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Abstract—A critical concern for post-silicon debug is the need
to control the chip at clock cycle level. In a single clock chip, run-
stop control can be implemented by gating the clock signal using a
stop signal. However, data invalidation might occur when it comes
to multiple-clock chips. In this paper, we analyze the possible
data invalidation, including data repetition and data loss, when
stopping and resuming a multiple-clock chip. Furthermore, we
propose an efficient solution to eliminate data repetition and data
loss. Theoretical analysis and simulation experiments are both
conducted for the proposed solution. We implement the proposed
Design-for-Debug (DfD) circuit with SMIC 0.18µm technology
and simulate the data transfer across clock domains using SPICE
tool. The results show that both data repetition and data loss
can be avoided with the proposed solution, even if metastability
occurs.

I. INTRODUCTION

Before an integrated circuit (IC) is manufactured, pre-silicon
verification techniques are used to kill functional bugs in the
circuit. For the increasing system complexity, existing pre-
silicon techniques such as simulation and formal verification
cannot guarantee that first silicon will be bug-free [1]. More-
over, electrical bugs are becoming more serious as the decrease
of feature size [2]. Whereas, pre-silicon methods don’t address
many deep-submicron electrical bugs that occur in the actual
devices [3]. Therefore, post-silicon debug is becoming more
important and the most time-consuming part, 35% on average,
of the development cycle of a new chip [4]. Considering the
increasing cost, it is imperative to identify the bugs that remain
in the chip as soon as the first silicon is available.

One of the biggest challenges in post-silicon is the observ-
ability of the internal signals. It is not practical to observe
all the internal signals in realtime [8]. Run-stop control pro-
vides a convenient approach to freeze the chips for offline
observation. For a stopped system, states can be unloaded
for both scan-based debug and trace buffer-based debug.
In scan-based debug, a structural method can be used to
access the manufacturing-test scan chains from test-access-
port (TAP) [14]. In trace buffer-based debug, the contents
saved in trace buffer can be dumped out for offline analysis.
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Afterwards, the execution is resumed (continue to run). The
resume operation is indispensable for debugging, especially
under non-deterministic condition.
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Fig. 1: Run-stop control might result in data repetition/loss

The stop and resume operations can be implemented by
the run-stop control module on the chip. As shown in Fig. 1,
run-stop control module receives commands from the IEEE
1149.1 (JTAG) port [15] or the on-chip trigger/cross-trigger
modules (e.g., [9][10][11]). The stop signal is subsequently
generated to control the clock signals. In a single clock chip,
it is feasible to gate the clock signal using the stop signal
directly. However, in multiple-clock chips, non-integral clock
signal might be produced due to the asynchronous stop signal.
Synchronizer is used to avoid the unexpected results. Whereas,
data invalidation is likely to happen for the introduction of
the synchronizer in debugging multiple-clock chips. The data
invalidation includes data repetition (data is received more than
once) and data loss (data is sent, but failed to be received).
Goel and Vermeulen presented the problem of data repetition
when stopping (called data invalidation in [6]) for the first
time. To the best knowledge of the authors, data loss in
debugging multiple-clock chips has not been discussed in
public paper. More importantly, data repetition and data loss
must be avoided to support the resume operation in debugging.

To address this problem, we first analyze the possibility and
conditions for data repetition and data loss in multiple-clock
chips debugging. Then, we propose a Design-for-Debug (DfD)
circuit to avoid data repetition and data loss, when both stop-
ping and resuming. The proposed DfD circuit includes some
control logic and three main modules, i.e. the configurable
synchronizer, the Relative Order Recovery (ROR) module, and978-3-9810801-7-9/DATE11/ c⃝2011 EDAA
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Fig. 2: Data transfer across clock domains [12]

the First-stop First-resume (FSFR) module. The configurable
synchronizer ensures the correctness of stopping. The three
modules together ensure the correctness of resuming. The
control logic switches the authority of controlling the clock
signal between them. The main contributions of this paper
are:

• We present the problem of data loss for the first time, and
extend the problem of data repetition on existing work.

• We draw the conditions for the occurring of data loss
when stopping and present the theoretical analysis to
avoid both data repetition and data loss.

• We propose a DfD circuit to avoid data repetition and data
loss, for stopping and resuming in debugging multiple-
clock chips.

