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Abstract—We present an energy-reduction strategy for applications
which are resilient, i. e. can tolerate occasional errors, based on an
adaptive voltage control. The voltage is lowered, possibly beyond the
safe-operation region, as long as no errors are observed, and raised
again when the severity of the detected errors exceeds a threshold. Due
to the resilient nature of the applications, lightweight error detection logic
is sufficient for operation, and no expensive error recovery circuitry is
required. On a hardware block implementing texture decompression,
we observe 25% to 30% energy reduction at negligible quality loss
(compared to the error introduced by the lossy compression algorithm).
We investigate the strategy’s performance under temperature and process
variations and different assumptions on voltage-control circuitry. The
strategy automatically chooses the lowest appropriate voltage, and thus
the largest energy reduction, for each individual manufactured instance
of the circuit.

I. INTRODUCTION
Voltage scaling, i. e. lowering the power supply voltage VDD

during system operation, is a key energy-reduction methodology [1],
[2]. Since gate delays increase upon voltage reduction, conventional
dynamic voltage and frequency scaling (DVFS) approaches comple-
ment voltage scaling by a simultaneous decrease of frequency, thus
reducing the system’s performance. In DVFS, the system always
operates in a “stable” voltage-frequency operating point, where the
critical-path delay is never exceeded, even taking some safety margins
due to possible temperature or process parameter variations into
account. This means that the circuits are conservatively designed to
meet the timing constraints even if the temperature exceeds its typical
value and the delays on the critical path are elevated due to statistical
process variations.

This conservatism implies that the majority of actual manufactured
circuits cannot utilise the full potential of voltage scaling most
of the time: even though VDD could be lowered further without
compromising the system’s stability, this is not done, since voltage
control has no temperature or process-variation information and thus
cannot decide whether a further VDD decrease would be safe. As this
paper shows, significant energy savings are prevented by assuming
the worst case.

We present an adaptive voltage over-scaling (AVOS) strategy for
resilient applications, which can tolerate error-induced output devia-
tions. The concept of application resilience has been known under
headings such as error tolerance [3], application-level correctness
[4] or imprecise computation [5]. Resilient applications are found in
fields like multimedia, where a human end-user may not notice small
deviations in e. g. images calculated by hardware blocks affected by
errors [6], and artificial intelligence where algorithms including belief
propagation and support vector machines have intrinsic mechanisms
to deal with erroneous or uncertain data [4]. The AVOS strategy
lowers voltage, while (unlike DVFS) leaving frequency unchanged.
The circuit’s flip-flops have a lightweight Razor-style error detection
circuitry [7], which reports small-delay errors. All detected errors
are accumulated in a time-decaying error sum counter, but no error
recovery is performed. Once the error counter exceeds a pre-defined
threshold, VDD is raised again and is lowered back when no errors
have been observed for a while. By doing so, every particular
manufactured circuit instance tends to be operating very close to
its individual boundary between error-free and erroneous operation.
The strategy adapts the circuit with respect to delays of circuit
paths sensitised by the input data being processed as well as the
temperature, and can react to short-term changes in these parameters.

If the strategy is allowed to choose voltages which exceed the
nominal VDD , it can even ensure the circuit’s operation outside its
specifications.

We perform a series of simulations on an ASIC implementation
of texture decompression algorithm ftc1 [8], which is an instance
of a typical embedded application that is both resilient and energy-
constrained. Compared to its version with no AVOS, we observe
energy savings of 25% to 30%. The impact on the quality of the
images produced is negligible, as it’s dwarfed by the quality loss due
to the compression error itself, even though we don’t employ any
extra circuitry for recovery. We show the efficiency of our technique
for a number of scenarios with inter-die and intra-die variations and
for a range of temperatures.

The remainder of this paper is organised as follows: Section II
presents the AVOS strategy in more detail. Section III describes
the ftc1 block used for experiments and discusses the hardware
implementation of error detection and voltage control. Section IV
focuses on the flow used for evaluation, and results are reported
in section V. Related work is summarized in section VI. Possible
directions for future work are discussed in section VII. Section VIII
concludes the paper.

