
Towards Energy Efficient Hybrid On-chip Scratch
Pad Memory with Non-Volatile Memory

Jingtong Hu1, Chun Jason Xue2, Qingfeng Zhuge3, Wei-Che Tseng1, and Edwin H.-M. Sha1,3
1Dept. of Computer Science, University of Texas at Dallas, Richardson, TX, 75080, USA

2Dept. of Computer Science, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong.
3Hunan University, Changsha, Hunan, 410082, China.

jthu@utdallas.edu, jasonxue@cityu.edu.hk, qfzhuge@gmail.com, {wxt043000, edsha}@utdallas.edu

Abstract—Scratch Pad Memory (SPM), a software-controlled
on-chip memory, has been widely adopted in many embedded
systems due to its small area and low power consumption. As
technology scaling reaches the sub-micron level, leakage energy
consumption is surpassing dynamic energy consumption and
becoming a critical issue. In this paper, we propose a novel hybrid
SPM which consists of non-volatile memory (NVM) and SRAM to
take advantage of the ultra-low leakage power consumption and
high density of NVM as well as the efficient writes of SRAM. A
novel dynamic data allocation algorithm is proposed to make use
of the full potential of both NVM and SRAM. According to the
experimental results, with the help of the proposed algorithm,
the novel hybrid SPM architecture can reduce memory access
time by 18.17%, dynamic energy by 24.29%, and leakage power
by 37.34% on average compared with a pure SRAM based SPM
with the same size area.

I. INTRODUCTION

The use of on-chip memories, including caches and Scratch-
pad Memories (SPMs), in computing systems has been a
widely-adopted method for addressing long memory access
latency for many years. On one hand, cache is probably the
mostly widely-used on-chip memory. However, the transition
from multi-core (few cores) to many-core (hundreds of cores)
architectures has increased the pressure on achieving good
cache performance. The power and performance overheads of
automatic memory management in hardware, i.e. by caches
is becoming prohibitive. Caches consume about half of the
processor energy on single-core processor [1], and are ex-
pected consume much larger fraction with increase in number
of cores.

Most embedded systems are tightly constrained by energy
consumption. On-chip cache typically consumes 25%-50%
of the processor’s area and energy [1]. Therefore, Scratch
Pad Memory (SPM), a software-controlled on-chip memory,
instead of hardware-controlled cache, has been widely adopted
in many embedded systems. However, as the speed of the
CMOS transistors keeps increasing along with density, leakage
power consumption is becoming a critical issue for memory

This work is partially supported by NSF CNS-1015802, Texas NHARP
009741-0020-2009, NSFC 60728206, Changjiang Honorary Chair Professor
Scholarship and grants from the Research Grants Council of the Hong Kong
Special Administrative Region, China [Project No. CityU 123609][Project No.
CityU 123210].

components with a large number of transistors. In this paper,
we propose a novel hybrid on-chip SPM architecture con-
sisting of Non-Volatile Memory (NVM) and SRAM together
with an optimal data allocation algorithm. By using the hybrid
SPM, we can obtain multiple important benefits, such as
ultra-low leakage power consumption, high density, and non-
volatility.

Non-volatile memories (NVMs) give us a new way of ad-
dressing the memory power consumption problem, because of
their attractive characteristics such as low leakage power, high-
density, and non-volatility. Previous works have confirmed that
using NVMs to build hybrid caches [2], [3], [4], [5], [6] can
achieve significant energy saving when configured and used
properly. However, to the best of our knowledge, this is the
first research on using NVMs to build SPM along with the
proper management algorithms.

Even though NVMs have many advantages as described
above, there are two challenges we need to answer before
we can practically adopt NVMs as on-chip memory. First, a
write to NVMs incurs more energy and latency than a read.
Second, a majority of NVMs can only sustain limited number
of writes compared with SRAM. Consequently, the problem
of reducing the number of writes on NVMs has to be solved
in order to achieve any practical usage of NVMs as on-chip
memory components.

