by an AP
virtually doubles the chances of finding a collision, i.e. it
halves the MEOC. Clearly, a number P of different APs
allows the generation of 2P − 1 new “good” message pairs
from rAP onwards, and a corresponding improvement for the
MEOC. The characteristic in Figure 1 has two APs that can be
applied at round rAP = 19. All N(i) values above the fork,
computed with the formula given earlier, are thus corrected
with a decrement by 2. Unfortunately, taking into account an
AP also involves a cost related to saving the intermediate
search state and restoring it after the previous execution
branch. This overhead makes the EO, or round, where the
AP fork occurs have a time cost larger than other EOs. In
general, furthermore, especially for parallel implementations,
similar forks –and related overheads– take place at some
specific rounds for dividing the search space among different
processors. As a consequence, the execution times in terms
of clock counts C(i) for each round i can be different and,
thus, the MEOC is not necessarily proportional to the total
clock count for a collision. The Mean Clock Count to Collision
(MCCC), rather, should be computed as the weighted sum of
the EO counts N(i), i.e. MCCC =

∑
N(i) ·C(i). Since the

MEOC, including the APs’ contribution, is specific to a given
characteristic, while the times C(i) depend on the different
architectural optimizations employed, a good metric for the
quality of an implementation is the MEOC/MCCC ratio,
called here EO per clock cycle, or EOC. For a single, basic
core performing a sequence of EOs on Wi pairs, the ideal
bound for EOC is 1.

IV. HARDWARE RECONFIGURATION FOR THE
CRYPTANALYSIS OF SHA-1

Reconfigurable hardware, by its nature, can be used “inter-
actively”, changing the hardware design over time more than
once. So, not only can FPGAs be used for the cryptanalytic
computation in itself, but also for supporting the study of the
problem, enabling large-scale computation efforts just aimed
at algorithm and architecture exploration. We extensively
exploited this potential, as described below, to investigate
new effective search techniques. In addition, we found out
that both static and dynamic circuit specialization, enabled
by reconfigurable devices, can play a key role to maximize
the performance and minimize the hardware complexity of

the system, automatically specializing it for a given input
characteristic.

a) Algorithm and architecture exploration: As a first
step in our study, we employed reconfigurable hardware for
extensively experiment with new algorithmic techniques. Two
remarkable opportunities were identified by this approach:

1) We developed an FPGA-based temporary design to
explore the behavior of higher rounds in the differential char-
acteristic, namely those beyond round 60, that are normally
executed very rarely due to the exponentially decreasing value
of probability. We found that some bit-level constraints in the
last rounds, seemingly independent of the previous constraints,
are in fact indirectly influenced by some bit patterns including
the degrees of freedom in the sixteen message words, due
to the message expansion function for Wi. These inter-
bit constraints, resulting in a degraded actual probability of
success (normally halved for each constraint) had not been
detected before, because they impact the behavior of higher,
i.e. very rare, rounds. The temporary search hardware was
designed to bypass the middle phase of the collision search
process and, albeit not able to find an actual collision, it could
detect the misalignments in the actual behavior at the higher
rounds. It turned out that the differential characteristic, as it
is normally defined, is not suitable to capture the effect of
inter-bit constraints, essentially because it only expresses bit-
level constraints. Moreover, the additional constraints depend
dynamically on the specific bit pattern of some degrees of
freedom chosen during message enumeration. To cope with
this problem, we devised a technique where the differential
characteristic -and the corresponding hardware- is dynamically
changed during message enumeration to mask the inter-bit
constraints. More precisely, at design-time we analyze the
characteristic and express all inter-bit constraints in a system
of Boolean linear equations, reduced by Gaussian elimination
is such a form as to concentrate all independent variables
(some degrees of freedom in the message words) as high as
possible in the first sixteen words. As the independent vari-
ables are set during message enumeration, the corresponding
constraints in the characteristic are set accordingly by back-
substitution in the system. In practice, this process only re-
quires the computation of a sequence of XOR operations and,
importantly, it does not affect the execution time significantly
since it only happens before round 15, i.e. for rounds that are
orders of magnitude less frequent than the subsequent ones.

2) A second technique that was successfully investigated is
called constraint relaxation. Basically, we experimented with
new constraints in the characteristic, different than the bitwise
conditions imposed by the A part. The essential idea was
to employ integer differences rather than bitwise differences.
Under some circumstances, this may deteriorate the probabil-
ity Pu(i) less than expected, while enlarging the set of tries
that satisfy the conditions, resulting in an improved overall
MEOC. A difficult problem was to identify such situations,
if any, and define the actual positions and parameters for
the constraint relaxation. To this aim, we developed an ad-
hoc message enumeration component designed to skip or
reinterpret some part of the compliance verification process
in order to identify the locations where the relaxation could
pay off. The hardware-supported analysis led us to identify
rounds 32 and 64 − 72. The actual relaxation consists in
replacing the bitwise XOR between the A and A′ registers
for the two messages in the pair with their integer absolute
difference |A−A′|.