II. BACKGROUND

A. Data Transfer across Clock Domains

Multiple clock domain designs offer increased ease of
functional-block reuse, simplified timing closure, and power
advantages. Today’s complex chips usually contain multiple
clock domains. There are two main strategies to address the
problem of reliable data transfer between independent clock
domains, named one-way mode and burst mode [16]. In one-
way mode, one bit of data is transferred at each handshaking
(for the simplicity of explanation, assume the bandwidth of
data transfer is one). For the handshaking signals are needed
to be synchronized via special mechanism in multiple clock
domains, it is time consuming for one-way mode [13]. A burst
mode transfers multiple bits of data at one handshaking.

The interface between independent clock domains may
implemented with first-in first-out buffer [5]. However, the
latency introduced by buffer is a serious problem in latency-
sensitive applications. To meet the latency requirement, the
data transfer across clock domains can be implemented by
communicating directly according the predefined scheme.

Fig. 2 shows the process of data transfer across clock
domains directly. Tx clk and Rx clk represent the sending

clock and the receiving clock respectively. The ratio of the
frequency of Tx clk to the frequency of Rx clk is is 8 : 5.
In one heartbeat period, there are eight Tx clk cycles and five
Rx clk cycles. The Tx and Rx enable shift registers determine
whether the cycle can send or receive data or not. The shift
registers circulates once during one heartbeat period. As shown
in Fig. 2b, five bits of data can be transferred successfully
in one heartbeat period. The direct data transfer improves
communication efficiency, but data invalidation might happen
during debugging for the lack of buffer.

B. Debugging Multiple-Clock Chips

To address the problem of limited observability in post-
silicon debug, a number of DfD solutions were proposed [7].
These solutions can be categorized as scan-based and trace
buffer-based techniques [8]. Run-stop control is needed in
both scan-based and trace buffer-based techniques. Scan-based
technique utilizes internal scan chains to capture and off-
load the internal states in stop mode [1]. Trace buffer-based
technique acquires data in realtime, but the on-chip buffer
resource is limited. When the buffer is full, it needs to stop
the chip for shifting out the saved data. After the states are
examined, the execution is resumed.

The stop signal is used to implement the stop and resume
operations in run-stop control. Since the stop signal is asyn-
chronous in multiple clock domains, non-integral clock signal
might be produced if gating it with the stop signal directly.
For example, if the stop signal comes when the clock signal is
transforming from logic “0” to “1”, metastability is likely to
occur. To avoid unexpected results, synchronizer is commonly
used in multiple clock domains. Fig. 3a shows a common
used two-flop synchronizer. As shown in Fig. 3b, the clock
signal can be gated correctly even when metastability occurs.
However, the delay of the stop signal due to the synchronizer
contributes to the data invalidation in debugging.

In the public domain, to the best of our knowledge, the
only work discussed data invalidation of multiple-clock chip
debugging is presented by Goel and Vermeulen [6]. They
analyzed the phenomenon that the receiving clock domains
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use data from the clock domains that have already stopped.
Furthermore, they proposed an efficient detector to find out
the potential data invalidation. With the knowledge of the
possible invalid states, the comparison between the invalid data
and simulation data is avoidable. However, data invalidation
when resuming has not been discussed in public paper. More
serious, the execution can not be continued correctly once data
invalidation occurs. Whereas, it is a basic operation to aid
debugging, especially for non-deterministic bugs.

III. DATA REPETITION AND DATA LOSS

For the chip with multiple clock domains, it is not practical
to stop or resume at the same point in time. If the clock
domains are not stopped or resumed at the same point in time,
it is likely that the flip-flops in receiving clock domain capture
the unexpected data. This phenomenon can be divided into
data repetition and data loss. The phenomenon that the data is
received repeatedly by the receiver is called data repetition.
The phenomenon of data repetition when stopping has been
explored in [6]. We find that data repetition might occur not
only when stopping, but also when resuming. In addition to
this extension, we find another possible data invalidation, i.e.,
data loss. The phenomenon that the data is sent, but failed to
be received is called data loss. In the following, we explore
these phenomenons and their occurring conditions.