Unlike cache, in which the data management is done in
hardware, the data management in SPM is done purely by
software. There are many static or dynamic data management
algorithms designed for SPM [7], [8], [9], [10], [11]. However,
none of them considers the objective of reducing the write ac-
tivities on NVMs because they are targeting SPMs consisting
of pure SRAM. Therefore, it is essential to design a smart
SPM memory data management algorithm to reduce the write
activities on NVM. Cache replacement policies are proposed
in [2], [3], [4], [5], [6] to mitigate the write problems of NVM
when it is used as part of hardware-controlled hybrid cache.
The policies designed for caches which are very expensive
and inappropriate to be implemented in software. Embedded
system applications have the benefits of compiler-analyzable
data access patterns which could be carefully exploited to
produce an effective and efficient data allocation scheme for
hybrid SPM architecture.978-3-9810801-7-9/DATE11/ c⃝2011 EDAA



In this paper, we first propose a novel hybrid SPM archi-
tecture that consists of NVM and SRAM to take advantage of
beneficial characteristics from both while still promising an
efficient, high endurance, and low leakage on-chip memory
solution. Then, we propose a novel optimal dynamic data
management algorithm, the Optimal Data Allocation (ODA)
Algorithm, which will move the most-written data into SRAM
and the most-read data into NVM, to realize the full potential
of the hybrid SPM. The ODA algorithm can also be applied
in pure SRAM SPM to obtain the optimal data allocation.

According to the experimental results, with the help of the
ODA algorithm, the novel hybrid SPM architecture can reduce
memory access time by 18.17%, dynamic energy consumption
by 24.29% and leakage power consumption by 37.34% when
compared with a pure SRAM SPM with the same size area.
Thus, the proposed hybrid SPM architecture is a very promis-
ing low-power high-performance on-chip memory solution.
The major contributions of this paper include:

• a novel low-power and high-performance hybrid SPM
architecture that incorporates both NVM and SRAM,

• an optimal dynamic data management algorithm, ODA,
for the proposed hybrid SPM architecture which reduces
memory access time and dynamic access energy while
extending NVM’s lifetime, and

• a hybrid SPM simulator to evaluate the proposed hybrid
architecture and the optimal data management algorithm.

The rest of this paper is organized as follows. Background
and related works are discussed in Section II. Section III
presents the hardware and computation model used in this
paper. A motivational example is presented in Section IV to
illustrate the basic ideas of this paper. The main algorithms are
explained in detail in Section V. The experiments are presented
in Section VI. Finally, this paper is concluded in Section VII.

II. BACKGROUND AND RELATED WORKS

In this section, we introduce the background of hybrid SPM
architecture and related works.

Many researchers have proposed SPM data allocation and
management techniques to minimize the application execution
time. Banakar et al. [1] compared SPM with cache and
evaluate simple SPM data management algorithms. Avissar
et al. [7] propose a static data allocation scheme for SPMs.
Udayakumaran et al. [8], [10] propose a dynamic data allo-
cation method for global and stack data. Dominguez et al.
[9] propose dynamic data allocation methods for heap data.
Kandemir et al. [11] propose methods to manage data for
array-intensive nested loops with regular data access patterns.
Ozturk et al. [12] manage data for multiple applications that
share the same SPM space. Chen et al. [13] propose dynamic
data management for irregular array access patterns. Xue et al.
[14] and Ozturk et al. [15] propose loop scheduling algorithms
for systems with SPM. Panda et al. [16] propose a technique
for efficiently exploiting on-chip SPM by partitioning the
applications’s scalar and array variables into DRAM and
SPM, with the goal of minimizing the total execution time
of embedded applications. Takase et al. [17] propose data

partitioning and allocation methods for SPM in priority-based
preemptive multi-task systems. All of the above research target
SPMs which consist of pure SRAM, not the novel SPM
architecture proposed in this paper.

Research regarding reducing energy consumption for SPMs
are also presented in many existing works. Steinke et al.
[18] reduce SPMs’ dynamic energy consumption by assigning
program and data objects. Kandemir et al. [19] and Chen
et al. [20] propose methods to reduce static leakage power
consumption. In their works, static leakage power consumption
is a big part of power consumption, while in this work, due
to the nature of NVMs, very low leakage power exists.

Several previous works [21], [22], [23], [24], [25], [26],
[27], [28] confirm that a NVM main memory can achieve
significant energy saving with comparable performance to that
of a DRAM main memory. Besides using NVMs in main
memory, NVMs are also proposed to be used as caches.