Of course, there is no space here to present the different



Fig. 2. Some optimizations enabled by hardware reconfiguration

variants of the hardware system used for algorithmic explo-
ration, although they all share the same high-level architecture
presented in Section V for the SHA-1 collision search cluster.

b) Parameter-dependent optimizations in the static de-
sign: Reconfigurable technologies enable another important
design approach that can be especially relevant for cryptanal-
ysis: they allow the ad-hoc generation of highly optimized
systems tailored on specific input parameters. We identified
numerous situations for the collision search process where this
approach has a considerable impact on the implementation ef-
ficiency. Some examples include the logic for the fast flipping
of Auxiliary Path bits, the XOR network for applying inter-bit
constraints, the logic for the compliance check and constraint
relaxation, the implementation of “segmented incrementers”
for a more efficient message enumeration, and many others.
Just as one example (out of many actually implemented), we
provide some details on segmented incrementers. As explained
above, the search process works basically by enumerating all
the combinations for the ‘−’ symbols in the characteristic
(see Figure 1). This cannot be done by using normal counters
in a straightforward way, since bits are in general not con-
secutive, and may compromise the use of carry propagation
logic for fast increments. However, for a typical configurable
element, e.g. a Xilinx Spartan3 slice like those depicted in
Figure 2, a carefully optimized (and, of course, characteristic-
dependent) configuration allows us to pack in a single group
of consecutive FPGA Look-Up Tables (LUTs) and Flip-Flops
all the bits in their order, exploiting carry propagation logic
for the counting operation, skipping unaffected bits without
interrupting the carry chain, and –in addition– embedding
a multiplexer for load operations from the outside. For the
example pattern “-**-...-*”, where ‘-’ symbols denote
the bits to be enumerated and ‘*’ the constant values to be
skipped, Figure 2.a) shows the appropriate configuration of
LUTs and surrounding logic. Since this kind of low-level,
input-dependent optimizations involves nearly all components
of the design, the impact on both hardware complexity and
circuit delay can be considerable. In practice, it roughly leads
to halved footprints on the FPGA for the single elementary
core, and hence doubled parallelism and computational power.

Another important example of input-dependent system cus-
tomization is related to hardware replication for fast EO
executions. Based on the actual probability values inferred

from the characteristic, we resort to replication only for those
rounds whose N(i) is above a certain threshold, i.e. only when
an improved C(i) can significantly increase the EOC towards
the ideal bound of 1. This is an important input-dependent
optimization, that can have a dramatic impact on the overall
execution time, as shown in Section V-A.

For a given input characteristic, the above optimizations
determine statically the design to be implemented. To support
the specialization of the system, thus, we have developed a set
of tools for the automated generation of HDL code, taking into
account the input characteristic, its APs, inter-bit constraints,
constraint relaxation, low-level optimizations, etc. Needless
to say, this customization of the hardware system based on
specific input parameters is an inherent advantage of FPGAs,
that would be impossible for an approach based on ASICs.

c) Dynamic updates of wired logic: Finally, we identified
some situations where dynamic reconfiguration of some parts
of the system can lead to higher speed and/or improved
hardware complexity. Since, in general, dynamic reconfigu-
ration requires a non-negligible time, its use is justified only
when it occurs with a medium/coarse temporal granularity.
Again, there would be many examples where it can pay off,
including the cases where the logic to be applied depends
on some previous settings made at run-time, e.g. for inter-
bit constraints. Another example of such situations is related
to register re-initialization, where some value set earlier in a
register, and then overwritten, needs to be used again (e.g.,
during message enumeration, before entering a new branch
in the search tree from a certain node). Typically, we would
need an additional register or memory to store the value while
all the branches below are explored. A possibility based on
dynamic reconfiguration, on the other hand, would consist in
using the Set/Reset (SR) configurable signal available for Flip-
Flops in most FPGAs (see Figure 2.b)). By controlling the
behavior of the SR signal appropriately, any initialization value
can be set in the flip-flops making up the bits of a register.
The SR MUX, of course, cannot be controlled directly from
the user design, as it is part of the FPGA configuration. The
intermediate values of registers A . . . E for the relatively rare
round 14, kept constant as the search goes down through round
15 and beyond, and then changed every time we go back to
round 13, could be an example of a situation benefitting from
re-initialization based on dynamic reconfiguration. Since there
are ten such registers in a single SHA-1 collision core (320
bits), and many cores in a single FPGA, the technique may
save an appreciable quantity of hardware resources, although
in general less compared to the impact of the static input-
dependent optimizations described in the previous paragraph.
Incidentally, the Xilinx Spartan3 devices we used for our
experiments do not support dynamic reconfiguration, so we
did not implement this class of optimizations.

