
A Distributed and Self-Calibrating Model-Predictive Controller for Energy and
Thermal management of High-Performance Multicores

Andrea Bartolini, Matteo Cacciari, Andrea Tilli, Luca Benini
Email: a.bartolini,matteo.cacciari,andrea.tilli,luca.benini@unibo.it

University of Bologna, DEIS
via Risorgimento 2

40136 Bologna, Italy

Abstract

High-end multicore processors are characterized by
high power density with significant spatial and temporal
variability. This leads to power and temperature hot-spots,
which may cause non-uniform ageing and accelerated chip
failure. These critical issues can be tackled on-line by
closed-loop thermal and reliability management policies.
Model predictive controllers (MPC) outperform classic
feedback controllers since they are capable of minimizing
a cost function while enforcing safe working temperature.
Unfortunately basic MPC controllers rely on a-priori
knowledge of multicore thermal model and their complexity
exponentially grows with the number of controlled cores.

In this paper we present a scalable, fully-distributed,
energy-aware thermal management solution. The model-
predictive controller complexity is drastically reduced by
splitting it in a set of simpler interacting controllers, each
allocated to a core in the system. Locally, each node selects
the optimal frequency to meet temperature constraints
while minimizing the performance penalty and system
energy. Global optimality is achieved by letting controllers
exchange a limited amount of information at run-time on
a neighbourhood basis. We address model uncertainty by
supporting learning of the thermal model with a novel
distributed self-calibration approach that matches well the
controller architecture.

I. Introduction

CPUs have become high-performance multi-cores, char-
acterized by high power density and average power con-
sumption. This leads to complex and expensive thermal
dissipation solutions [1]. In addition, significant spatial
and temporal variability of workloads leads to non uni-
form performance, power consumption and temperature
distribution [2]. On-die hot-spots are subject to larger
static power, due to the exponential dependency of leakage
current on temperature. Moreover, hot spot areas age faster
since degradation effects, such as NTBI, and HCI [3], are
exponentially accelerated by high temperatures. This in
turn may lead to early chip damage or failure. Hot-spot
prevention uniquely based on worst-case thermal design is
very expensive in terms of system cost and/or performance
penalty. For this reason, significant effort has been devoted
towards techniques to dynamically control the cores power

dissipation in a temperature-aware fashion, i.e. aiming to
enforce a safe working temperature across the die sur-
face [4]. Today multiprocessors include hardware support
for dynamic power and thermal management, based on
introspective monitors [5], sensors and performance knobs.
This infrastructure provides the sensors and the actuators
for feedback control management policies.

A. Related Work

Power budgeting and power capping [6] techniques use
built-in power meters as inputs to close-loop feedback
controllers for constraining the power consumption to a
given budget by reducing the cores clock frequencies. This
approach has two main drawbacks: first, it relies on the
availability of accurate and reliable power measurement
infrastructures; second, in many cases it does not leads to
a global energy reduction due to execution time overhead.
Indeed, high power dissipation phases usually are corre-
lated with CPU-bound computational ones. Thus power
budgeting techniques happen to reduce the frequency
mainly in this situation, leading to energy losses due to
static power and to execution time linear dependency with
frequency [7]. Different solutions have been presented
to achieve a system energy reduction instead of power
capping, but unfortunately the energy minimization alone
cannot enforce a safe working temperature [7].

Closed-loop thermal control policies aim to address this
problem. In [8], [9], [10] the authors show the benefit of
feedback-control approaches vs. open loop policies based
on temperature thresholding heuristics. Model predictive
controllers (MPC) [11] [6] outperform classic feedback
controller, which cannot take into account hard constraints
in the state space. MPC controllers instead rely on an
system model [12] to predict the future temperature while
finding the optimal control action by solving a constrained
optimization problem for one or more control steps in the
future. Thus they generally lead to higher-quality control,
providing that an effective thermal model is available.

Wang et al. [6] present a MPC that constraints both the
power and the temperature of the cores while maximizing
the performance. It uses power sensor as input to the
optimization problem and to generate on-line a power
to frequency linear model. This reduces the complexity
of the controller (even though it can lead to sub-optimal
controller corrective actions). Zanini et al. [11] assume a
workload input requirement, so that the MPC minimizes
the performance loss in tracking it while constraining
the core temperatures. Internally it adopts a non-linear978-3-9810801-7-9/DATE11/ c© 2011 EDAA

frequency to power model, statically precomputed off-
line avoiding usage of power sensors. Unfortunately the
adopted model is simplistic and it does not consider
the power dissipation dependency on workload properties,
assuming it to be only related to core frequency.