II. ADAPTIVE VOLTAGE OVER-SCALING

In AVOS the voltage at which a circuit operates is changed
dynamically depending on the circuit’s behaviour. Among a set of
possible voltages a desired one is selected by a voltage control
strategy. Conservative assumptions about other parameters, such
as process variations and temperature are not necessary, allowing
aggressive lowering of voltage and high energy savings.

Assuming a synchronous circuit let V be the set of voltages, Z
the set of possible observations from the circuit’s behaviour and S
the internal state of the voltage control. In this work we assume
V = {V0, . . . Vh}, Z and S to be finite sets. Then voltage control
is a Mealy Machine with transfer function f : S × Z → S × V .
One way of observing the circuit’s behaviour is by trying to detect
delay errors caused by too low voltage and report an error severity
as a binary number of log2 n bits, resulting in an error function
e : Z → N = {0, . . . , n − 1} ⊆ N, and let the voltage control rely
on these reported values: v : S ×N → S × V, f = v(·, e(·)).

Function e is discussed in section II-A, v in section II-B.

A. Error Function
In a circuit there are multiple locations where errors can occur.

Similar to prior work [9], we assign each location i a severity
ei. Severity of 0 represents the absence of errors, with higher
numbers indicating more severe errors. These severities are generally
application-specific. The circuit considered in this paper calculates
pixel values. The severity of an error is defined as the numerical
difference between the pixel value in the erroneous and the error-
free case.

In order to simplify error-detecting hardware, we employ the
following technique for the (unlikely) case that multiple pixel values
are corrupted simultaneously. Let the individual severities of the
affected outputs be e1, . . . , em ∈ N . The accurate overall severity
calculation would sum up all these severities. Instead of implementing
the expensive circuitry for calculating the sum, we use the bit-wise
OR of the ei’s to yield the overall severity. It can be shown that
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∀(e1, . . . , em) ∈ Nm: max
i=1,...,m

ei ≤ OR(e1, . . . , em) ≤
m∑
i=1

ei.

holds. Hence, this approximation is close enough to actual severity
while being cheap in terms of gate count and delay at the same time.
B. Voltage Control Strategy

For voltage control a combination of a time-decaying error counter
E and a voltage change cool-down counter Γ has been chosen. A
configurable error threshold Et, cool-down counter reset value Γ0

and threshold Γt allow for a trade-off between quality and adaption
speed to varying parameters, such as temperature.

Voltage control operation is shown in figure 1. Both E and Γ use
saturating arithmetic. At each clock E is decremented when no error
is detected and Γ is decremented when no voltage change occurs.
When an error occurs its severity is added to E. Whenever the voltage
changes Γ is reset to Γ0. When E = Γ = 0 the voltage is decreased.
When the last voltage change was a decrease and E ≥ Et the voltage
is increased. When the last voltage change was an increase and E ≥
Et and Γ ≤ Γt for an implementation defined cool-down threshold
Γt the voltage is increased. Γ0 must be large enough to prevent too
rapid voltage fluctuations.

For applications where a higher error rate is tolerable, the condition
of E = 0 for voltage decrement could be relaxed to E ≤ E0

for a configurable threshold E0, resulting in potentially higher
energy savings. This energy-vs.-quality trade-off has been explored
in classical voltage over-scaling literature [10]. Our proposed strategy
aims at getting as close as possible to an individual chip’s limits of the
error-free operation and derives its energy savings from eliminating
the safety margin. We accept only occasional errors when the chip’s
limits are exceeded and try to return to stable operation as soon as
possible, resulting in very low quality loss. Selecting larger values
of Et and E0 would allow to trade further energy savings for a
systematic quality deterioration (as done in [10]) on top of the energy
reduction reported.

III. THE FTC1/DXT1 DECODER
In computer graphics achieving high visual quality typically re-

quires high-resolution textures. Texture compression achieves higher
graphics quality with given memory and bandwidth or reduced
memory and bandwidth consumption without degrading quality too
much. GPUs have dedicated hardware for texture decompression.