V. THE FPGA CLUSTER

Figure 3.a) summarizes the application flow for the auto-
mated generation of the HDL code from an input characteristic
and the configuration of the FPGA cluster. Based on an
iterative, three-phase refinement process, not described here,
a set of software tools generate a differential characteristic
like that in Figure 1. The characteristic is then analyzed by a
module for the automated generation of HDL code (namely,
VHDL), leading to the configuration of the different compo-
nents of the cluster architecture. This automated generation
applies all the architectural optimizations that, as described
in the previous section, depend on the specific behavior of



Fig. 3. a) Architecture of the application flow and FPGA cluster. b) One half of the SHA-1 collision core

the characteristic. The cluster architecture is made of three
levels. A top-level Master node analyzes the first few rounds
(e.g. the first thirteen), in order to produce more constrained
characteristics, which are then sent to the Slave nodes. Most
of the workload is concentrated below the first rounds, so
that the concurrent jobs dispatched to the slaves achieve an
almost complete parallelization of the search process. The
jobs, moreover, involve very little communication overhead,
since only the initial search state for each job and the possible
colliding messages need to be exchanged over the bus. Within
the slave node (a whole FPGA), a Controller component
acts as a second level in the architecture. It makes further
enumeration of intermediate rounds (e.g. on round 14) and
distributes the remaining search workload to a set of SHA-1
collision cores, described in detail below, which constitute the
third level in the architecture. We leave only round 15 for the
enumeration on the third-level cores, as long as the available
degrees of freedom ensure an execution time long enough to
hide the synchronization overhead. This simplification allows
further speed and area optimizations, enabling a high EOC
with small-footprint cores.

For the current prototypical implementation of the cluster,
we used a set of 20 inexpensive commercial off-the-shelf
boards, namely the Digilent Nexys-2 boards, each equipped
with a Xilinx Spartan XC3S1200E FPGA. The interconnection
is made through an ad-hoc inter-board bus. The Master node
is implemented as a microprocessor system based on the
Xilinx MicroBlaze core, while the Slave nodes are completely
custom-made. We paid much attention to the modular nature
of the cluster, supporting an easy extension with additional
hardware. The extension port allows the hot-plug of addi-
tional modules and the software-supported reorganization of
the search partitioning as new modules are plugged in. The
Controller also interact with an on-board non-volatile memory
for the checkpointing of the search jobs. An I/O interface
managed by the Master node allows the external user to
interact with the cluster during the the search operation.

A. SHA-1 collision core architecture
The basic building block of the cluster consists of a core

which is able to process sequences of EOs for a certain portion
of the search space. Figure 3.b) shows a particular instance
of the SHA-1 collision core, generated for the characteristic
of Figure 1. We relied on many of the techniques identified
in Section IV to determine the structure of the core. For
time-critical rounds, we used selective hardware replication

by means of suitable shadow registers (see the figure) with
preloaded message expansion (possibly completed with a
single XOR during enumeration). The first sixteen Wi words
are stored in an inexpensive 32-bit LUT-based memory and
accessed sequentially for filling in a shift register with a
(time-consuming) serial-in load, but only for the relatively rare
rounds beyond 21. The shadow registers and the shift register
load circuitry contain some ad-hoc logic controlling the se-
lective bit-flipping related to AP enumeration. A segmented
incrementer is used for round 15. The registers A . . . E,
making up a shift register, need one long- and one medium-
term initialization value to be stored into two additional
registers for each variable A . . . E, implemented as memory
LUTs. The structure shown in Figure 3.b) is duplicated for
each SHA-1 collision core to explore the behavior of a pair
of messages concurrently. The output difference between the
two halves of a core is used to verify the compliance with
the characteristic. To save memory, only a digest of the whole
80-round characteristic is stored in each core, privileging the
conditions on the more frequent rounds to limit false positives.
The actual digest is defined, again, according to the input
characteristic. The hardware for the compliance check is also
responsible for constraint relaxation at the appropriate rounds.

As a result of these techniques, the EOC measured for
the above SHA-1 collision core, specialized for the input
characteristic of Figure 1, is very close to the ideal bound,
precisely EOC= 0.84. Similar, or even higher, values were
obtained for other characteristics.

A number of implementation-level optimizations were car-
ried out for the target Spartan3 device. We made an extensive
use of RLOC constraints and manual placement in order to
obtain extremely regular layouts, enabling high efficiency in
the use of the FPGA resources and decreased delays. To obtain
the maximum level of compactness, we carefully balanced the
use of flip-flops and LUTs used as 1-bit memory elements. The
implementation results for both the SHA-1 collision core and
the whole design are listed below. The SHA-1 core reduced
footprint allows each of the 20 FPGAs in the prototypical
cluster to host six cores.