Performance of MPC solutions strongly depends on the
thermal model accuracy. Unfortunately, often an accurate
model is not a-priori available. Different approaches have
been proposed to identify it from HW introspective mon-
itors. In [6] a first order thermal model is estimated using
off-line least square method. Differently, Cochran et al.
[13] extract a set of linear models to relate temperatures to
workload characteristics and core frequencies. Eguia et al.
[14] combine identification techniques with an overfitting
remedying algorithm to reduce complexity and improve
accuracy; nevertheless, the results need to be improved
for fast power changes and thermal interactions between
adjacent cores. all the above solutions exploit centralized
control and deal with model identification of the whole die.
Their complexity and computational burden increase fast
with the number of cores. Therefore applying these solu-
tions in upcoming many-cores [15] is very expensive. This
complexity problem has been addressed in the control-
theory literature. Several authors [16] [17] have shown
how to reduce significantly the complexity of MPC by
using distributed solutions. This approach is well-suited
for large-scale systems and consists in dividing the control
problem into sub-problems with lower complexity.

B. Contributions
In this paper we present a complete distributed solution

that combines energy minimization, MPC based thermal
capping and thermal model self-calibration. according to
the incoming task workload characteristics, each local node
first selects the minimum frequency (fEC) that preserves
the performance within a tolerable overhead. Second, if
necessary each local MPC controller trims the frequency
to ensure a safe working temperature. Local controllers
jointly optimize global system operation by exchanging
a limited amount of information at run-time on a neigh-
bourhood basis. Third we address model uncertainty by
self-calibration: each thermal controller node extracts au-
tomatically the local thermal model by applying a set of
training stimuli and monitoring the thermal response of
the neighbourhood area. The distributed controller strategy
combined with the distributed thermal model calibration
phase allow us to take advantage of the parallelism of
the underlying multi-core platform by running different
instances of the controller and self-calibration routine in
parallel.

The paper is organized as follows. Section II introduces
the key aspects of power and thermal issues in a multicore
scenario. Section III describes the building blocks of the
proposed solution. In Section IV the performance of the
presented distributed energy-aware thermal controller are
fully evaluated in a real uses case scenario by implement-
ing it in a full-system virtual platform. Final conclusions
are drawn in Section V.

II. Background Concepts
In a multicore scenario, the temperature distribution

across the die area depends on the chip floorplan, its ther-
mal environment, and the power consumption of the cores.
The latter has been shown to be related to the operating
point/performance level and workload characteristics, such
as instruction type, density and data locality [18].

Fig. 1a shows the results of a set of tests performed
to quantify the relationship existing between power, fre-
quency and Clocks-Per-Instruction (CPI) of the running
task, for each core in a general purpose multicore1. The
dots represent the actual power consumption whereas the
solid lines represent the fitting model curve extracted by
these data, described by Eq. 1:

P = kA f req∗V 2
DD + kB +(kC + kD f req)∗CPIkE (1)

From the figure we can notice that core dynamic power
depends non-linearly on frequency, sublinearly on the CPI
of the application and the two dependencies are coupled,
CPI dependency is influenced by frequency value.

From Fig. 1b we can notice that a significant power
reduction can be achieved, not only in cpu-bound program
phases (low CPI) but also in memory-bound phases (high
CPI). This is a key effects to use dynamic voltage and fre-
quency scaling to obtain energy-efficiency instead of only
power reduction. Indeed whereas scaling the frequency of a
core executing a cpu-bounded task brings to a performance
loss and to a energy inefficiency due to static power,
scaling down the frequency of a core executing a memory-
bound task does not lead to execution time overhead, thus
the dissipated total energy is reduced.

To derive a complete thermal model of multicore dies,
the ”causal chain” (Frequency,CPI) → DissipatedPower
→ Temperature can be split in two parts. The first part
can be addressed separately in each core according to
Eq. 1. Differently, the temperature variation in each point
of the die will be affected by: the distribution of the power
dissipated by all the cores, the current die temperature map
and the chip physical properties. Nevertheless, the whole
powers-to-temperatures model can be split in simpler inter-
acting models by dividing the die area in regions, aligned
with cores for obvious convenience.

