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Abstract— Continuing to scale CMP performance at
reasonable power budgets has forced chip designers to consider
emerging silicon-photonic technologies as the primary means
of on- and off-chip communication. Different designs for chip-
scale photonic interconnects have been proposed, and system-
level simulations have shown them to be far superior to
purely electronic network solutions. However, specifying the
exact geometries for all the photonic devices used in these
networks is currently a time-consuming and difficult manual
process. We present VANDAL, a layout tool which provides a
user with semi-automatic assistance for placing silicon photonic
devices, modifying their geometries, and routing waveguides
for hierarchically building photonic networks. VANDAL also
includes SCILL, a scripting language that can be used to
automate photonic device place and route for repeatability,
automation, verification, and scaling. We demonstrate some of
the features and flexibility of the CAD environment with a case
study, designing modulator and detector banks for integrated
photonic links.

I. INTRODUCTION

As performance requirements continue to scale for
scientific, embedded, and commercial high-performance
computing, engineers are considering new technologies for
solutions to some chip- and board-level challenges. Photonics
is seen by many to be a superior communication medium, as it
has been the case for the telecom industry, spawning research
into nano-scale devices and integration [1]-[3]. The area of
on-chip photonic interconnects has emerged as a solution to
the problem of chip- and board-scale communication between
processing cores and external memory.

Various photonic interconnection network designs have been
proposed, including networks that use the wavelength domain
for routing and arbitration [4]-[6], hybrid networks that use a
lightweight electronic control plane for circuit-path setup [7],
[8] and broadband photonic networks using distributed time
division multiplexing (TDM) control [9]. All of these network
designs rely on wavelength division multiplexing (WDM),
which involves transmitting different wavelengths of light
in the same guiding medium without significant interference
between them by using ring resonators specifically tuned to
certain wavelengths for modulation, filtering, and switching
[10], [11].

However, ring resonator devices are highly sensitive to
their geometry, namely the optical path length of the ring
or racetrack and the gap between the resonator and the
waveguides coupled to it. Designing networks which use
ring resonators for WDM requires precisely specifying these
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geometries for hundreds, possibly thousands, of devices. This
process requires tools which allow a designer to quickly and
easily lay out and specify all the devices and components
that make up a network. Furthermore, placing this process in
an automation loop makes it possible to investigate network
optimization for insertion loss, crosstalk, and power through
changing spatial layout and device parameters, and simulating
to measure the effects.

We present a tool for Visual Automated Nanophotonic
Design And Layout, or VANDAL, which enables designers
to visually place functional photonic devices, modify their
parameters, route connecting waveguides between them,
and hierarchically instantiate building blocks into complex
networks. VANDAL also includes an interpreter for a language
we also present here, Simple Component Intuitive Layout
Language, or SCILL, which can be used to describe the
process of placing, specifying, and routing photonic devices.
Finally, VANDAL can be interfaced with a wvariety of
other useful software tools, including industry-standard layout
representation which can be used for fabrication, making
VANDAL a tool central to different design and automation
flows necessary to realize chip-scale photonic interconnects.

II. VANDAL: A PHOoTONIC CAD TOOL

VANDAL is a fully functional photonic component place
and route tool complete with GUI, written in C#. The
organization of VANDAL is shown in Figure 1. The Photonic
Component Library captures key knowledge of the operation
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and geometries of various photonic devices (discussed in
Section II-C), of which a user can instantiate via the graphical
user interface or through SCILL (discussed in Section III).
After a project consisting of devices and waveguides has been
built, it can be exported to a variety of output formats used for
different purposes (discussed in Section II-F). The remainder
of this section describes the main components of VANDAL
and the novel design methods that it supports.

A. Device Parameterization

Unlike traditional CMOS layout tools which allow a
user to draw any geometry on any fabrication layer, we
programmatically create functional building blocks which can
be instantiated much like traditional hierarchical standard cells.
We parameterize the layout of these components so that a user
can control aspects of a component’s behavior while retaining
the geometries necessary for its correct operation. Figure 2
shows an example of the parameterization of a ring-modulator.
Each geometry’s position in the component can be specified
using any of the parameters. For example, the y-position of
the top edge of the waveguide ring relative to the top edge
of the modulator is specified as topPitch + ridgeGap +
dopingT hickness + dopingGap.

Table I lists each parameter and its description for the ring-
modulator example in Figure 2. Component parameterization
enables significant advantages over free-form geometrical
layout. First, for example, if we change the value of ringD,
the modulator is automatically resized by maintaining the
relative proportions of all other geometries. This allows a
user to rapidly configure, derive, and analyze alternative
implementations. This also applies to an automation tool
which could instantiate many components, controlling each
precisely. Finally, parameterization enables verification and
repeatability, providing a medium for mapping post-fabrication
device characterization to precise parameters.