The recent emergence of various non-volatile memories
(NVMs), such as Magnetic RAM (MRAM) [29], Phase
Change Memory (PCM) [30], and embedded Dynamic RAM
(eDRAM) [31], has attracted a lot of researchers’ interest due
to their appealing characteristics, such as low-cost, shock-
resistivity, non-volatility, high density and power-economy.
[2], [3], [4], [5], [6] have used NVMs to build hybrid caches
which can achieve significant energy saving when configured
and used properly. All these works focus on integrating NVMs
into on-chip cache, whereas our work focuses on SPM. These
works imply that it is technically feasible to integrate NVMs
with SRAM into on-chip SPM. In these works, cache replace-
ment algorithms are also proposed to reduce the write activities
on NVMs in order to reduce the energy consumption and
prolong NVMs’ endurance. Those cache management polices
are neither suitable for SPM management nor can achieve best
results for SPMs.

As presented in previous hybrid cache architectures, 3D
integration is an essential technique to integrate NVM and
SRAM in the same die. 3D hybrid cache with SRAM and
NVMs are proposed in [2], [4], [5]. 3D integration can also
be adopted to integrate NVM and SRAM for the proposed
hybrid on-chip SPM architecture.

III. HYBRID SPM WITH NVM AND SRAM

In this section, we describe the hardware model used in
this paper. In the proposed architecture, we use hybrid NVM
and SRAM as Scratch Pad Memory. NVM and SRAM share
the same address space with the main memory. The CPU can
load data from both of them directly and data can be moved
between them using special instructions supported by the CPU.
Integrating CMOS, which provides the SRAM and logics, with
NVM into the same chip can be done with 3D integration [32].

SRAM has higher leakage power. At the same time, writes
to SRAM cost less than writes to NVM in terms of time and
energy consumption. NVM has very low leakage power and
high density. At the same time, the writes to NVM are very
expensive. A hybrid architecture offers the low static power
consumption and high density of NVMs and the fast and



energy efficient writes of SRAM. Thus, a properly managed
hybrid architecture can outperform SPMs consisting of either
pure NVM or pure SRAM. In the following sections, we
propose the ODA algorithm, which makes full use of the
potentials of both the NVM and the SRAM.

IV. MOTIVATIONAL EXAMPLE

In this section, we use an example to illustrate the main idea
of the proposed algorithm. In the example, we show that with
proper data allocation, we can take advantage of the benefits of
NVM while avoiding the disadvantages of NVM in the hybrid
SPM architecture.

Before showing the motivational example, we list notations
used in the paper in Table I. Here the cost can be either energy
cost or access time cost, depending on the optimization goal.

TABLE I: Notations used in this paper.

Notation Description
RS the cost of reading from SRAM.
RN the cost of reading from NVM.
RM the cost of reading from main memory.
WS the cost of writing to SRAM.
WN the cost of writing to NVM.
WM the cost of writing to main memory.
S→N the cost of moving data from SRAM to NVM.
N→S the cost of moving data from NVM to SRAM.
S→M the cost of moving data from SRAM to main memory.
M→S the cost of moving data from main memory to SRAM.
N→M the cost of moving data from NVM to main memory.
M→N the cost of moving data from main memory to NVM.

Unlike cache, in which data replacement is purely man-
aged by hardware, data replacement in SPM architectures is
managed by software. To efficiently manage data replacement,
programs are divided into regions according to the methods
from [8], [9], [10], [11]. Basically, we divide the program into
regions that are delineated by: (i) the start of each procedure,
and (ii) the start of every loop. Before starting the execution
of each region, data management code is executed to generate
a data allocation which is suitable for this region. Data
movement instructions are inserted into the program either by
the programmer or the compiler. During the execution of each
region, the data allocation remains the same.

In the motivation example, assume we have a region in
which 6 data are accessed: A, B, C, D, E, and F. The number
of reads and writes is shown in the Table II. Initially, we
assume only F is in the SRAM, and all other data is in the
main memory. We assume the capacity of the SRAM is 3 and
the capacity of the NVM is 2. Accesses to different parts of
the memories have different values. The values used in this
example are shown in Table III.