According to the granularity usually required for ther-
mal control, we can assume uniform power and tem-
perature distributions in each core area. Then, recalling
Fourier’s law, the temperature of each core can be as-
sumed dependent on its own dissipated power, ambient
temperature and adjacent cores temperatures (boundary
conditions). This assumption is actually straightforward for
continuous time models only. When discrete-time models
are considered, a larger coupling among cores has to
be considered to account for the ”chain of interactions”
taking place during the blind intervals among samplings.
Recalling again the Fourier’s Law, the coupling among
two cores will be inversely related to their distance and
directly related to the sampling time period. Hence, the
”equivalent neighbourhood” of a core depends on the
floorplan combined with the adopted sampling.

To verify this assumption we took an example loosely
correlated with the Intel R© SCC experimental architec-
ture [15]. The floorplan is fully tiled with 48 core/regions,
each with an area of 11.82mm2 and a maximum power con-
sumption of 2.6W. We used this set-up with the HotSpot
thermal analysis tool [19], stimulating it with a power step
in the central core (21) while keeping all the other cores
at zero power consumption. Fig. 1c shows with different
colours the cores that increases their temperature as result
of the central core power step after different time interval.
We can notice that the radius of thermal influence of the
central core increases with the time interval: within 50ms

1Intel R© Xeon R© X7350

1 2 3 4 5 6 7 8

1

2

3

4

5

6

Ts= 2ms

Ts= 50ms

Ts= 75ms

Ts= 0.1s

Ts= 0.25s

Ts= 0.5s

0

5

10

15

20

25

Clock per Istruction (CPI)

D
y

n
a

m
ic

 P
o

w
e

r
−

 [
W

]
CPI vs freq.

0 20 40 60 80 100 120 140 160 180 200

1800MHz − Real 1600MHz − Real1600MHz − Fi1800MHz − Fi

2400MHz − Real 2140MHz − Real2140MHz − Fi2400MHz − Fi

 2970MHz − Real 2630MHz − Real2630MHz − Fi2970MHz − Fi

(a)

(c)CPU-bound - System Power, Performance, Energy

EnergyExecu on TimePower

R
a

!
o

R
a

!
o

2,00

1,50

1,00

0,50
2930 2670 2400 2120 16001800

Memory-bound - System Power, Performance, Energy

Frequency [MHz]
2930 2670 2400 2120 16001800

(b)

1,00

0,50

0,70

0,90

0,80

0,60

Fig. 1. Multicore exploration results

it impacts only the closest core along the four cardinal
directions, whereas at 1s all cores are effected.

Thus, if a small sampling time is adopted with respect to
thermal time-constants (50ms or less), the effect of time-
discretization can be neglected, assuming the equivalent
neighbourhood equal to the physical one. These consider-
ations are the basis for developing our distributed thermal
control.

Finally, results in [20] highlight that the thermal dynam-
ics of each core is characterized by two time constants: a
faster one, at a few ms, is related to the silicon surface,
whereas the slower one, at a few seconds, is related to
the heat spreader. This behaviour, needs to be carefully
accounted in model identification and control design.

III. Architecture

Fig. 2 depicts the block diagram of the proposed so-
lution. Each controller node (i) is made-up by three main
parts:

• The Energy Controller (ECi): at the k-th sampling
instant, it takes as input the predicted CPI value
of the running task for the following time inter-
val (CPIi([k,k + 1]|k)) and produces as output the
core frequency settings for the following (k to k+1)
time interval (fECi

(k)) that minimizes the core power
consumption while allowing a tolerable performance
overhead.

• The MPC-based Thermal Controller: at the k-th in-
terval, it receives as inputs the Energy Controller
output frequency (fECi

(k)), its own core temperature
(Ti(k)), the temperature of the physical neighbours
(Tneigi

(k))2 and the ambient temperature (TAMB(k)).
Then, according to the safe reference temperature
(TMAX) at which the core temperatures (Ti(k)) must
be constrained, the MPC algorithm adjusts the actual
frequency command (fTCi

(k)), minimizing the dis-

placement from the Energy Controller requirement3.
• The Thermal Model Self-Calibration Routine: it au-

tomatically derives, off-line, the local, but interacting,
thermal prediction model adopted in MPC-based TC
blocks (again according to Section II).

Section III-A describes the Energy Controller algorithm
whereas Section III-B describes our thermal controller
solution. Section III-C instead presents the thermal model
self-calibration routine.