A. Data Repetition and Data Loss When Stopping

When stopping a multiple-clock chip, the receiving clock
domain might capture data from the stopped clock domain.
Fig. 4a illustrates an example of data repetition when stopping.
The upward arrowheads denote that the clock cycles are
valid for sending or receiving data. Since the receiving clock
(Rx clk) has been stopped, the last valid cycle of the sending
clock (Tx clk) captures the data which has been captured
by previous receiving cycle, i.e, data repetition occurs. In

this example, the ratio of the frequencies of the sending
and receiving clocks is 8:5. One necessary condition of data
repetition when stopping has been discussed in [6]. Let fs and
fr represent the frequencies of the sending and the receiving
clock domain respectively. If data repetition occurs when
stopping, then fs > fr.

Besides data repetition, the stop operation might cause data
loss. Fig. 4b shows an example of data loss when stopping. In
this example, fs:fr=5:8. The receiving clock is stopped before
it captures Data “4”. However, Data “5” is issued before the
sending clock is stopped. So Data “5” overwrites Data “4” in
the sending flip-flop. Thus, even if the receiving clock domain
resumes firstly, it captures Data “5”, instead of Data “4”. Data
“4” can not be received by the receiving clock domain. We
draw one necessary condition of data loss when stopping as:

Theorem 1. If data loss occurs when stopping, then fs < fr.

Proof: If data loss occurs when stopping, the stop signal
is asserted between the last two valid sending rising edge.
It means that there is a valid rising edge of receiving clock
between the last two valid sending rising edges. Since the last
two issued data have not been captured, so the rising edge
of receiving clock that captures the penultimate issued data
is disabled. The rising edge of receiving clock that captures
the penultimate issued data must be earlier than the last
valid rising edge of sending clock to ensure the correctness.
Therefore, there are two rising edges between the last two
valid sending rising edges, so fs < fr.

B. Data Repetition and Data Loss When Resuming

Even if no data invalidation occurs when stopping, data
repetition and data loss might both occur when resuming.
Different from the stopping scenario, they might occur un-
der three frequency relations, i.e. fs < fr, fs = fr and
fs > fr. Fig. 5 illustrates an example of data invalidation with
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fs:fr=8:5. It can be seen from the example that not only data
invalidation occurs, but also the relation of the sending and
receiving clocks has been changed. For example, in Fig. 5a,
the first stopped rising edge of Tx clk is earlier than that of
Rx clk. However, the first resumed rising edge of Tx clk is
at the same time with that of Rx clk. As discussed earlier, the
predefined scheme is determined according to the requirement
of timing. It is likely that the requirement of timing will not be
met if the sending and receiving orders in a heartbeat period
has been changed.

IV. ELIMINATING DATA REPETITION AND DATA LOSS

A. Overview the Proposed Solution

To avoid data repetition and data loss, two requirements
need to be met: (1) no data repetition and data loss when
stopping; (2) the relation between sending clock and receiving
clock is recovered completely. We propose a DfD circuit
with little area cost to meet these requirements. As shown
in Fig. 6, the proposed DfD circuit includes mainly three
components, i.e. configurable synchronizer, Relative-Order-
Recovery (ROR) module and First-Stop First-Resume (FSFR)
module. The configurable synchronizer guarantees no data
repetition and data loss when stopping. The three components
together guarantee the recovery of the relation between clock
domains. A multiplexer (MUX) is used to select which signal
to control the clock signal. At the beginning, the latch is reset
as logic “0”. Once the synchronizer outputs the asserted stop
signal, the control logic switches to the state of waiting for
resuming. In the following, we detail the design and present
the corresponding theoretical analysis.

B. Ensuring the Correctness of Stopping

To avoid data repetition and data loss when stopping, we
design a configurable synchronizer to control the stop signal.
Different from the existing synchronizers, the proposed syn-
chronizer adopts a configurable number of flip-flops according
to the ratio of fs:fr, instead of fixed number. The key problem
is to determine the number of flip-flops. Theorem 2 shows the
principle.
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Theorem 2. For any two communicating clock domains with
fs:fr=m:n (m, n are relatively prime numbers), no data
repetition/loss occurs when stopping, if the sending clock
delays ⌈m

n ⌉ cycles and the receiving clock delays ⌈ n
m⌉ cycles.

Proof: Let d1, d2 represent the time difference from
the stop signal is asserted to the first rising edge of the
sending and receiving clock domains respectively. T1, T2

represent the clock periods of the sending and receiving clock
domains respectively. It can be drawn that 0 < d1 ≤ T1 and
0 < d2 ≤ T2.