Since there is no algorithm designed for a hybrid SPM
architecture, we use the algorithm which is designed for pure
SRAM SPM architecture in [8] by Udayakumaran et al. for
comparison. It is a greedy algorithm which, for each region,
the most accessed data is moved into the SPM. In our example,
all 6 data have the same number of accesses in this region
which is 7. So Udayakumaran’s algorithm will choose any 5 of
them to put into the NVM and SRAM. One possible solution

TABLE II: Num of access.

Data Reads Writes
A 1 6
B 2 5
C 3 4
D 4 3
E 5 2
F 6 1

TABLE III: Cost of each
access.

Notation Costs
RS,WS 1

RN 2.5
WN 7.5

RM,WM 50
S→N 8.5
N→S 3.5
S→M 51
M→S 51
N→M 52.5
M→N 57.5

is: A, B in NVM, C, D, E in SRAM, and F in main memory.
With this data allocation, the cost of this program region is
780, which includes the data movement cost and data access
cost. Here, the cost could be access time or dynamic energy
consumption. With this data allocation, there are 11 writes on
the NVM.

However, with another data allocation, not only the cost
can be reduced but also the number of writes on NVM
can be reduced. Instead of the data allocation generated by
Udayakumaran’s algorithm, if the following data allocation,
A, B, C in SRAM, E, F in NVM, D in main memory, is used,
the cost of this program region is reduced to 639. And there are
only 3 writes on the NVM. Compared with Udayakumaran’s
algorithm, the cost is reduced by 18.77% and the number of
writes on NVM is reduced by 72.73%.

The second data allocation actually is the optimal data
allocation which incurs the minimal cost for this region. The
ODA algorithm presented in the next section can generate the
optimal data allocation. The main reason ODA can reduce
the cost is that it differentiates between reads and writes. It
then moves the data read the most times into the NVM and
moves the data written the most times into the SRAM. In this
way, we can take advantage of the NVM while avoiding write
activities on the NVM, which reduces the cost and extends the
lifetime of the NVM. The details of ODA will be presented
in Section V.

V. DYNAMIC DATA MANAGEMENT FOR HYBRID SPM

In this section, we present the details of the proposed
algorithms which generate the data allocation for each program
region. First, the problem is formally defined. Then we will
illustrate the proposed algorithm with an example. Finally,
we present the theorems about the optimality of the ODA
algorithm.

A. Problem Definition

Definition 5.1: Given the initial data allocation in the on-
chip SPM, size of SRAM, size of NVM, number of accesses
to each data in a region (obtained using profiling), the values
of RS, RN , RM , WS, WN , WM , S→N , N→S, S→M ,
M→S, N→M , and M→N , what is the optimal data alloca-
tion under which the total cost of the execution of this region
is minimized?



The inputs are: initial data allocation in the on-chip SPM,
size of SRAM Sizes, size of NVM Sizen, access sequence in
this region, RS, RN , RM , WS, WN , WM , S→N , N→S,
S→M , M→S, N→M , M→N .

Output: a data allocation under which the total cost of the
execution of this region is minimized. The cost could be either
energy or data access time.

B. Optimal Data Allocation for Hybrid SPM

In this section, we introduce the Optimal Data Allocation
Algorithm (ODA). The ODA algorithm consists of two steps.
In the first step, costs for each data are computed. Then in the
second step, the best allocation for the region is determined so
that the cost for the execution of this region is minimized. We
will use the motivational example alongside the presentation
of the ODA algorithm to illustrate the ideas of the algorithm.

Step 1) Computing Costs: In the first step, we will compute
costs for each data. We define three costs for each data. The
first cost S(Di) is the total cost for this data if Di is placed in
SRAM. The second cost N(Di) is the total cost for this data
if Di is in NVM. And the third cost M(Di) is the total cost
for this data if the Di is in main memory. All costs can be
computed as per Equation 1.∑

moving cost+ (num of access) ∗ (cost of each access) (1)

TABLE IV: Costs for each data.

Data SRAM S(Di) NVM N(Di) Main memory M(Di)
A 58 105 350
B 58 100 350
C 58 95 350
D 58 90 350
E 58 85 350
F 7 30 401

The access information of data is presented in Table II.
The three costs of each data is shown in Table IV. The cell
corresponding to Column SRAM and Row A is the cost for
A if A is in SRAM during the execution of this region. We
compute the value for this cell as: 1×RS + 6×WS + M→S
= 58. Notice that cell F/SRAM is 7 because F is already in
SRAM, it does not have the cost of moving data from main
memory to SRAM (M→S).