2The sampling time is assumed small enough.
3The computation and actuation times for EC and TC are assumed

negligible with respect to sampling time interval. Hence, for mathematical
modelling, control outputs are considered generated at the same instant
of sampled inputs.

CoreN

Core1

Corei

T (k)i+1
f (k)EC i

f (k)TC i

T (k)i-1

TCi

ECi

CPI ([k,k+1]|k) i

T (k)i

CPI ([k,k+1]|k)N

TCN

ECN

T (k)N-1

f (k)TC N

f (k)EC N

T (k)i

controller

node

T (k)x

T (k)2

Fig. 2. General Architecture

A. Energy Controller

The goal of the Energy Controller (ECi) is to provide
the optimal frequency trajectory (fECi

(k)) to the Thermal
Controller (TCi). This frequency is selected to minimize
the power consumption while preserving the system perfor-
mance. Thus we can split the energy minimization problem
from the temperature constraining one. The Energy Con-
troller takes advantage of the parallel architecture by letting
each core (i) compute autonomously the future frequency
in line with the incoming workload requirements.

Considering an in-order architecture4 and the average
time needed to retire an instruction, composed by two
terms: (TALU) portion of time spent in active cycles and
(TMEM) portion of time spent in waiting for memory
cycles. Whereas the first term is proportional to the input
frequency, the second one is constant to it and depends to
the memory access latency.

Assuming fM the maximum frequency allowed by the

system, fCKi
(k) = fM

α a generic one and given the task CPI
requirement for the interval(k), for the core i (CPIi(k)), we
can write the task execution time (Timei(k)) as:

TimeMi
(k) = #INST · [1+(CPIi(k)−1)] ·

1

fM

(2)

TimeCKi
(k) = #INST · [α +(CPIi(k)−1)] ·

1

fM

(3)

By combining them the execution time overhead % can
be represented as function of the new frequency fCLKi(k)

and CPIi(k) as reported in Eq. 4.

%i(k) =
TimeCKi

(k)

TimeMi
(k)

−1 =
α +(CPIi(k)−1)

1+(CPIi(k)−1)
(4)

4Multicore trend is toward in integrating high number of simpler
processor[15].

Inverting the last equation (Eq. 5) we can find the
future frequency (fECi

(k)) output of the Energy Con-
troller (ECi) that minimizes the power consumption for
the given processor i running a task characterized by the
CPIi([k,k+1]|k), while preserving the performance within
a tolerable performance penalty (%).

fECi
(k) =

fM

(1+%)+(CPIi([k,k+1]|k)−1) ·%
(5)

B. Thermal Controller

Our solution goal is tracking the desired cores fre-
quencies, without crossing the cores temperature bounds
imposed by each local MPC controllers of our distributed
approach. As discussed in Section I, we use MPC con-
trollers because it has been shown in [11] and [6], that
well perform the previous aim. A MPC controller consists
of two elements: the optimization problem solver and the
model used for predictions.

First, each of our local controllers minimizes a quadratic
cost function with constraint, formalized as:

min
N−1

∑
k=0

‖Q · (fTC(t + k)− fEC(t + k))‖2 (6)

s.t. 0 ≤ T (t + k|t)≤ TMAX (7)

This formulation simply means that, to maximize the
performance and respect the thermal constraint of one
core, the differences (also called tracking error) between
the desired core frequency fEC and the frequency selected
by the thermal controller fTC must be minimized. At the
same time the temperature T must be constrained below
a thermal safety threshold, called TMAX . Matrix Q is the
non-negative weights matrix for the tracking error and N
is the prediction horizon.
This optimization problem has been obtained by “locally
projecting” the problem formulation proposed in [11],
where a single MPC controller optimally constraints all the
cores temperatures, maximizing the global performance.
Later in this section we refer it as ”centralized solution”,
where fEC, fTC and T are vectors rather than scalars.