DXT1 [11] is a texture compression system supported by nearly all
3D graphics hardware today. It is required by DirectX and available
on most OpenGL implementations. ftc1 [8] is a state of the art texture
compression system derived from DXT1 that offers higher image
quality at the same compression ratio. In a combined ftc1/DXT1
implementation most of the hardware can be shared, so that compared
to a plain DXT1 decoder the additional amount of hardware required
to implement DXT1 is minimal (≈ 11% in gate count).

The decoder used in this work has two inputs, a 64 bit compressed
data block representing 16 pixels in the texture (called texels) and a
texel selection signal indicating which of these 16 pixels to retrieve.
The output is a 32 bit RGBA pixel value.

Voltage decrease:

Voltage increase:

Voltage increase after decrease:

E ≥ E
tE=Γ=0

E ≥ E , Γ ≤ Γ
t t

E=Γ=0

Fig. 1. Voltage control strategy
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Fig. 2. ftc1/DXT1 decoder pipeline

For this work a pipelined ftc1/DXT1 decoder has been imple-
mented (figure 2). It consists of four pipeline stages. The first stage
performs colour endpoint decoding (and is the only stage added for
ftc1 compared to a DXT1 decoder). The last three stages interpolate
colour, generate additional colours from the endpoint colours and
then choose one based on the index.

The decoder has been implemented using hierarchical Verilog, with
error detection at registers after critical pipeline stages.

A. Error Detection
The error detection has been realised similar to Razor [7] by adding

delay error detection at the registers in the pipeline. Figure 3 shows a
second flip-flop driven by a second clock delayed by time δ and the
same input line. When a signal change is delayed it doesn’t arrive in
time for the rising main clock, but arrives before the delayed clock
(i. e. the delay is less than δ) the flip-flops contain different values.
The output of the XOR gate becomes true and the delay error is
detected (figure 4).

When the clock delay δ is too short, many delay errors (when the
delayed signal arrives after the rise of the delayed clock) will not
be detected. When the clock delay δ is too long, false positives may
occur (a delay error cannot always be distinguished from a regular
signal change in the next clock cycle). This problem is worst when a
signal depends on inputs from the previous stage through both long
and shorts paths, such as the most significant bit output of a carry-
ripple adder. There are multiple ways to mitigate this problem, e. g.
adding delay elements such as additional buffers or latches that gate
the signal [12]; this could be done automatically in synthesis tools;
chip area is increased by the additional gates required. In this work
no such additional measures have been taken. The clock delay δ has
been chosen to match the minimum delay of the shortest path at the
input of a flip-flop with error detection. δ is changed dynamically
with the supply voltage to detect more errors.

We found that AVOS is only minimally affected by error detection
imperfections: if the error detection logic misses an error, it results
in a (slight) deterioration of the output quality; if it mistakenly
reports an error, an unnecessary voltage raise is performed and soon
taken back, resulting in a minimal energy cost. Therefore, lightweight
error detection circuitry with a smaller energy consumption than in
the original Razor approach targeting general-purpose, non-resilient
applications, can be employed.

The reported error severity ei is derived from the error’s impact on
the decoder’s output. For an n-bit pipeline register holding a value
that will end up in a colour channel of an output texel, we directly
map the error outputs from the register’s bits to the bits of the severity
(i. e. errors in the most significant bit of the colour channel are being
considered as much more severe than errors in the least significant
bit).
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B. Voltage Control Implementation
The implementation of the strategy from section II-B has a

(registered) input for errors and an output to select a supply voltage.
Error counter E and a voltage change cool-down counter Γ are kept in
registers. Both are decremented at each clock cycle until they reach 0
unless an error occurs. When an error occurs its severity (as reported
by e above) is added to the error counter E. When the error counter
reaches the configurable threshold Et (and Γ is low enough or the last
voltage change was a decrement), it is reset to 0 and the voltage is
increased. When both the error counter E and the cool-down counter
Γ are 0 and there is no error, the voltage is decreased. Whenever the
voltage is changed, Γ is reset to its configurable maximum value Γ0.