Step 2) Determining Optimal Data Allocation: After we
obtain the costs for each data in this region, in the second
step, a dynamic programming algorithm is used to compute
the best data allocation for the region.

Let C[i, j, k] be the cost of the whole program region where
there are j empty spots in the SRAM and k empty spots in the
NVM. For x ≤ i, the xth data has been optimally determined.
For y > i, the yth data is in the main memory.

The recursive function is shown in Equation 2. According
to the recursive function, the Optimal Data Allocation (ODA)
Algorithm is presented in Algorithm V.1. In Algorithm V.1,
we start with all data placed in the main memory, and itera-
tively determine the optimal location for each data. The array
Action[i,j,k] records the movement instruction for Datai and

Algorithm V.1 Optimal Data Allocation Algorithm (ODA)
Input: Number of data Nd, Sizes, Sizen, S(Di), N(Di), M(Di) for each

data Di.
Output: a data allocation under which the total cost of the execution of this

region is minimized.
1: for m← 1 to Nd do
2: C[m, Sizes, Sizen] ←

∑
i
M(Di);

3: end for
4: for i ← 1 to Nd do
5: for j ← Sizes to 0 do
6: for k ← Sizen to 0 do
7: C[i, j, k]← min(C[i−1, j, k], C[i−1, j+1, k]− (M(Di)−

S(Di))), C[i− 1, j, k + 1]− (M(Di)−N(Di));
8: if C[i, j, k] = C[i-1,j,k] then
9: Action[i,j,k] = “data Di in main memory”;

10: Previous[i,j,k] = (i-1,j,k) ;
11: else if C[i, j, k] = C[i − 1, j + 1, k] − (M(Di) − S(Di)))

then
12: Action[i,j,k] = “data Di into SRAM ”;
13: Previous[i,j,k] = (i-1,j+1,k) ;
14: else if C[i, j, k] = C[i−1, j, k+1]−(M(Di)−N(Di)) then
15: Action[i,j,k] = “data Di into NVM ”;
16: Previous[i,j,k] = (i-1,j,k+1) ;
17: end if
18: end for
19: end for
20: end for

the array Previous[i,j,k] remembers the position of previous
optimal solution. After the execution of Algorithm V.1, we
can easily construct the optimal data allocation according to
the data stored in Action[i,j,k] and Previous[i,j,k]. The time
complexity of Algorithm V.1 is O(Nd*Sizes*Sizen).

According to the ODA algorithm, we construct C[i,j,k] for
our example. C[i,j,k] is a 3D array. We show the content of
C[i,j,k] in Table V. After the construction of this table, we
can extract the optimal solution: putting A, B, C in SRAM,
D in main memory, and E, F in NVM. The numbers which
are labeled red is the path from which we obtain the optimal
solution.

TABLE V: C[i,j,k] for example.

k = 0
HHHHj

i 1(A) 2(B) 3(C) 4(D) 5(E) 6(F)

0 ∞ ∞ ∞ ∞ 750 639
1 ∞ ∞ ∞ 1052 1042 931
2 ∞ ∞ 1354 1344 1334 1223
3 ∞ 1656 1646 1636 1626 1515

k = 1
HHHHj

i 1(A) 2(B) 3(C) 4(D) 5(E) 6(F)

0 ∞ ∞ ∞ 1015 1010 904
1 ∞ ∞ 1312 1307 1302 1196
2 ∞ 1609 1604 1599 1594 1488
3 1906 1901 1896 1891 1886 1780

k = 2
HHHHj

i 1(A) 2(B) 3(C) 4(D) 5(E) 6(F)

0 ∞ ∞ 1275 1275 1275 1173
1 ∞ 1567 1567 1567 1567 1375
2 1859 1859 1859 1859 1859 1757
3 2151 2151 2151 2151 2151 2151



C[i, j, k] =


∑

i
M(Di), if i = 0, j = Sizes, k = Sizen,

∞ if j + k < Sizes + Sizen − i or j > Sizes or k > Sizen,
min(C[i− 1, j, k], if j + k ≥ Sizes + Sizen − i.
C[i− 1, j + 1, k]− (M(Di)− S(Di)),
C[i− 1, j, k + 1]− (M(Di)−N(Di)))

(2)

TABLE VI: System Specification.