First consider data repetition. From Section III-A, it can be
obtained that m > n. Assuming that data repetition occurs,
from that, it can be derived:

d2 > d1 + ⌈m

n
⌉ ∗ T1 (1)

For d2 ≤ T2 and T2 = m
n ∗T1, Formula 1 can be rewritten as

m
n ∗ T1 > d1 + ⌈m

n ⌉ ∗ T1. That is d1 < (m
n − ⌈m

n ⌉) ∗ T1 ≤ 0,
which violates against d1 > 0. So the hypothesis does not
hold, i.e. no data repetition occurs.

Secondly, consider data loss. From Theorem 1, it can be
deduced that m < n. So d1 ≤ T1 ⇒ d1 < T1 + d2 < ⌈ n

m⌉ ∗
m
n ∗ T1 + d2 ⇒ d1 < ⌈ n

m⌉ ∗ T2 + d2, which means the first
invalid rising edge of the receiving clock domain is later than
the last valid rising edge of the sending clock domain. So the
last second issued data must has been captured by the receiving
clock domain before stopped, i.e., no data loss occurs when
stopping.

The proposed configurable synchronizer includes k positive-
edge-triggered flip-flops and one negative-edge-triggered flip-
flop. From Theorem 2, it can be known that k in Fig. 6 is
determined by the the ratio of fs:fr. Assuming fs:fr=m:n, k
is equal to ⌈m

n ⌉, ⌈ n
m⌉ for the sending clock domain and the

receiving clock domain, respectively.

C. Ensuring the Correctness of Resuming

As analyzed in Section III-B, data repetition and data loss
might occur when resuming the execution. Moreover, the send-
ing and receiving relationship has been changed. Therefore,
ensuring correctness of resuming the execution is to recover
the relationship between the sending clock and the receiving



clock completely. It indicates two necessary requirements. One
requirement is that the relative order of the first stopped cycle
in a heartbeat period must be the same with that of the first
resumed sending and receiving cycles. For example, in Fig.
5b, the relative order of the first stopped cycle of Tx clk is
the third, but the order of the first resumed cycle is the sixth.
The other requirement is that the time difference between the
first stopped sending and receiving cycles must be equal to that
between the first resumed sending and receiving cycles. We use
the ROR module and FSFR module to meet the requirements.

As shown in Fig. 6, the ROR module mainly contains an
increasing MOD-i counter, which will immediately be reset to
zero once it reaches i. Assuming fs:fr=m:n, i is equal to m
and n in the sending and receiving clock domains respectively.
The counter is driven by the input clock signal (clk in) during
the stop phase (logic AND between clk in and the output
of the configurable synchronizer). Once the counter becomes
zero, the output of the counter becomes logic “1”. The output
of the counter is sampled by a negative-edge-triggered flip-
flop. Note that non-integral clock period might be outputted
if without using the negative-edge-triggered flip-flop.

The FSFR module guarantees that the relative order of the
resumed sending and receiving clock domains is the same
with that of the stopped clock domains. The FSFR modules
of two communicating clock domains (called counterparts)
are illustrated in Fig. 7. Each counterpart has a RS (Reset-
Set) latch. The Q port of latch is connected with the three-
input NAND gate, which means three conditions for resuming.
Consider the FSFRs in two communicating clock domains, the
function of first-stop first-run is implemented by controlling
the states of the latches. The latches are reset as logic “0”
when the chip initiates. When one clock domain stops firstly,
it set its latch as logic “1”. One clock domain can begin only
if the value of its latch is logic “1”. By this way, only the first
stopped clock domain can resume first. When it resumes, it
changes the counterpart’s latch as “1”. For both clock domains,
their latches are set as “0” when they resume.

V. SIMULATION RESULTS

A. Experiment Setup

We construct a multiple-clock system including the pro-
posed DfD using SMIC 0.18µm Standard Cell Library. The
stop and resume operations are simulated using Synopsys
HSPICE tool on the prototype with a supply voltage of 1.8v.

In the simulations, we set the sending frequency (fs)
and the receiving frequency (fr) as 800MHz and 500MHz,
respectively. Since fs:fr=8:5, we configure the number of
the positive-edge-triggered flip-flops of the configurable syn-
chronizer (k in Fig. 6) as two (⌈ 8

5⌉) in the sending clock
domain and one (⌈ 5

8⌉) in the receiving clock domain. MOD-
8 and MOD-5 counters are used in them respectively. The
circular enable shift registers in the sending and receiving
clock domain are set as “11010110” and “11111” respectively.

