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Abstract—In semiconductor manufacturing, a wealth of wafer-
level measurements, generally termed inline data, are collected
from various on-die and between-die (kerf) test structures and
are used to provide characterization engineers with information
on the health of the process. While it is generally believed that
these measurements also contain valuable information regarding
die performances, the vast amount of inline data collected
often thwarts efficient and informative correlation with final test
outcomes. In this work, we develop a data mining approach to
automatically identify and explore correlations between inline
measurements and final test outcomes in analog/RF devices.
Significantly, we do not depend on statistical methods in isolation,
but incorporate domain expert feedback into our algorithm
to identify and remove spurious autocorrelations which are
frequently present in semiconductor manufacturing data. We
demonstrate our method using data from an analog/RF product
manufactured in IBM’s 90nm low-power process, on which we
successfully identify a set of key inline parameters correlating to
module final test (MFT) outcomes.

I. INTRODUCTION

During the fabrication process of semiconductor devices,
tens of thousands of measurements are collected, from bare
silicon all the way through wafer-level to module final test. The
data collected during wafer processing is collectively known
as inline data, and is designed to provide characterization
engineers with information about defect density [1], [2], [3]
and the electrical/physical properties of the product. This inline
data is collected from a variety of test structures. On-die
structures are located in close proximity to (and may even
interact with) the product, with the objective of accurately
reflecting its electrical properties, but also with the limitation
that available area for such test structures is extremely con-
strained. Kerf structures are located in the wafer kerf, i.e. the
areas of the wafer that are destroyed during the wafer dicing
step. Depending on the specific product, a large number of
test structures (NFETs/PFETs, resistors, capacitors, SRAMs,
etc.) are placed in the kerf. Both on-die and kerf structures are
sequentially measured throughout wafer processing. To reduce
measurement time, however, such inline test structures are not
exhaustively tested. Instead, each group of measurements is
selectively measured across the wafer to provide a represen-
tative sample of the wafer inline measurement statistics.

This incredibly rich dataset is typically used by characteri-
zation engineers to monitor the process, control process vari-
ation, and identify/respond to problematic processing steps,
tools, or off-target process parameters. At first glance, it would
seem an easy task to track down the root cause of yield
degrades or final test parametric variation given the immense
amount of data available from inline test structures. However,

it is important to consider the distinction between information
and knowledge: from inline test structures, a great deal of
information is available to us. Yet without the domain expertise
of a number of engineers who sift through and interpret
correlations with inline parameters for significance, we are
constrained in what we can learn and know about the process.

Indeed, the information sparsity of inline data thwarts
automated correlation identification, especially in low-volume
products. Consider, for example, the case where we are tasked
with establishing a causal link between inline measurements
and final test outcomes on a low-volume product. In this
scenario, we would be provided with inline data from a small
number of wafers, say 100, exhibiting either a yield degrade
or parametric variation at final test. The number of inline
parameters measured during wafer processing would likely
be on the order of 10,000. Yet with such large number of
possible predictor variables (i.e., 10,000) and small number of
observations (i.e., 100), it would be impossible to construct
even a simple linear regression model. In other words, one
needs to effectively filter the predictor matrix in order to
identify any meaningful correlation to final test outcomes.

Furthermore, it intuitively does not make sense to retain the
complete inline dataset when correlating to final test outcomes.
The inline test set includes many types of parameters (i.e.,
simple physical/electrical measurements), some of which may
have no physical connection to the final test outcome (i.e.,
gain, noise figure, IIP3) we are considering. For example,
the inline measurement of SRAM beta/gamma ratios in a
mixed-signal device may appear correlated to final-test gain
of an analog/RF amplifier, but we would not expect a de-
graded SRAM measurement to cause a degraded gain figure.
Thus, implementing a filtering stage is necessary to make the
correlation-mining problem tractable.

Fig. 1. Current Practice For Identifying Correlations to Inline Parameters
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Fig. 2. Overview of Proposed Approach

Characterization engineers traditionally take one of two
approaches to the problem of sifting through inline data
and tracking down correlations between the inline parameters
and final test outcomes, as shown in Figure 1. Bottom-up,
where domain expertise is employed to manually generate
lists of inline parameters and evaluate their correlation to final
test, and top-down, where statistical tools are employed to
automatically identify inline parameters that appear correlated
to final test. Each of these approaches has its limitations.