Component Baseline System Specification Target System Specification
CPU Core Number of cores: 1, frequency: 1.0 GHz Number of cores: 1, frequency: 1.0 GHz

On-chip SPM SRAM Part Size: 32 KB, access latency: 5.72 ns, access energy: Size: 16 KB, access latency: 3.95 ns, access energy: 0.034 nJ,
0.061 nJ, leakage power: 15.96 mW leakage power: 7.99 mW

On-chip SPM NVM Part
None Size: 64 KB, read latency: 1.55 ns,write latency

(SET/RESET): 131.01/61.01 ns, read energy: 0.043 nJ, write
energy(SET/RESET): 3.21/3.85 nJ, leakage power: 2.01 mW

Main memory DDR SDRAM, Size: 512 MB, Access latency: 104.4 ns DDR SDRAM, Size: 512 MB, Access latency: 104.4 ns
access energy: 3.26 nJ, leakage power: 200.685 mW access energy: 3.26 nJ, leakage power: 200.685 mW

VI. EXPERIMENTS

In this section, first, we present the experimental setup.
Then we present the evaluation of the novel hybrid SPM
architecture.

A. Experimental Setup

In the experiments, we evaluate a hybrid SPM which
consists of SRAM and PCM. We chosen PCM as NVM in this
experiment while other types of NVM will also work under
the proposed techniques.

We use the NVM simulator NVsim [33], which is a
PCM-supporting variant of the CACTI tool, to estimate the
read/write latencies and energy consumption for a given size
of PCM and SRAM. We use 45 nm technology with the tool.

We developed a trace-driven hybrid SPM simulator and
integrated the NVSim-obtained PCM and SRAM memory
model to evaluate the new architecture. The simulator consists
of a memory trace processing unit, SPM with SRAM and
PCM, and a DDR SDRAM main memory. The target system
specifications used for our experiments are shown in Table VI.

We ran benchmarks from Mibench [34] in Simplescalar and
collected the memory trace for each region, then fed the mem-
ory trace for each region into our simulator. We selected 11
applications from the Mibench benchmark suite: qsort, susan,
basicmath, bitcount, dijkstra, patricia, stringsearch, rijndael,
sha, CRC32, and FFT.

We implemented our algorithm as a standalone program
which takes the memory trace as input and scans through
the memory trace to obtain the read and write information of
each data. After that, it decides the optimal data allocation for
each program region and generates the proper data movement
instructions. The data movement instructions for each region
are then fed into our SPM simulator. This program can be
easily integrated into any compiler.

B. Experimental Results

1) Evaluation of Hybrid SPM: In this section, we compare
the hybrid SPM architecture with traditional pure SRAM
SPM in terms of memory access time and dynamic energy
consumption. The specifications of the hybrid architecture and
the baseline architecture are shown in Table VI.

The hybrid SPM has 16KB of SRAM and 64KB of PCM,
while the baseline SPM has 32KB of SRAM. Since PCM can
be made 4 times denser than SRAM, these two SPMs take up
similar amounts of area. We use Udayakumaran’s algorithm
to manage the data allocation for pure SRAM SPM and use
the ODA algorithm to manage the data allocation for hybrid
architecture.

qsort susan math bit dikstr patri strsrch rijnd sha CRC32 FFT
0

5000

10000

15000

20000

25000

30000

M
em

or
y 

A
cc

es
s 

Ti
m

e 
(u

s)

Benchmarks

 Baseline SPM
 Hybrid SPM

Fig. 1: Memory access time comparison between two SPM architec-
tures.

The comparison of memory access times is shown in
Fig. 1. The comparison of dynamic energy costs is shown
in Fig. 2. We can see that the hybrid architecture reduces
both memory access time and dynamic energy consumption.
On average, the hybrid architecture can reduce the memory
access time by 18.17% and the dynamic energy by 24.29% in
our experiments.