Second, each local MPC regulator estimates future core
temperature by using the following non-linear model for
the single core:

ẋ = A ·x+B · [PEC,TAMB,TNEIGH]
′ with PEC = g(fEC,WL) (8)

where x is the state vector (one is T), PEC is the power
consumption of the core, WL is the workload and TNEIGH

is the temperature contribution of the neighbours cores.
[21] shows that MPC model must be linear to have a
convex problem and a simple and robust control solution.
Thus we have confined the non-linearity outside the MPC,
in the frequency to power relation (expressed by the g(·)
function) and kept only the linear part of the prediction
model inside the LQ MPC controller. As consequence
the core power becomes the controlled variable, g−1(·)
transformation is needed to convert the output power
(PTC) in frequency command and the cost function can be
expressed using core power error instead of core frequency
error. This is shown in Fig. 3 that describes the distributed
controller architecture.
The linear model accuracy is a key issue of MPC con-

trollers. We preserve it by extracting the model parameters
directly from the target multicore. This is achieved thanks
to a self calibration routine explained in Section III-C. As
discussed in Section II the core thermal transient shows

g-1(•)MPC
Controller

PEC
PTC

TC1

fEC,1

CPI

fTC,1
CPI

(NL)

TAMB

Observer

Lin.Model

Optim.
EC

(NL)

g(•)

TCn
fEC,n, CPI

EC
Tn, TNEIGH,n

T1, TNEIGH,1

System Plant

fTC,n

Fig. 3. Thermal Controller structure

1
Max Overshoot

0,4

0,6

0,8

D
e

lt
a

 K
e

lv
in

 d
e

g
re

e
 r

e
sp

e
ct

 T
M

A
X

Max Overshoot

0

0,2

Max Overshoot

Max Overshoot

Max Overshoot

Maximum Temperature Overshoot

(a)

40

60

80

100

%
 o

f
!

m
e

Overshoot Time Percentage

0

20

Percentage of !me - thermal
 bound viola!on

(c)

Centr Distr#Core
81 84

6561 168

Number of regionsCentralized MPC
with nonlinear g(•)

Our Distributed
Solu!on

Centralized MPC
with 1 dynamic

Centralized MPC
with linear g(•)

Fluidanimate Facesim Dedup Bodytrack Raytracing

(b)
Fluidanimate Facesim Dedup Bodytrack Raytracing

Fig. 4. Thermal MPC performance analysis

two time-scale responses, thus a second order linear model
should be used for each core. This leads to a model order
(number of states) larger than the number of temperature
sensors (one per core). Therefore an observer block is
required to estimate the state values, as in Fig. 3.

We tested our solution against the centralized one that,
differently from [6], it uses a non linear power model
and, differently from [11], it uses a more accurate power
model (g(·)) that account also the workload properties. We
evaluate the benefits of these add-ons in trace-driven sim-
ulator5 running Parsec2.1 [22] benchmark traces.6 Fig. 4a
and b, show the performance losses in the “centralized
solution” by first, substituting the non-linear g(·) function
with a linear7 one (as in [6]) and secondly, by using a first
order prediction model instead of a second order model
(as in [6]). Both cases shown a significant performance
worsening.
To reduce MPC computation complexity in [12] an explicit
approach has been proposed to reduces the computational
burden (one of the major drawbacks of the classical MPC
strategy). It solves the optimization QP problem off-line
for each system state x(t), instead of solving it on-line
for each time step. The obtained solution is a continuous
piecewise affine function of the state (u(x(t))) similar to
divide the state space in regions each one characterized
by a different linear control law. Thus, depending on the
current state value a different control law is applied on
system. Unfortunately the explicit solution only moves the
complexity from the computational cost to the memory
usage [12](confirmed by results in [11]). Thus we can
use the regions number of the explicit formulations as
a complexity metric for the on-line controllers, since it
directly relates to computational cost. Fig.4c shows that
our distributed solution improves scalability and effectively
reduces complexity. Whereas the number of regions of
the centralized solution grows exponentially, the number
of regions of the distributed one globally grows linearly.

5Internally it considers the four core floorplan presented in [18].
6Traces are profiled on a general purpose quad core.
7Best least-squares fit of the power data using as input the mean

frequency and the mean workload

Indeed the complexity of the single controller node remains
constant regardless the number of cores in the system.
Also note that the distributed solution runs in parallel on
all the cores encouraging robustness, safety and a lower
computational burden for the cores, while the centralized
one runs only on one core. Even though the distributed
solution complexity is lower than the centralized one,
Fig.4a and b shows that both the solutions have comparable
performances.

C. Selfcalibration routine

The knowledge of the thermal model of the multi-
core die is a MPC prerequisite. In many practical cases
this model is not available or imprecise. We address
model uncertainty by self-calibration: our thermal control
framework directly learns the thermal model by monitoring
the thermal response of the system after applying a set
of training stimuli. This approach relies on system identi-
fication (SID) techniques. As shown in previous section
and in [23], complex prediction models complicate the
control action and cause overhead. Thus the implemented
approach has two aims: capturing entirely the system
thermal response and reducing the state space model of the
plant that in reality it would have an infinite dimension.