When attempting to identify inline parameters directly via
the bottom-up approach, subtle correlations which are not
immediately obvious to the domain expert may be overlooked,
especially since these correlations may very well be complex
functions of multiple inline parameters. The extreme complex-
ity of semiconductor manufacturing means that complete a pri-
ori knowledge of all relationships between inline parameters
and final test outcomes is nearly impossible to achieve.

As for the top-down approach, success is limited by the tools
employed: to date, industrial tools for identifying correlation
between final test outcomes and inline parameters are univari-
ate or low-dimensionality multivariate and parametric [4]. The
limited dimensionality of statistical tools currently deployed
in industry limits the correlations that will be uncovered1.
Moreover, use of parametric statistics relies on assumptions
that may or may not be true for the given population. Most
significantly, such statistical methods are very sensitive to
spurious correlations. For example, commonly used statistical
tools such as Analysis of Variance (ANOVA) may identify a
processing step as affecting final test yield with high statistical
significance, but if the suspect step is simply an inspection, say
through a Scanning Electron Microscope (SEM), correlation
to a yield outcome simply does not make sense.

In this work, we develop a synergistic inline-to-final-
test correlation methodology which aims to leverage the
strengths of both bottom-up and top-down approaches, while
overcoming their limitations. An overview of our proposed
methodology is shown in Figure 2. We employ a statistical
feature selection approach to consider all inline parameters and
combinations thereof, and thereby avoid the limited domain
expertise problem which the bottom-up approach is sensitive
to. However, we also incorporate engineer domain expertise

1See [5] for a discussion of cases where presumably redundant parameters
provide information gain.

into our approach, conceding that statistical methods should
augment and improve the efficiency of expert intuition, not
replace it. Consider, for example, the 100 × 10, 000 dataset
mentioned earlier. With only 100 observations, the probability
of finding spurious correlations amongst the 10,000 inline
parameters is quite high. By incorporating engineer feedback
into our algorithm, we can learn from the domain experts and
sidestep these autocorrelations in our analysis.

Ultimately, our approach solves two related problems, as
shown in Figure 3. First, we dramatically improve the ability
of characterization and test engineers to quickly sort through
a great number of inline parameters, in order to identify key
subsets to monitor when tracking down the root cause of
yield degrades or final test parametric variation. Second, once
correlations between inline parameters and final test outcomes
are well-established via our method, we drastically improve
the ability to forecast final test outcomes and, accordingly,
plan and fine-tune production schedules. To the best of our
knowledge, this work is the first to present a systematic
approach to predicting final test outcomes from inline test
data, and the first to incorporate feedback from domain experts
directly into the algorithm in order to overcome the limitations
of the currently practiced top-down and bottom-up approaches.

Fig. 3. Utility of Proposed Approach

II. PROPOSED CORRELATION MINING APPROACH

Recall that our objective is to sift through a very large
set of inline measurements and identify a small subset which
demonstrate good predictive capability in the final test set, i.e.,
for which we can identify accurate correlation functions with
final test outcomes. In addition, we also want to enable domain
experts to evaluate the identified correlations and dismiss or
reinforce them, with the ultimate goal of enhancing their
significance. To this end, three key components are necessary,
as shown in Figure 2: (i) a feature selection algorithm, whereby
subsets of inline measurements are selected for assessing their
effectiveness as predictors of final test outcomes, (ii) a correla-
tion model construction method, whereby the dependent vari-
ables (i.e., the final test outcomes) are expressed as functions
of the selected predictors (i.e., the inline parameters), and (iii)



a provision for domain experts to seamlessly provide feedback
and guide an iterative approach, culminating with a final set of
correlations which leverage both advanced statistical methods
and field knowledge.

A. Feature Selection
Selecting among the large number of inline measurements

a subset that “best” correlates to a set of final test outcomes
is, essentially, a feature-selection problem. Generally, feature
selection is a non-trivial problem, since the number of possible
subsets of predictors is 2p − 1, where p is the cardinality of
the complete predictor set. With even a moderate number of
predictors, exhaustive search is completely untenable. Thus,
solutions to the feature selection problem generally fall into
two classes: greedy methods and heuristic methods. An excel-
lent review of various approaches to feature selection is given
in [5]. There is no single “best approach”; each has advan-
tages and disadvantages. Solutions from both classes, have
previously been employed by researchers in the analog/RF
test community, both in the context of analog/RF specification
test compaction [6], [7], [8] and in the context of alternate or
machine learning-based test [9], [10]. In our work, we have
found heuristic search methods generally work well for the
class and size of feature selection problems we encounter;
however, one could apply the algorithm presented in this work
in conjunction with any other underlying feature selection
method with little modification.