AVOS strategy used for experiments selects the voltage in steps
of 1

20
V from V0 = 1.15V to V15 = 1.9V (the nominal voltage for

the process used is 1.8V). All voltage changes are assumed to take
place immediately. We will evaluate this assumption and the number
of voltages used in section V-B.

IV. EXPERIMENTAL SETUP
An implementation of the ftc1/DXT1 decoder has been simulated

at different temperatures and with different input images to evaluate
energy savings and image quality reduction due to AVOS. The
simulation flow (figure 5) consists of free software only.

To obtain gate delays OSU standard cells [13] have been simulated
using gnucap [14], a free SPICE, at different supply voltages and
temperatures for a 0.18 µm TSMC process and an output load
of 0.1pF. From the resulting delay data further values have been
generated to simulate process variations: Inter-die process variations
affect all transistors on a die uniformly. They were modelled by
multiplying all gate delays by a constant 0.9 or 1.1 (according to
[15], [16] a standard deviation of about 10% of the mean is typical
for the 0.18 µm TSMC process). Intra-die variations can be modelled
by multiplying the delays of individual gates with different, Gaussian
distributed constants. These variations are typically smaller than inter-
die variations (a standard deviation of about 5% of the mean has been
observed for 0.18 µm CMOS technologies [17], including the TSMC
one [18]).

The Verilog implementation of ftc1/DXT1 has been compiled
into BLIF-MV using vl2mv [19], the BLIF-MV was flattened and
converted to BLIF using VIS [20]. Combinatorial optimisation and
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Fig. 5. Experimental setup flow

technology mapping has been done using ABC [21]. Using the delay
values from the gnucap simulation the design has been simulated
at gate level using Icarus Verilog [22] at 130MHz, the highest
frequency at which it operates error-free at 85◦C, 1.8V assuming
the absence of any process variations. Note that this margin setting
is very aggressive; a realistic chip designer would consider process
variations, voltage fluctuations, modelling uncertainties and aging.

A set of 50 images has been used as inputs in the experiments.
It includes images typically used for evaluation of image processing
systems, such as the lena and lorikeet images and textures from the
strategy game Glest.

For each image the difference between the uncompressed image
and the ftc1-compressed and decompressed image has been measured
both for error-free decompression and decompression using AVOS,
which is affected by delay errors. The difference has been measured
using structural dissimilarity (DSSIM) [23], a distance measure
derived from structural similarity (SSIM) [24], which corresponds
well to perceived visual quality. The C++ implementation [25] used
in [8] has been used to measure DSSIM. Results obtained using the
classical error measures mean absolute error and mean squared error
[26] showed the same tendencies as those obtained using DSSIM.

Since energy consumption is proportional to square of the supply
voltage V 2

DD [27] the energy consumption has been measured in
cycles multiplied by V 2

DD: Let V0, . . . , Vh be the possible supply
voltages, and ci the number of clock cycles during which the circuit
has been operating at supply voltage Vi. Then the energy consump-
tion is assumed to be proportional to

∑h
i=0 ciV

2
i . For simulation

parameters Et = 3,Γ0 = 2080,Γt = 2047 have been used.
V. RESULTS

Figure 6 shows the distribution of errors in a part of one image
(out of 50) with an outstandingly large number of errors. Most errors
(lower right cluster) are barely noticeable to a human observer, some
(the two in the middle) are noticeable but not very prominent. Only
one (in the upper left) is so intense that it’s immediately noticed
even by a casual observer. Even in this unusually error-rich part of
the image compression artifacts are more noticeable than the AVOS-
induced errors.
A. Idealized Nominal Case

For the nominal case the ftc1 decoder has been simulated at 45◦C
assuming the absence of process variations and a response time of
0 (i.e., all voltage changes take place immediately). Figure 7 shows
energy consumption of the ftc1 decoder with AVOS relative to a
ftc1 decoder without VOS and the total errors (i. e. the result of
decompression versus the original uncompressed image) in DSSIM
at a temperature of 45◦ C. At this typical operating point we see
a reduction in energy consumption of 22 to 40%. Recall that we
assume a very aggressive safety margin; most real designers would
choose a much larger margin and the energy savings would be much
higher. The error introduced by AVOS is negligible compared to the
error introduced by the image compression algorithm. Except for two
images the total error is still far smaller than the error that would
have been introduced by using the DXT1 compression algorithm, the
de-facto standard for compression of RGB textures.