Indeed our self-calibration routine is distributed: each
core is associated with a self-identification agent that
learns the local model. This approach perfectly fits our
distributed control solution, since the regulator of each core
directly exploits the identified local model for prediction.
Secondly, it offers a low complexity solution to counteract
the SID computational cost in large multicore systems.
Indeed for MIMO model the SID complexity explodes
with the number of inputs. Each agent implements an ARX
(AutoRegressive eXogenous) model [24] [25]:

T (k)=αs ·T (k−1)+ · · ·+α1 ·T (k−s)+β1,s ·u1(k−1)+ . . .

+β1,1 ·u1(k− s)+β2,s ·u2(k−1)+ · · ·+ e(k) (9)

where T is the temperature of the core (the model output),
s is the model order, ui(·) are the model inputs (the
dissipated power of the core PEC, the ambient temperature
TAMB and the temperatures of the neighbours units), e(k)
is a stochastic white process with null expected value
representing the model error and αi, βi, j are the identified
parameters. As shown in Section II and in Eq. 9, each
model is a simple MISO model: we have a single output
and multiple inputs ui(·). The core power consumption can
be estimated from the core operating point and from the
current workload characteristic (see Eq. 1 in Section II) or
can be directly measured from power sensors present in
recent MPSoC [15].

The self-calibration routine first forces a Pseudo-
Random Binary Sequence (PRBS) power input to each
core, while probing the cores temperature. Then it derives
the parameters α and β by solving a least square problem
that minimizes the error e(k). To take into account both the
slow and the fast dynamics highlighted in Section II, we
use a second order ARX model8. Fig. 5a shows the model
and plant temperature responses to a different PRBS from
the self-calibration one.

8The identified models states have not a physical meaning. To match
the core temperature with the first state of each model we apply a change
of coordinate transformation to obtain a matrix C = [In | 0n]

The performance of the identified model against the
original one are evaluated by looking at the temperature re-
sponse of each core running Parsec2.1 benchmarks. Fig. 5b
shows the mean absolute errors of the identified model in
a four cores floorplan[18] and in an eight cores floorplan
obtained duplicating the previous one. The resulting errors
are less than 0.3◦K. The showed results are obtained
running simulations on Matlab/Simulink environment. In
a real system we expect to run the self-calibration routine
during start up phase and each time the model behaviour
differs from plant one.

0,2

0,15

0,1

0,05

0
4 Cores 8 Cores

Mean Absolute Error

50 51 52 53 54

335

340

345

Temperature Comparison (Core1) (a)

Real Model

Identified Model

(b)

°K

°K

s

Fluidanimate Facesim

Bodytrack Raytracing

Dedup

Fig. 5. Selfcalibration routine results

IV. Experimental Results
In this section we illustrate the performance of our

solution. We implemented it in a virtual platform envi-
ronment [18]. This virtual platform emulates a general-
purpose multicore running in a full system9. Indeed it
simulates real benchmarks running on full O.S. It also
supports per-core DVFS, and it estimates the power con-
sumption and temperature evolution of the entire multicore.
It exploits a MATLAB/Simulink interface that allows high
level description of the controllers routines reacting to the
emulated sensors and driving the performance knobs on
the emulated system.

We implement our thermal controller solution in this
framework as follows. For each core (i) in the emulated
system we execute, with a time step of 1ms, both the
Energy Controller(ECi) and the Thermal Controller (TCi)
routines. The Energy Controller internally estimates the
CPI every 1ms by using a last value prediction. This in-
terval of time is comparable with modern O.S. Instead the
Thermal Controller routine embeds, as presented in Sec-
tion III-B, the explicit MPC implementation and estimates
the full state vector with the state observer. Complexity
analysis in Section IV-A demonstrates that the distributed
solution has negligible run-time. Thus, the perturbation due
to its computations to the program execution flow can be
neglected.

A. Tests Results

In this section we show the results of the proposed
solution running on the virtual platform. Each controller
runs on each core of the target architecture [18] under
different Parsec2.1 [22] benchmarks workloads. All the
benchmarks have been executed with a number of tasks
equal to the number of cores of the target architecture, and
with the input set ”simsmall”, and constrain temperature
(TMAX = 330◦K)10. We run each Parsec benchmark under
four possible configurations: Original, only Energy Con-
troller(EC), Centralized Thermal Controller (Centr TC)
and our Distributed Thermal Controller (Distr TC).