The specific heuristic feature selection method employed in
this work is a multi-objective genetic algorithm called NSGA-
II [11]. Genetic algorithms (GA), also known as evolutionary
algorithms, attempt to emulate biological natural selection by
creating seed “populations” of solutions, which subsequently
undergo mating and mutation steps. These steps are repeatedly
performed in phases known as “generations”. The justification
for such steps are intuitive: by mating two solutions, we may
discover a better solution, and by perturbing our solutions via
mutation we help avoid local optima which are suboptimal
in a global sense. At each generation, every member of the
population is evaluated via fitness/objective functions, and the
“elites”, or best solutions, of each generation are retained.
These elites define a Pareto-optimal set of solutions at the
termination of the GA, from which we can select a solution
optimal for our specific application.

Within the context of inline-to-final-test correlation, the con-
struction of the feature selection problem is straightforward,
as we have both a clear objective and a well-defined search
space. Our objective is good prediction quality (measured by
some loss function on the constructed correlation model) and
our search space comprises all possible subsets of one or more
inline measurements. As shown in Figure 4, which depicts the
first two components of the proposed method, we use NSGA-II
to generate bitstrings which correspond to the matrix of inline
parameters (i.e., the search space). Each entry in the bitstring
determines whether the corresponding inline measurement will
be included in the prediction model. The GA then searches
through candidate subsets of inline measurements, driven

Fig. 4. Iterative Feature Selection and Correlation Model Construction

by two objective functions (recall that NSGA-II is a multi-
objective GA). In order to increase information density and
avoid the well known “curse of dimensionality” problem, we
want to minimize the number of predictors retained, so the
first fitness function is proportional to the cardinality of the
retained set of inline measurements. We also wish to minimize
prediction error, so our second fitness function is proportional
to some loss function, which is defined over the final test
outcome space. Herein, we use as the loss function the residual
sum of squares error of the constructed correlation model.

B. Correlation Model Construction

As shown in Figure 4, at each iteration of the genetic
algorithm the selected subset of inline parameters is evaluated
by performing a regression to construct a correlation model.
In this work, we employ Multivariate Adaptive Regression
Splines (MARS) [12] as our correlation model construction
method. We use MARS as we have found it consistently
outperforms (in terms of prediction error) other regression
methods on the semiconductor manufacturing datasets we have
been working with. To evaluate prediction error for each
subset of inline measurements retained, we build a MARS
regression model with our predictor matrix X consisting of
the inline measurements, and our dependent variables matrix Y
consisting of final test outcomes. Aggregate prediction error is
then estimated by the total residual sum of squares (RSS) error
across the final test outcomes. To ensure statistical stability,
we perform 10 cross-validations and average the RSS. This
average is the error which is returned to the genetic algorithm
to drive the feature selection process.

C. Domain Expert Feedback

In order to improve convergence time of the genetic algo-
rithm in the large search space of inline measurements, we
assign a “prior” over the predictor set based on univariate
Pearson correlation coefficients and we modify the algorithm
to probabilistically retain parameters based on the prior values.
This permits us to loosely prioritize measurements that are
well-correlated, in a univariate/parametric sense, to the final
test outcomes. At the same time, using this prior does not
exclude inline measurements with small correlation coeffi-
cients from retention. Thus, we avoid the limitations of simple
ranking methods.

Most importantly, this prior also enables us to bridge the
gap between top-down and bottom-up methods in a key



Fig. 5. Complete Correlation Mining Approach

contribution of our method: we can use it to seamlessly incor-
porate feedback from engineers familiar with the process and
continually improve the performance of the feature selection.
To do this, we provide simple feedback mechanisms, whereby
domain experts can quickly scan the inline measurements
retained and flag any correlations which do not make sense
given the physical parameters of the device under consider-
ation or any correlations which are highly meaningful and
expected. The former are then assigned a very low or zero
prior value (i.e., they are likely to be excluded as predictors)
while the latter are assigned a very high prior value (i.e., they
are likely to be retained as predictors) and the analysis is re-
run, generating a new subset of inline parameters correlated
with final test outcomes. The complete correlation identifica-
tion algorithm proposed in this work, complementing feature
selection and correlation model construction with probability
priors, is presented in Figure 5.