Two main factors contribute to the reduction of memory
access time and dynamic energy consumption. First, there are
more reads than writes in the data accesses and the ODA
algorithm moves the most-read data into NVM and the most-
written data into SRAM. Thus, we can take advantage of the
inexpensive read of NVM and avoid the expensive writes to the
NVM. Second, since NVM is denser than SRAM, for the same
area, the hybrid SPM has larger capacity. Therefore, there are
fewer off-chip memory access in hybrid SPM than in SRAM



qsort susan math count dikstr patri strsrch rijnd sha CRC32 FFT
0

200

400

600

800

M
em

or
y 

A
cc

es
s 

D
yn

am
ic

 E
ne

rg
y 

(u
J)

Benchmarks

 Baseline SPM
 Hybrid SPM

Fig. 2: Memory access dynamic energy comparison between two
SPM architectures.

SPM.
The static leakage power consumption for the hybrid ar-

chitecture is 10 mW as shown in Table VI, and the leakage
power for the SRAM architecture is 15.96 mW as shown in
Table VI. With the same amount of execution time, the hybrid
SPM architecture can reduce the leakage power by 37.34%.

VII. CONCLUSION

In this paper, we propose a novel hybrid SPM which consists
of NVM and SRAM to take advantage of the low leakage
power and the high density of NVM and the efficient writes
of SRAM. Also, we propose a novel optimal dynamic data
management algorithm to realize the full potential of both
the SRAM and the NVM. According to our experimental
results, with the help of our algorithm, the novel hybrid SPM
architecture can reduce memory access time, dynamic energy,
leakage power compared to pure SRAM based SPM.

REFERENCES

[1] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,
“Scratchpad memory: design alternative for cache on-chip memory in
embedded systems,” in CODES ’02, 2002, pp. 73–78.

[2] X. Wu, J. Li, L. Zhang, E. Speight, and Y. Xie, “Power and performance
of read-write aware hybrid caches with non-volatile memories,” in DATE
’09, 2009, pp. 737–742.

[3] P. Mangalagiri, K. Sarpatwari, A. Yanamandra, V. Narayanan, Y. Xie,
M. J. Irwin, and O. A. Karim, “A low-power phase change memory
based hybrid cache architecture,” in GLSVLSI ’08, 2008, pp. 395–398.

[4] X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen, “Circuit and
microarchitecture evaluation of 3d stacking magnetic ram (mram) as a
universal memory replacement,” in DAC ’08, 2008, pp. 554–559.

[5] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie, “Hybrid
cache architecture with disparate memory technologies,” in ISCA ’09,
2009, pp. 34–45.

[6] Y. Joo, D. Niu, X. Dong, G. Sun, N. Chang, , and Y. Xie, “Energy- and
endurance-aware design of phase change memory caches,” in DATE ’10,
2010, pp. 136–141.

[7] O. Avissar, R. Barua, and D. Stewart, “An optimal memory allocation
scheme for scratch-pad-based embedded systems,” ACM Trans. Embed.
Comput. Syst., vol. 1, no. 1, pp. 6–26, 2002.

[8] S. Udayakumaran and R. Barua, “Compiler-decided dynamic memory
allocation for scratch-pad based embedded systems,” in CASES ’03,
2003, pp. 276–286.

[9] A. Dominguez, S. Udayakumaran, and R. Barua, “Heap data allocation
to scratch-pad memory in embedded systems,” J. Embedded Comput.,
vol. 1, no. 4, pp. 521–540, 2005.

[10] S. Udayakumaran, A. Dominguez, and R. Barua, “Dynamic allocation
for scratch-pad memory using compile-time decisions,” ACM Trans.
Embed. Comput. Syst., vol. 5, no. 2, pp. 472–511, 2006.

[11] M. Kandemir, J. Ramanujam, J. Irwin, N. Vijaykrishnan, I. Kadayif,
and A. Parikh, “Dynamic management of scratch-pad memory space,”
in DAC ’01, 2001, pp. 690–695.

[12] O. Ozturk, M. Kandemir, and I. Kolcu, “Shared scratch-pad memory
space management,” in ISQED ’06, 2006, pp. 576–584.

[13] G. Chen, O. Ozturk, M. Kandemir, and M. Karakoy, “Dynamic scratch-
pad memory management for irregular array access patterns,” in DATE
’06, 2006, pp. 931–936.