The average reduction in energy consumption over all considered
images was 30% at quality loss of 0.0624. As mentioned in Section



Fig. 6. An outstandingly error-rich region from the lorikeet image. From left to right: Uncompressed image, ftc1 without VOS, ftc1 with AVOS at 45◦C.
Errors are encircled.

III-B, we repeated the experiment using four and eight voltage levels
instead of 16 to trade off smooth voltage control for hardware
complexity. For eight Vi (V0 = 1.2V through V7 = 1.9V in 0.1V
steps), the energy consumption was reduced by 27% and the quality
loss was 0.0626. Using four voltage levels (V0 = 1.2V through
V3 = 1.8V in steps of 0.2V), these numbers were 23% and 0.0626,
respectively. We observed similar trends in other measurements and
only report results for 16 voltage levels from here on.

B. Voltage Control Parameters
In this section, we study the influence of the number of VDD

levels and the response times of the voltage-control circuitry on the
results. The results are summarized in Table I. A large number of
intermediate voltages reduces the absolute difference between Vi’s
and thus prevent dI/dt during switching. Note that the AVOS strategy
enforces some time between transitions, such that the voltage is
always increased or decreased smoothly. The first three rows of Table
I show that the effectiveness of AVOS is barely affected by the
number of voltages, so that the ultimate choice can be guided by
the resolution of the available voltage regulator and the severity of
dI/dt issues.

The transitions between voltage levels will take some time in
practice. This means that, once the AVOS strategy decides to change
VDD , the circuit will have to operate at the old level for some number
of cycles given by the response time of the external voltage regulator
module. In [28], increase times of 40 µs and decrease times of 5.5
ms are reported. Results of AVOS incorporating response time are
shown in the final row of Table I. We assumed negligible increase
time and decrease times of 216 cycles or 504 microseconds. It can
be seen that the quality stays almost constant (recall that quality
loss refers to the combined effect of AVOS and lossy compression)
while energy consumption worsens slightly. Note that, unlike DVFS,
where transitions are expensive due to PLL relock times requiring
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pipeline stalls of hundreds to thousands of clock cycles AVOS
keeps the frequency constant and thus transitions are much cheaper.
Interestingly, the adaptive mechanism allows for somewhat imprecise
transitions. If, for instance, the voltage regulator sets VDD to 1.62V
instead of 1.65V, AVOS will monitor whether errors show up and
simply switch to the next level.
C. Temperature and Process Variations

The average energy consumption and quality loss over the 50 test
images is shown in figure 8 over a 25◦C to 115◦C temperature range
and for several process variation scenarios. We see that with no
process variations we get energy savings at all temperatures, with

TABLE I
AVERAGE ENERGY CONSUMPTION AND QUALITY LOSS

Voltage levels Response time [µs] Energy cons. Qual. loss
Increase Decrease reduction [%] [DSSIM]

16 (1.15V to 1.9V) 0 0 30 0.0624
8 (1.2V to 1.9V) 0 0 27 0.0626
4 (1.2V to 1.8V) 0 0 23 0.0626
16 (1.15V to 1.9V) 0 504 28 0.0619



an energy saving of over 25% at 45◦C. This is similar for intra-die
process variations (Gaussian, σ = 0.05µ). For inter-die variations
reducing all gate delays by 10% we see that the adaptability of our
AVOS can achieve even higher energy savings (we also see a small
rise in energy consumption at low temperatures due to false positives
in the error detection causing unnecessary voltage increases). For all
these scenarios the additional error introduced by AVOS (less than
0.001 in terms of DSSIM) is much smaller than the one introduced
by the ftc1 compression algorithm (about 0.062) and the total error is
much smaller than the error introduced by the standard DXT1 texture
compression algorithm.