9The target system is composed by four x86, in order, cores with 32
KB private L1, 4MB shared L2 cache and 2GB of DRAM.

10Used thermal model is calibrated on a device with high performance
thermal dissipation dynamics, indeed to stress our thermal controller we
are forced to use a lower temperature constraint

(a) (b) (c) (d)

Execu�on Time Overhead

Energy Saving
Power Saving

Energy Controller

#1 - Blackscholes #2 - Bodytrack #3 - Freqmine #6 - Canneal#5 - Fluidanimate#4 - Swap�ons

#1 #2 #3 #4 #5 #6 #1 #2 #3 #4 #5 #6

Maximum Temperature Overshoot

8

6

2

0

4

Original EC Centr TC Distr TC

20%

10%

0%

Percentage of �me - thermal bound viola�on

92%

99%90% 72% 97% 96%98%

98% 68%86% 96%97%

3%

0%

1%

2%

Distributed Thermal
Controller QoS loss

#1 #2 #3 #4 #5 #6
#1 #2 #3 #4 #5 #6

[°K]10%

8%

6%

4%

2%

0%

Fig. 6. Virtual platform test results

Fig. 6a shows the performance of the EC alone, while
allowing a performance penalty of %i(k) = 5%. We can
notice that it is able to maintain the performance overhead
under the selected threshold while achieving a significant
power and energy saving.

The global solution performance are instead analysed
by considering the maximum temperature overshoot with
respect to the constraint, the percentage of time the temper-
atures violate the constraint (we consider the limit violated
when temperature exceeds it of 0.1◦K), and a metric that
quantify the controller quality of service (QoS) degrada-
tion due to thermal constraint (QoS Loss). We decide to
compute it as the mean squared error between the energy
controller frequency target (fEC) and the one applied to the
system by the controller (fTC). We relativized it against
the centralized controller one. Fig. 6 shows the results
collected. First, we can notice that the proposed distributed
solution performs as well the centralized one. Fig. 6b
shows the maximum overshoot in kelvin degree above
the safe thermal threshold (TMAX) whereas Fig. 6c shows
that both solutions are capable of drastically reducing the
portion of time in which each core runs out of the ther-
mal bound. Looking at the QoS Loss performance figure
(Fig. 6d), we notice that our proposed solution performs at
the same level of the centralized one, with a degradation
less than 3%. Finally in more symmetrical workloads11,
such as swaptions, fluidanimate, canneal, we
noticed that the average frequency applied to the external
cores (#1, #4) is kept lower (up to -14%) than the internal
cores. This is a sign that the MPC controller is able to
optimize the core frequency locally, taking advantage of
the difference between the local thermal models. Indeed
the external thermal models have less thermal dissipation
headroom since thermal model considers the chip lateral
boundary adiabatic [26].

V. Conclusions
We have presented a novel fully distributed, energy-

aware, MPC-based thermal capping controller for modern
multicore platforms. It works coupled with a model self-
calibration routine, that allows the controller to automat-
ically recognize the thermal properties of the underlying
platform. It exploits a fully distributed architecture, that
fits very well the multicore parallelism and distributed
nature. We show that this approach performs similarly to
the state-of-the-art centralized Thermal Model Predictive
Controllers, but with a significantly lower computational
cost. Indeed the global complexity cost of our solution
scales linearly with the number of cores and it is fully
parallel, whereas the centralized one scales exponentially
and it parallelization is not trivial. We tested our solution in
a real uses case scenario by running it in a complete virtual
platform. The results show that our controller is capable to

11The parallel benchmark executes the same code on all the processors.

satisfy temperature constraints with high precision, while
minimizing system energy.

VI. Acknowledgements

This work was supported, in parts, by Intel Corp., Intel
Labs Braunschweig and the EU FP7 Projects Pro3D (GA
n. 248776) and Therminator (GA n. 248603).

References

[1] IDC. Worldwide server power and cooling expense 2006, 2010
forecast. http://www.sun.com/service/eco/IDCWorldwideServerPower-
Consumption.pdf.

[2] Hanson H. et al. Thermal response to DVFS: analysis with an Intel R©

Pentium R© m. In ISLPED ’07, pages 219-224, 2007.
[3] Tiwari A. et al. Facelift: Hiding and slowing down aging in multicores.