D. Feedback Provision Mechanism

There are many possible mechanisms that can be con-
structed for domain experts to provide feedback in order to
drive the feature selection process. For this work, we opted to
implement a web-based interface, the architecture of which is
presented in Figure 6.

Fig. 6. Domain Expert Feedback Provision Architecture

The algorithm is implemented as an asynchronous web
service running on some analysis machine(s). After an initial

seed run, results are sent via JSON to a web page. Domain
experts can check this page at their convenience for the
latest list of correlated inline parameters. For each allegedly
correlated parameter, the domain expert can select one of
three actions: reject, to remove the inline parameter from
the correlation analysis being considered; follow-up, to flag
the parameter for further investigation, and accept, to accept
the correlation and emphasize its contribution in the prior
probability vector. An example of our implementation of this
interface is shown in Figure 7.

After feedback is provided by domain experts, the prior is
updated asynchronously, again via JSON, and the web service
re-runs the analysis, reporting uncovered correlations once
again upon completion of the analysis. This can iteratively
be repeated with the attention of the characterization engineer
only required upon completion of each round of analysis. The
anticipation is that, through this iterative process, feedback by
the expert engineers will result in more compact and more
accurate correlation models.

Fig. 7. Example of Web Interface

III. EXPERIMENTAL VALIDATION
To evaluate performance of our methodology, we employed

a dataset from an analog/RF device manufactured by IBM
in their 90nm low-power bulk silicon process, with 14 lots
worth of data sampled across several months of production. 14
module final test parameters were identified as key parameters
to investigate; these parameters consisted of various supply
currents and gains. A large number of inline parameters were
also provided; after removing constant columns and columns
with missing values, 1,746 inline measurements were retained.

As described in Section I, the contribution of this work
can be divided into identification of “forward correlations”,
which enable prediction of final test outcomes via subsets
of inline tests, and “backward correlations”, which pinpoint
key subsets of inline parameters for characterization engineers
to investigate and attribute yield degrades and/or final test
parametric variations to. Using the IBM-provided dataset, we
accomplished both objectives; the results are demonstrated in
the following subsections.

A. Forward Correlations: Predicting Final Test Outcomes

Figure 8 provides a graphical presentation of the accuracy of
the models constructed by the proposed method for predicting
final test outcomes based on inline parameters. Specifically,



(a) GSM DC Current (b) GSM LNA Gain

(c) CDMA DC Current (d) CDMA LNA Gain

Fig. 8. Experimental Results: MFT Parameter Predictions

we show prediction accuracy for 4 out of the 14 final test
outcomes, namely a DC current and an LNA gain while op-
erating at the CDMA and the GSM bands. The results for the
remaining 12 final test outcomes are similar. Each of the four
plots depicts the actual values on the horizontal axis and the
values predicted by the constructed models using only inline
parameters on the vertical axis. In other words, the 45-degree
line shown in the figures represents zero prediction error. As
can be seen, we are able to exploit correlations between inline
parameters and final test outcomes to successfully predict the
latter with minimal prediction error.

The overall prediction error of the proposed method across
the 14 parameters, expressed as the residual sum of squares,
is provided in Table I and contrasted against two baseline
feature selection methods. The first one is a simple rank-based
feature selection where the inline measurements are ranked
based on their Pearson correlation coefficients, and the most
correlated (in a pairwise univariate sense) inline measurements
are retained. The second one is a random search, where
1,000 random subsets of inline measurements are evaluated
and the retained subset is determined as the subset with the
lowest prediction error achieved across all 1,000 iterations.
As expected, the heuristic NSGA-II search outperforms both
of the simpler feature selection methods, since it efficiently
searches the space of inline parameter subsets and uncovers
complex multi-variate correlations.

Furthermore, as discussed in Section II, the proposed ap-
proach provides the ability for semiconductor manufacturing
domain experts to exert fine-grained control over the feature
selection process via modification of the prior probability
vector, thereby pruning spurious correlations and resulting in
compact prediction models using inline parameter subsets of
small cardinality. This is corroborated in Table II, which lists

Method Residual Sum of Squares
Pearson Correlation Coefficient Ranking 1716.980
Random Search - 1,000 Iterations 1243.942
Proposed Feature Selection Method 920.03

TABLE I
EXPERIMENTAL RESULTS: RESIDUAL SUM OF SQUARE ERROR

MFT Parameter Number of Inline Predictors Retained
DC Current 1 2
DC Current 2 3
DC Current GSM 3
DC Current CDMA 3
Gain GSM 4
Gain CDMA 10

TABLE II
NUMBER OF INLINE PREDICTORS RETAINED

the cardinality of the inline parameter subsets used to predict
each of 6 out of the 14 final test outcomes in our experiment.