A special case occurs for the chip with inter-die variations causing
a 10% increase in gate delays. Without AVOS it would not be able to
operate reliably over the specified temperature range (unacceptable
DSSIM error of about 0.137 at 85◦C). With AVOS we see it operating
reliably at all temperatures up to 85◦C and still get substantial energy
savings over most of the temperature range. At 85◦C a small increase
in energy consumption (due to raising VDD above 1.8V) over a chip
with no AVOS makes reliable operation possible. At even higher
temperatures, outside the specified range the error gets larger, but is
still comparable to the DXT1 error.

The results of 32 Monte Carlo simulations of intra-die process
variations are shown in figure 9 for the lorikeet image (the results
are similar for other images). The savings in energy consumption are
consistently at about 25%, independent of the process variations. On
the other hand the intra-die variations do affect the additional error
introduced by AVOS. Still, this error is far less than 1% of the error
introduced by the ftc1 compression algorithm in all cases, resulting
in a total error much smaller than that of the DXT1 algorithm.

VI. RELATED WORK
Several techniques have been published to take advantage of the

circuit operation outside the safety margins. The Razor approach [7]
lowers VDD adaptively. The flip-flops in the circuit are equipped with
error detection logic. Once the voltage has been lowered too much,
the circuit starts producing small-delay faults which are detected.
Recovery is initiated, and the voltage is raised again. Error recovery
may involve techniques such as pipeline flushing which result in
performance loss. Furthermore, the error detection and -recovery
logic itself can consume a significant portion of the energy savings
obtained by over-scaling. Finally, the requirements on the error
detection logic are high, as it may not miss any errors; reporting
a false positive comes with a recovery cost.

In the CRISTA [29] approach additional logic detects the activation
of paths that under process variation could potentially be critical. In
these cases the pipeline is stalled, switching to two-cycle operation.
It thus comes with both a performance and area overhead (18%).

Voltage over-scaling (VOS) [30], [31], [10] deliberately lowers
VDD to a value for which the circuit is known to occasionally
produce erroneous outputs. Like AVOS, VOS is applicable to resilient
applications and has also been considered for RF systems [32].
Voltage over-scaling in its current form is not adaptive: it explores
the trade-off between energy saving and output quality reduction
for a number of VDD values but it does not dynamically switch
between different voltages. VOS can be complemented by synthesis
measures. In [33], the path-length distribution is considered as an
own optimization objective. In the application-specific approach in
[34], a color-interpolation block is modified such that delays induced
by over-scaling can only affect “less critical” parts of the circuit. This
is achieved by both modifying the algorithm and applying gate-level
resynthesis.

Figure 10 compares VOS and AVOS under process variations. It
shows hypothetical energy-voltage and quality-voltage characteristics
for three manufactured instances of the same circuit. With rising
voltage, the energy consumption will increase roughly quadratically,
and the quality will improve until it reaches maximum when no
errors show up any more. Due to process variations, the delays of
different gates will be different in the three circuits, leading to slightly
different characteristics. In VOS, the voltage is set to a pre-defined
value, resulting in different and unpredictable energy consumption
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Fig. 9. Gaussian (σ = 0.05µ) intra-die delay variations at 45◦C using the
lorikeet image

and quality deterioration among the three circuits. In AVOS, VDD

is adjusted such as to achieve negligible quality deterioration at the
minimal individual energy consumption for a particular circuit.

In BiVOS [9], different voltages are applied to different circuit
elements. The work focuses on errors due to a noise mechanism
which affects a circuit element independently from other elements,
rather than on delay effects distributed over a path. Using multiple
voltages is shown to significantly improve the scheme’s efficiency
compared with the uniform-voltage case. In [35], the BiVOS idea is
extended to delay effects. Employing multiple voltages, an energy
saving of 21.7% is reported for calculating an image with no visible
artifacts, while uniform-voltage VOS with the same energy efficiency
leads to a significantly deteriorated image.