MICRO ’08, pages 129-140, 2008.
[4] P Chaparro et al. Understanding the thermal implications of multi-core archi-

tectures. IEEE Transactions on Parallel and Distributed Systems,18(8):1055-
1065, Aug. 2007.

[5] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Developer’s
Manual - Volume 3B, June 2009.

[6] Y. Wang, K. Ma and X. Wang, “Temperature-Constrained Power Control for
Chip Multiprocessore with Online Model Estimation”, ISCA, 2009.

[7] G. Dhiman, T. S. Rosing, “Dynamic voltage frequency scaling for multi-
tasking systems using online learning”, ISLPED, August 27-29, 2007,
Portland, OR, USA.

[8] K. Skadron, T. Abdelzaher, M. R. Stan, “Control-Theoretic Techniques and
Thermal-RC Modeling for Accurate and Localized Dynamic Thermal Man-
agement”. Technical Report. UMI Order Number: CS-2001-27., University
of Virginia.

[9] M. Kadin, S. Reda, A. Uht, “Central vs. distributed dynamic thermal
management for multi-core processors: which one is better?”. GLSVLSI 2009.
ACM, New York, NY, 137-140.

[10] Z. Wang, X. Zhu, C. McCarthy, P. Ranganathan, and V. Talwar, “Feedback
Control Algorithms for Power Management of Servers”. FeBid, Annapolis,
MD, June 2008.

[11] F. Zanini, D. Atienza, L. Benini and G. De Micheli, “Multicore Thermal
Management with model predictive control”, IEEE, 2009.

[12] A. Bemporad, M. Morari, V. Dua and E.N. Pistikopoulos, “The explicit linear
quadratic regulator for constrained systems”, Automatica, Vol. 38, 2002, pp
3-20.

[13] R. Cochran, S. Reda, “Consistent runtime thermal prediction and control
through workload phase detection”. DAC 2010. ACM, New York, NY, 62-
67.

[14] Thom J. A. Eguia, Sheldon X.-D. Tan, Ruijing Shen, Eduardo H. Pacheco and
Murli Tirumala, “General Behavioral Thermal Modeling and Characterization
for Multi-core Microprocessor Design”. DATE 2010 Dresden

[15] J. Howard et al, “A 48-Core IA-32 Message-Passing Processor with DVFS
in 45nm CMOS”, ISSCC 2010.

[16] E. Camponogara, D. Jia, H. Krogh and S. Talukdar, “Distributed Model
Predictive Control”, IEEE Ctl. Sys. Mag. 22 (2002) (1), pp. 44-52.

[17] R. Scattolini, “Architectures for distributed and hierarchical Model Predictive
Control”. Journal of Process Control (May 2009), 19 (5), pg. 723-731.

[18] A. Bartolini, M. Cacciari, A. Tilli, L. Benini and M. Gries “A Virtual Platform
Environment for Exploring Power, Thermal and Reliability Management
Control Strategies in High-performance Multicores”, GLSVLSI, 2010.

[19] Huang Wei et al. “Accurate, pre-RTL temperature-aware design using a
parameterized, geometric thermal model”. IEEE Trans. Comput., 57(9):1277-
1288, 2008.

[20] W. Huang, K. Skadron, S. Gurumurthi, R. J. Ribando, and M. R. Stan.
“Differentiating the roles of IR measurement and simulation for power and
temperature-aware design”, ISPASS, 2009.

[21] E. F. Camacho and C. Bordons, “Model Predictive Control” Springer, 1999.
[22] C. Bienia, S. Kumar, J. P. Singh and K. Li, “The PARSEC Benchmark Suite:

Characterization and Architectural Implications”, PACT, 2008.
[23] F. Zanini, D. Atienza, G. De Micheli, S. P. Boyd, Online Con-

vex Optimization-Based Algorithm for Thermal Management of MPSoCs,
GLSVLSI, 2010.

[24] L. Ljung, “System Identification - Theory For the User”, 2nd ed, PTR
Prentice Hall Upper Saddle River, N.J., 1999.

[25] R. Guidorzi, “Multivariable system identification”, Bononia University Press,
2003

[26] G. Paci, M. Morari, V. Dua and E.N. Pistikopoulos, “Exploring temperature-
aware design in low-power MPSoCs”, DATE, Vol.1, 2006, pp 1-6.