LUTs flip-flops delay
Controller Core 2539 2379 12.0ns
Single SHA-1 Core 2127 1979 11.8ns
Slave Node 15301 14253 12.1ns
Master Node 3325 1923 17.3ns



VI. DISCUSSION AND CONCLUSIONS

This section discusses the results collected from this work,
and draws some conclusions and possible lines for future
developments.

a) A case for reconfigurable computing in cryptanalysis:
The work presented in this paper makes a case for the role of
reconfigurable computing in cryptanalytic high-performance
applications. Reconfigurable technologies enable inherent new
opportunities, including algorithmic and architectural explo-
ration and static/dynamic input-dependent circuit specializa-
tion. Brand new techniques at the algorithm level, presented
in Section IV, stemmed from this study, in addition to a
large variety of architectural optimizations and specific design
techniques.

b) Highest speed/cost ratio for SHA-1 collision search:
To demonstrate the impact of the approach presented, we
have developed a working FPGA-based cluster. The EOC it is
able to reach is much higher than other existing software or
hardware solutions. For example, the proposal in [13], based
on the MariCel supercomputer featuring high-speed IBM
CBE processors (each containing eight 4-slot SIMD units,
called SPUs, working at 3.2GHz) is able to reach an EOC =
0.026, referred to one SPU, running a highly optimized SIMD
application. Taking into account the difference in the clock fre-
quency, that means that a single SHA-1 collision core is able
to find a collision in a comparable time, precisely only around
1.19 times larger than an SPU core in the supercomputer
used in [13]. Compared to the HPC MariCel supercomputer,
however, building an FPGA-based cluster based on the SHA-1
collision core costs two orders of magnitude less.

Looking at hardware solutions in the literature, [6] presents
a microprocessor with minimal area requirements for
speeding-up the MD-4 hash function. Synthesized for a Spar-
tan3 XC3S1000 FPGA device, their collision search unit
requires around 700 slices (9% of the device resources,
according to the paper), each containing two LUTs and two
flip-flops, i.e. around 30% less resources than our SHA-1
collision core. On the other hand, the unit is not targeted at
SHA-1 and, being based on a software-like approach, it would
be considerably slower than our core. Working sequentially on
32-bit data, in fact, it would require at least 12 cycles for an
EO (update of variables Ai . . . Ei and Wi for two different
messages) not to mention checks and control operations, with
an EOC certainly (much) below 1/12 = 0.083 if used for
SHA-1.

The FPGA-based prototypical cluster presented in Sec-
tion V, in conclusion, is currently the solution with the highest
performance/cost ratio for SHA-1 collision search.

c) The first 72-round SHA-1 collision: At the end of
our work, we used the prototypical cluster to outperform a
previous result in SHA-1 cryptanalysis. In fact, we were able
to find an actual collision for a 72-round version of SHA-1,
beyond the limit reached in [13]. The collision, listed below,
was the most advanced result towards a break of the full 80-
round SHA-1 algorithm at the time of the discovery.

d) Future developments: With the support of a major
FPGA manufacturer, we plan to build a large scale version of
the cluster and demonstrate its potential with new results for
SHA-1. At the same time, we plan to extend our approach to
other hash algorithms, namely the candidates for the selection
of the SHA-3 function, so as to enable an early analysis of the
proposals and anticipate possible unexpected vulnerabilities.

Fig. 4. The 72-round SHA-1 collision found by the FPGA cluster
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[1] T. Güneysu, T. Kasper, M. Novotný, C. Paar, and A. Rupp, “Cryptanal-
ysis with COPACOBANA,” IEEE Transactions on Computers, vol. 57,
no. 11, pp. 1498–1513, 2008.

[2] (2011, Jan.) Rivyera S3-5000. [Online]. Available:
http://www.sciengines.com/

[3] D. Suzuki, “How to maximize the potential of FPGA resources for mod-
ular exponentiation,” in Proceedings of the 9th international workshop
on Cryptographic Hardware and Embedded Systems, ser. LNCS, vol.
4727. Springer, 2007, pp. 272–288.

[4] G. de Meulenaer, F. Gosset, M. M. de Dormale, and J.-J. Quisquater,
“Integer factorization based on elliptic curve method: Towards better
exploitation of reconfigurable hardware,” in Proceedings of the 15th An-
nual Symposium on Field-Programmable Custom Computing Machines
(FCCM) 2007. IEEE, 2007, pp. 197–206.

[5] A. Sotirov, M. Stevens, J. Appelbaum, A. Lenstra, D. Molnar,
D. Osvik, and B. de Weger. (2011, Jan.) MD5 considered
harmful today: Creating a rogue CA certificate. [Online]. Available:
http://www.win.tue.nl/hashclash/rogue-ca/
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