Table II summarizes the key characteristics of the methods dis-
cussed in this section and AVOS. Only Razor and AVOS are adaptive
and thus can adjust themselves to aging effects and changing ambient
parameters such as temperature. DVFS has performance overhead due
to reduced frequency, while Razor and CRISTA must occasionally
insert pipeline stall cycles. In contrast, AVOS has no performance
overhead. DVFS, Razor and CRISTA are designed to avoid any
errors on the circuit outputs while VOS and BiVOS provide a trade-
off between quality deterioration (which can be significant) and
energy saving. In AVOS, occasional errors are allowed, however
the adaptation strategy keeps their number and magnitude in check,
operating each circuit very close to its individual limit and achieving
maximal energy saving with nearly-zero quality deterioration. All
techniques except BiVOS target delay effects distributed along paths.
AVOS does not require expensive analog circuitry for frequency
control and avoids overhead for providing multiple VDD levels.
Comparing AVOS with Razor, AVOS does not need error-correction
logic, and its error-detection logic can be simpler because it may
occasionally fail to detect errors. Moreover, Razor requires short-path
aware synthesis to avoid the false-positive problem [12] while AVOS
has been shown to perform well when this problem is not addressed
explicitly. In summary, AVOS appears to be a viable alternative

AVOS

Operating points:

VOS
Chip 3
Chip 2
Chip 1

Energy Quality

Voltage

Fig. 10. VOS vs. AVOS under process variations



TABLE II
COMPARISON OF AVOS WITH RELATED TECHNIQUES

Technique Adaptive Performance Quality Error Extra circuitry
overhead impact mechanism (all schemes require VDD control)

DVFS [1], [2] No Yes None Delay Frequency control
Razor [7] Yes Yes None Delay Error-det.&corr., Short-path elimination, Adaptation FSM
VOS [30], [31], [10] No No Significant Delay Possibly, resynthesis [33], [34]
BiVOS [9] No No (trade-off Noise Multi-VDD

BiVOS+VOS [35] No No vs. energy) Delay control
CRISTA [29] No Yes None Delay Prediction, two-cycle control
AVOS Yes No Negligible Delay Lightweight error-detection, Adaptation FSM

for resilient applications, avoiding some of the drawbacks of other
methods.

VII. FUTURE WORK
The results reported in this paper are based on gate-level simu-

lation. More accurate results could be obtained by more elaborate
simulation or measurements on real hardware. Simulation accuracy
could be improved by simulating at a lower level (e. g. considering
individual line capacitances); this would be far slower though. Real-
istic memory access patterns (obtained by observing the behaviour of
3D graphics applications) could be used. Hardware implementations
could be done in ASICs or programmable hardware such as CPLDs
or various FPGA technologies.

Experiments applying the technique to other texture compression
systems, such as DXT1, ftc2 and DXT5 and further resilient applica-
tions such as audio processing, pattern recognition or robotics could
be done.

There could be potential for further reduction in energy con-
sumption or error rate by improving the voltage control (exploring
alternatives to the currently used time-decayed error sum, or e. g. the
modification mentioned at the end of section II-B) or error detection
(e. g. checksums).

AVOS could be incorporated into fault-tolerant general-purpose
processors. For error-recovery with low overhead, such as [36] the
overall solution may provide fault tolerance at little or no energy cost.

VIII. CONCLUSIONS

Adaptive voltage over-scaling (AVOS) allows energy savings of
over 25% at typical operating conditions for resilient applications.
AVOS has been applied to texture decompression, an application
in which energy and bandwidth savings are paid by tolerating
quality loss. Experiments show that AVOS achieves significant energy
reduction for a large or a small number of intermediate voltages
employed while the additional error is negligible compared to the
quality loss due to lossy compression. The results are stable for
different input data and under temperature and process variations.
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