B. Backward Correlations: Finding Causal Inline Subsets

The key contribution of this work is not in simply dis-
covering correlations, but also in enabling domain experts
to identify causal links between inline parameters and final
test outcomes. The small number of parameters retained in
the correlation models, as shown in Table II, enables quick
and effective investigation into the possible root causes of
yield degrades and final test parametric variations. In order to
achieve compactness of these models, we presented the results
of the feature selection and correlation model construction
algorithm of Figure 4 to the IBM inline experts and solicited
their feedback through the system described in Figure 6.

In Table III, we show the feedback provided through this
interaction with the domain experts for 4 out of the 14 final
test outcomes. The module final test outcome is listed on the
left, the retained inline test parameters correlated to it via
NSGA-II and MARS are listed in the center column, and the
feedback given by IBM inline experts is provided in the third
column. The tendency of automated correlation identification
methods to uncover spurious correlations is immediately ob-
vious from the table. Clearly, as we explained earlier, there is
no legitimate causal link between SRAM measurements and
GSM/CDMA LNA gain, and these correlations are rejected
as autocorrelation. On the other hand, the correlation of gain
to to NFET transconductance (Gm) makes sense and we
expect a legitimate correlation to exist, so we accept such
correlations as valid. Other parameters identified as “Follow-
up” are parameters flagged for further investigation (i.e., via
comparison to broader datasets or other products). Given the
collected feedback of the domain experts, the probability priors
are updated and the analysis is repeated, with this iterative
process ensuring both the accuracy and the compactness of
the identified correlation models and causal inline subsets.

IV. CONCLUSION
We presented a novel technique for identifying correlations

between inline measurements and final test outcomes, which



Final Test Parameter Correlated Inline Measurements Expert Feedback

GSM DC Current BEOL 10V Yield Measurement DApprove
BEOL 20V Yield Measurement DApprove
N OP RX resistance short device: unsilicided N diffusion resistance &Follow-up

CDMA DC Current BEOL 10V Yield Measurement DApprove
BEOL 20V Yield Measurement DApprove
Low Vt NFET Idsat DApprove

GSM LNA Gain BEOL Short Measurement DApprove
N thin iso FET Gm DApprove
PFET Ioff at high Vdd &Follow-up
SRAM PG Vt delta 7 Reject

CDMA LNA Gain BEOL Short Measurement DApprove
BEOL 20V Yield Measurement DApprove
N thin iso FET Gm DApprove
Thin gate Coverlap leakage - gate to source/drain extension DApprove
PFET Ioff at high Vdd &Follow-up
Low Vt PFET Ioff at high Vdd &Follow-up
PN Igon ratio &Follow-up
P thin Cov structure inv mode conductance &Follow-up
Thin NFET Tox Acc to PFET Tox Inv Ratio, N Tox accumulation / P Tox inversion &Follow-up
SRAM PD/PG ratio: Beta 7 Reject

TABLE III
CORRELATIONS IDENTIFIED BY NSGA-II FEATURE SELECTION APPROACH & FEEDBACK BY DOMAIN EXPERTS

avoids the pitfalls of both of the traditional bottom-up and
top-down approaches to uncovering such correlations. Our
approach leverages not only advanced feature selection and
correlation model construction methods, but also domain ex-
pertise which is seamlessly embedded within our algorithm,
thereby providing engineers with a powerful new tool for
ensuring accuracy and compactness of the identified corre-
lations. This is especially significant given the prevalence of
issues with spurious correlations, which limit the effectiveness
and utility of automated correlation identification methods cur-
rently used in semiconductor manufacturing. We validated our
method on production data from an 90nm analog/RF device
manufactured by IBM, demonstrating that our approach can
successfully identify both forward correlations, which result
in accurate prediction of final test outcomes from inline test
parameters, and backward correlations, which pinpoint causal
sets of inline parameters for test engineers to monitor and
investigate in case of yield degrades and final test parametric
variations.
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