B. Device Modeling

One significant novelty of VANDAL is that components
can describe their photonic transfer functions based solely
on their geometries and materials. This allows a designer
to see the specific impact on device functionality when
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Example of component parameterization - ring modulator

TABLE I
RING MODULATOR PARAMETERS

’ Parameter Description ‘
ringD Diameter of ring (middle of waveguide)
topPitch Distance between top ridge and component’s

top edge.
ringPitch Distance between N+ contact tab

and component’s right and left edges
belowRingPitch | Distance between N+ region opposite

ring and component’s bottom edge
ridgeGap Gap between ridge edge and N+ region
dopingThickness | Width of N+ doping region around ring
dopingGap Gap between edge of N+ region and ring
tabWidth Width of N+ tab for contact
tabLength Length of N+ tab for contact
ridgeTaperWidth | Width of ridge taper into exiting waveguide
ridgeTaperWidth | Length of ridge taper into exiting waveguide
gap Gap between ring and exiting waveguide
oppDopeWidth Width of N+ region opposite ring
oppDopeLengh Length of N+ region opposite ring
viaGap Gap from edge of N+ tab to edge of contact
metalGap Gap from edge of contact to edge of metall

changing different parameters, and enables high-level design
automation flows. We incorporate models from PhoenixSim
[12], a network simulator containing accurate physical-layer
models, into VANDALSs photonic components. For the case of
a ring resonator, as the one illustrated in Figure 2, we capture
the resonance characteristic as a function of transmission
wavelength based on Yariv’s equation [13]:

by |? = a? + 12 — 2alt|cos(0 + ¢)
T T a2 = 2alt|cos(6 + ¢r)

The optical power transmission coefficient, ¢, can be
expressed from waveguide and gap dimensions from the
Appendix in [14], thus providing a completely geometry and
material dependent model. Capturing functional characteristics
of photonic components also enables high-level design
automation flows, such as reversing the modulator’s equations
or searching the parameter space for specific geometric
dimensions that satisfy a given resonance profile.
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C. Photonic Component Library

Parameterized models for the following silicon-photonic
devices are available in VANDAL’s component library:

a) Modulator: There are four types of parameterized
modulators, each with different characteristics: single-order
[10], second-order for hitless operation [15], PINIP for higher
speeds [16], and single-order attached to a Mach-Zehnder
interferometer for more athermal operation [17].

b) Detector: A single-wavelength filter/detector for
compact layout based on a ring-resonator [18].

c) Coupler: A waveguide-to-waveguide hybrid mode
coupler, as described in [19].

d) Filter: A ring-based wavelength filter with through
and drop ports.

e) Ix2, 2x2 Switch: A broadband ring-resonator switch,
as described in [11].

f) Taper: For mode conversion, useful for coupling to
off-chip fiber [20].

g) Waveguide, bends: The fundamental medium for
guiding light, with 450nm default width for single-mode low
insertion-loss propagation [21].

h) Waveguide crossing:
engineered for low-loss [22].

Although many of the components currently defined are
focused around the use of ring-resonator structures, VANDAL
allows the addition of any type of parameterized device using
multiple materials and layers.

Intersection of waveguides,

D. Device Placement

VANDAL provides support for different methods of placing
components in a plane. The first is through the GUI, by
dragging and dropping instances of a component to its desired
location. Components automatically snap to align with ports
of other nearby components, and will auto-connect ports if
dragged close enough.

The second method is by specifying the exact X-Y
coordinates of the component. Coordinates are stored as
unsigned positive integers, in nanometers. The third method
is through the connect function, which aligns a component
such that its indicated port is in the same location as another
component’s indicated port. These second and third methods
are useful for automation or scripting processes, which will
be discussed in more detail in Section III.

Finally, hierarchical instantiation is possible through
Compound components which specify an existing project file,
and Port components which specify the location of logical
input and output ports of a layout.

E. Waveguide Tool

Once components are placed in a plane, we allow the user
to connect components’ logical ports together automatically
with the Waveguide Tool (WGT). Given any two points, either
unoccupied or occupied by a component’s port (at the edge
of that component), the WGT must find the lowest-loss path
without violating the pitch requirements of any component.

In the current version of VANDAL, components are
considered to be in the same silicon substrate because
of typical waveguide-fabrication techniques [23]. Waveguide
crossings are fabricated for low-loss and low crosstalk [22], but
can still contribute a significant part of total network loss [24].
Nevertheless, the geometry and pitch of waveguide crossings
must also be taken into account in the path-finding process.