Due to space limitation, we only discuss the the scenario
of fs > fr. Note that the same effectiveness of the proposed
DfD circuit is aslo achieved for fs ≤ fr.
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B. Simulating the Stop

The objective of this experiment is to show the effectiveness
of the proposed DfD on stopping operation. To validate the
robustness, we tune carefully the stop signal and simulate the
scenario of metastability in this experiment.

Fig. 8 shows the timing relationship between sending clock
(Tx clk) and receiving clock (Rx clk) under the control of
the stop signal. Fig. 8a shows the input clock signals. In this
simulation, we let the stop signal begin to high at 6.2ns, which
is so close to the rising edge of Tx clk that metastability
occurs. Fig. 8b shows the waveforms of the output of the
clock signals when the transition time of the stop signal is set
as 100ps. In this scenario, the metastability becomes logic “1”
finally. Tx clk is stopped before Rx clk. It can be seen that
four bits of data are sent and all the data are received. So no
data repetition and data loss occur.

When the transition time of the stop signal is set as 120ns,
the metastability becomes logic “0” finally. Fig. 8c shows the
clock signals of this scenario. It can been seen that five bits
of data are sent, four bits of data of which are received before
Rx clk is stopped. The last issued data, i.e. Data “5”, remains
in the sending flip-flop. The remaining data can be received
rightly only if the stopped relationship of clocks is recovered
when resuming. Therefore, no data invalidation and data loss
occur.

C. Simulating the Resume

The preceding analysis and experiments show that data
invalidation during stopping can be avoided by the proposed
DfD circuit. So we need next simulate the resume to see
whether the clock relationship can be recovered completely
or not when resuming.

As show in Fig. 9, there are eight sending cycles and five
receiving cycles in a heartbeat period (10ns). According to the
transfer scheme introduced in Section V-A, five bits of data can
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be transferred in a heartbeat period. The stop signal is asserted
at 1.6ns, i.e. between the second sending cycle and the first
receiving cycle. The first stopped sending and receiving cycles
are the fourth and the second of the first heartbeat period.
Two data bits are sent before the Tx clk out is stopped. The
receiver samples one data-bit before being gated, i.e., Data “2”
is left in the sending flip-flop.

The stop signal returns low (logic “0”) at 6.1ns, i.e. the fifth
sending cycle and the fourth receiving cycle. As it can be seen
from Fig 9, the first resumed sending and receiving cycles
are the fourth and the second of the second heartbeat period.
Therefore, the relative order is recovered precisely. The first
resumed receiving cycle is 1ns earlier than the first resumed
sending cycle, which is the same with the first stopped cycles.
Therefore, the phase relation is also recovered completely.
According the transfer scheme, the receiving clock domain
resumes to receive the Data “2” firstly, which is remained
in the sending flip-flop. The proposed DfD ensures that
both Tx clk out and Rx clk out keep inactive for integral
multiples of the heartbeat period. After that, the clocks resume
with the same relative relation. In this example, Tx clk out
and Rx clk out keep inactive for 10ns, i.e. one heartbeat
period. Thus, the relationship between sending clock domain
and receiving clock domain is maintained.

D. Required Silicon Area

To observe the area cost of the proposed DfD, we synthesize
the DfD circuit with a 0.18µm SMIC CMOS technology.
Considering the circuit in the sending clock domain of our
experiment prototype, the total DfD area is 1127µm2 (about
113 equivalent two-input NAND gates). When compared to
today’s large design size, in general, the area cost to implement
the proposed DfD is quite small.

Regarding timing, the DfD circuit is not in the critical path.
The delay of clock signal is determined by one AND gate
inserted for gating clock. Therefore, the DfD circuit does not
introduce additional delay of clock signal.

VI. CONCLUSIONS

Debug the chip with multiple clock domains is a challenge
task. In this paper, we analyze the conditions for the occurring
of data repetition and data loss in depth. Then, we propose

an efficient solution to eliminate data repetition and data loss
in debugging multiple-clock chips. The theoretical analysis
shows that proposed solution can avoid data invalidation in
multiple-clock chip debug. Simulation results confirm the
effectiveness of the proposed solution at low DfD cost.
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