[14] L. Xue, M. Kandemir, G. Chen, and T. Yemliha, “Spm conscious loop
scheduling for embedded chip multiprocessors,” in ICPADS ’06, 2006,
pp. 391–400.

[15] O. Ozturk, M. Kandemir, and S. H. K. Narayanan, “A scratch-pad
memory aware dynamic loop scheduling algorithm,” in ISQED ’08,
2008, pp. 738–743.

[16] P. R. Panda, N. D. Dutt, and A. Nicolau, “Efficient utilization of scratch-
pad memory in embedded processor applications,” in EDTC ’97, 1997,
p. 7.

[17] H. Takase, H. Tomiyama, and H. Takada, “Partitioning and allocation of
scratch-pad memory for priority-based preemptive multi-task systems,”
in DATE ’10, 2010, pp. 1124–1129.

[18] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel, “Assigning program
and data objects to scratchpad for energy reduction,” in DATE ’02, 2002,
p. 409.

[19] M. Kandemir, M. J. Irwin, G. Chen, and I. Kolcu, “Banked scratch-
pad memory management for reducing leakage energy consumption,” in
ICCAD ’04. IEEE Computer Society, 2004, pp. 120–124.

[20] G. Chen and M. Kandemir, “Dataflow analysis for energy-efficient
scratch-pad memory management,” in ISLPED ’05, 2005, pp. 327–330.

[21] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” in ISCA ’09,
2009.

[22] G. Dhiman, R. Ayoub, and T. Rosing, “Pdram: a hybrid pram and dram
main memory system,” in DAC ’09, 2009, pp. 664–469.

[23] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,”
in ISCA ’09, 2009, pp. 24–33.

[24] J. Hu, C. J. Xue, W.-C. Tseng, Y. He, M. Qiu, and E. H.-M. Sha,
“Reducing write activities on non-volatile memories in embedded cmps
via data migration and recomputation,” in DAC ’10, 2010, pp. 350–355.

[25] J. Hu, C. J. Xue, W.-C. Tseng, Q. Zhuge, and E. H.-M. Sha, “Minimizing
write activities to non-volatile memory via scheduling and recomputa-
tion,” in SASP ’10, 2010, pp. 7–12.

[26] J. Hu, W.-C. Tseng, C. J. Xue, Q. Zhuge, Y. Zhao, and E. H.-M.
Sha, “Write activity minimization for non-volatile main memory via
scheduling and recomputation,” IEEE Transaction on COMPUTER-
AIDED DESIGN of Integrated Circuits and Systems, 2011.

[27] L. Shi, C. J. Xue, J. Hu, W.-C. Tseng, and E. H.-M. Sha, “Write activity
reduction on flash main memory via smart victim cache,” in GLVLSI ’10,
2010, pp. 91–94.

[28] W.-C. Tseng, C. J. Xue, Q. Zhuge, J. Hu, and E. H.-M. Sha, “Optimal
scheduling to minimize non-volatile memory access time with hardware
cache,” in VLSI-SOC ’10, 2010, pp. 131–136.

[29] Y. Chen, H. Li, X. Wang, W. Zhu, W. Xu, and T. Zhang, “A nonde-
structive self-reference scheme for spin-transfer torque random access
memory (stt-ram),” in DATE ’10, 2010, pp. 148–153.

[30] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and D. Mossé,
“Increasing pcm main memory lifetime,” in DATE ’10, 2010, pp. 914–
919.

[31] K. C. Chun, P. Jain, and C. H. Kim, “A 0.9v, 65nm logic-compatible
embedded dram with >1ms data retention time and 53% less static
power than a power-gated sram,” in ISLPED ’09, 2009, pp. 119–120.

[32] Y. Xie, G. H. Loh, B. Black, and K. Bernstein, “Design space exploration
for 3d architectures,” J. Emerg. Technol. Comput. Syst., vol. 2, no. 2,
pp. 65–103, 2006.

[33] X. Dong, N. P. Jouppi, and Y. Xie, “Pcramsim: System-level perfor-
mance, energy, and area modeling for phase-change ram,” in ICCAD
’09, 2009, pp. 269–275.

[34] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in WWC ’01, 2001, pp. 3–14.