We implement this process with A* (A-Star) search [25],
a common graph-search technique. This method requires that
any node must be able to generate a finite set of successor
nodes, and that traveling from one node to another has
a defined cost metric (in our case, insertion loss of the
waveguide added from node n; to node ny). Here, we define
the search space as a graph of nodes which can represent any
x-y coordinate. The basic process is as follows, for any starting
node n:

1) Check finish condition - if n is at the destination, exit;

2) Check quick solution;

3) Generate n’s successors, adding them to the list of
possible next moves;

4) Sort the list by n’s cost plus heuristic;

5) Repeat with next node, n’.

More often, the quick solution will be employed, which
attempts a Manhattan-distance waveguide (containing 0 or 1
bend) from n directly to the destination. The quick solution
fails if the previously-added waveguide is not in the correct
orientation to perform a Manhattan-distance connection, or if
there are any components blocking the path.

Successor nodes are generated by considering all possible
cardinal directions that can be reached from n by either
continuing straight for a given unit distance or turning with
a 90-degree bend. One key element in A* search is the
implementation of the heuristic, which attempts to estimate
the remaining cost between n and the destination. For this we
use the Manhattan distance, adding the cost of any waveguide
crossings that must be placed along the path. The next node
considered, n’, is the node that has the least cumulative
insertion loss since the starting node (its total cost) plus the
expected insertion loss to the destination (heuristic function).

Consider the example in Figure 3, which shows the process
of connecting two North-facing port of adjacent components.
The iterations go as follows:

1) The only valid successor (1-N) to the starting point at
the port.

2) North, East, and West successors are generated (2-N, 2-
E, 2-W). Since bends have slightly higher insertion loss
than straight waveguides, the method minimizes the cost
by continuing North-ward, even though the East-facing
successor would be closer to the destination.

3) North, East, and West successors are generated (3-N, 3-
E, 3-W). Now the straight North-ward waveguide has
overcome the loss by bending East-ward in Step (2), so
2-E is the new current node.

4) The quick solution directly to the destination becomes
valid, and the process is completed.



TABLE II
SCILL PRIMITIVE STATEMENTS

Statement Description Format/Example
Assignment | Modifies the namespace by either declaring a new variable or naming an existing
one, and updating its value. <TYPE> is required when declaring a previously- <TYPE> [name] = [value]
unused variable name. value can be a constant, variable, or result of a function.
New Creates a new component of the type specified, and must be the name of a valid
VANDAL component type (see Section II-C). COMP foo = new modulator
If The usual control statement, ended with ENDIF. IF [condition]
[condition] can use the usual ==, >=, <=, and ! = comparison operators.
ENDIF
For The typical looping mechanism, simplified for integer-only, increment-by-1 FOR [var] in [min]..[max]
operation. var is the loop variable (implied integer), which ranges from
min to max, inclusive. ENDFOR
Foreach A mechanism for iterating over an ARRAY variable. End with ENDFOR. FOREACH <TYPE> [var] in [array]
TABLE III
SCILL VARIABLE TYPES
+ Type Description Example
BOOL Standard C-style variable types
+ DOUBLE
INT INT foo = 10
STRING
\J COMP Represents a component in the
layout being created. See new COMP myMod
| I primitive. Attributes of the myMod.X = foo
} I component can be accessed
through . notation
FILE A file in the system. FILE fooFile
Fig. 3. Example connection two North-facing ports DIR A directory in the system. DIR fooDir
Use with FOREACH to iterate | FOREACH FILE f
X . X over all files in a directory in fooDir
In this way, our waveguide path-finding method can PORT Logical port of a project, PORT p =
optimize the insertion loss between any two ports, though it used in hierarchical placement comp.port[0]
does encounter some difficulty for layouts with large numbers ARRAY | Any variable can be declared
of devices that it must route through. In these cases, the user as ARRAY, which stores ARRAY INT foos
has the option to manually route the waveguides for the most multiple integer-indexed values | foos[0] = 10

complex paths, thereby helping the tool achieve an optimized
layout sooner.

FE Layout Output

VANDAL is capable of exporting its internal representation
to a variety of file formats for different uses.

a) VANDAL - .phc: VANDAL’s own file format, which
consists of all component objects serialized using standard IO.

b) NED: The language used by OMNeT++ [26], and
therefore PhoenixSim [12] to describe the instantiation and
connectivity of simulation modules.

¢) CIF - Caltech Interchange Format: A standard format
used to describe simple geometries [27], which can be
imported into fabrication machines and standard CMOS layout
tools.

d) Hotspot: A thermal modeling tool, which takes
simple geometry coordinates and size as inputs [28]. This
tool is compatible with PhoenixSim representation, enabling
simulation of thermal fluctuations on the photonic components.

e) MEEP: A tool for performing finite-difference time-
domain (FDTD) electromagnetic simulations [29].

III. SCILL: A LAYOUT SCRIPTING LANGUAGE

We developed SCILL (Simple Component Intuitive Layout
Language) to automate the layout of photonic components
such that the process is precise, convenient, flexible,
repeatable, and insertable into an automation loop for
optimization. SCILL is a language with C-like sequential
execution, modifying a namespace containing variable
definitions and values. SCILL also contains script-like
directives to use features of VANDAL, such as the WGT.
Unlike other representations which simply describe the
locations of every element in the system, a SCILL script
can describe the process by which elements are placed. This
allows us to implement powerful automation methods, such as
instantiating many elements with little code using loops.

VANDAL includes an interpreter for SCILL, and
automatically creates a new project for any SCILL script run.
A SCILL script is typically structured as follows:

1) Include - specify any external scripts that are called from

this one;

2) Parameters - specify user-level parameters using the

param keyword that can be input at run-time through



VANDAL;
3) Execution - all other executable lines.

Example code follows in Section IV. See Table II for
descriptions of the primary statements defined in SCILL.
SCILL variables are typed, according to the descriptions
found in Table III. SCILL also contains some useful built-in
functions, as well as a mechanism for calling other scripts.

a) moveTo: This function is useful for specifying the
position of a component relative to another component by
moving the first such that one of its ports is connected to
a port on the other. This function takes the form of <moveTo
[portl] [port2]>, where portl and port2 are PORT variables,
and portl is a port on the component to be moved.

b) connect: Invokes the waveguide tool to connect two
ports together with waveguides, in the form of <connect
[portl] [port2]>, where portl and port2 are PORT variables.

¢) rotate: Simply rotates the given COMP variable 90
degrees clockwise. See Script 1 for an example.

d) Other scripts: SCILL code can call other SCILL
scripts, by invoking the include keyword. The script can then
be called like a function which processes user-provided input
parameters to produce a returned value.

IV. CASE STUDY: LINK INSTANTIATION

We demonstrate some of the features of VANDAL through a
simple case study that consists of instantiating some photonic
gateways, verifying their resonance profile, and connecting
them with waveguides. The network gateway is a key module
of a nanophotonic network which consists of modulators and
detectors to convert from the electronic domain to optical
signaling. For ring resonator-based modulators and detectors,
the gateway design is critical because the devices must be
fabricated such that their resonant wavelengths are exactly in
tune with any switches or filters in the network.

In this case study, we first write a SCILL script to
automatically generate an arbitrary number of modulators and
detectors, which can be found in Script 1. This script takes
as parameters the number of modulators to instantiate, the
minimum ring diameter, the change in diameter for adjacent
rings, and whether to make modulators or detectors. We test
our script by instantiating four modulators with minumum
diameter of 5um and a diameter change of 10nm. The
automatically generated resonance profile of the result can be
seen in various screenshots in Figure 4, which also indicates
important features such as free spectral range (FSR) and
extinction ratio (ER).

Next, we write a script to use these gateways to instantiate
photonic links, to connect cores or other IP across a chip.
Script 2 shows the example we use here, making 2 links
spanning about 0.12mm? using six and four wavelengths.
Figure 5 shows the resulting screenshot, with the modulator
banks in the upper-left corner, and the detector banks at the
bottom and on the right side. Besides the transmission profile
of the links, we can also automatically calculate the insertion
loss for any link, which is 0.34 and 0.48 dB for this example.

2a7n

FSR
1281

H
«@B)
06.90 ’
1
—
== H

(L] t ===
15100 15240 15208 =""""" 1550 15660 15800

1
[
il

p———

s - | ER 15695 15714 15732 15750

Fig. 4. Screenshots of response of four-modulator WDM gateway,
with freespace wavelength on the x-axes and loss (dB) on the y-
axes

fee—CCCOCJ

CO0T

Fig. 5. Screenshot of two photonic links

V. CONCLUSION

In response to the growing interest in silicon photonic
network design, we present VANDAL, a visual place and
route tool, and SCILL, a simple domain-specific language,
for the specification, design, and optimization of nanophotonic
networks and their components. Users can write a SCILL
script and process it with VANDAL to automatically generate
a network by combining any number of devices (waveguides,
couplers, modulator and detector banks, etc.). They can also
analyze the network through the automatic derivation of its key
characteristics from those of its components (such as gateway
transmission profile and link insertion loss.) Future work
includes advanced network-synthesis methods from higher
levels of abstraction, the refinement of the component models
through the characterization of fabricated components, and
a complete demonstration of the design flow supported by
VANDAL.
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