
A Novel Tag Access Scheme for Low Power L2 Cache 
 

Hyunsun Park, Sungjoo Yoo, Sunggu Lee 

Department of Electronic and Electrical Engineering 

Pohang University of Science and Technology (POSTECH) 

{lena0911, sungjoo.yoo, slee}@postech.ac.kr 

ABSTRACT 

Tag comparisons occupy a significant portion of cache power 

consumption in the highly associative cache such as L2 cache. In 

our work, we propose a novel tag access scheme which applies a 

partial tag-enhanced Bloom filter to reduce tag comparisons by 

detecting per-way cache misses. The proposed scheme also 

classifies cache data into hot and cold data and the tags of hot data 

are compared earlier than those of cold data exploiting the fact that 

most of cache hits go to hot data. In addition, the power 

consumption of each tag comparison can be further reduced by 

dividing the tag comparison into two micro-steps where a partial 

tag comparison is performed first and, only if the partial tag 

comparison gives a partial hit, then the remaining tag bits are 

compared. We applied the proposed scheme to an L2 cache with 10 

programs from SPEC2000 and SPEC2006. Experimental results 

show average 23.69% and 8.58% reduction in cache energy 

consumption compared with the conventional serial tag-data access 

and the other existing methods, respectively. 

1. Introduction 
As the memory wall problem becomes more significant, the cache 

tends to occupy more on-chip resource consuming more power. The 

dynamic power consumption in cache consists of two parts: tag 

comparison and data access. 1  In the case of highly associative 

caches, e.g., 16-way L2 cache, where a serial tag-data access is 

applied, the tag comparison can occupy a significant portion of total 

power consumption. Assume a 16-way L2 cache with 48b address 

and 64B lines. The tag size is 4B and the tag comparison requires 

accessing 4B*16 = 64B data. Thus, the energy consumption in tag 

comparison is comparable to that in data access. 

1.1 Existing Work 
There have been several studies on reducing tag comparisons. 

Existing work can be classified into three categories: way prediction, 

per-way cache miss prediction and cache decay. In way prediction 

[1][2][3], the cache way which is most likely to give a hit, mostly 

the MRU way, is predicted and its tag is first compared. Then, if it 

gives a hit (called fast hit), then the corresponding data is accessed. 

If it gives a miss, the remaining tags are compared (for slow hit or 

miss). In [1], one MRU way is predicted while, in [2][3], multiple 

MRUs are predicted to give a better accuracy in way prediction. 

The limitation of way prediction methods is that in case of mis-

prediction of MRU way or cache miss, all the remaining tags other 

than MRU need to be compared for slow hit or miss. 

                                                                    

1 In our work, we target low power CMOS process technology and 

scenarios where the switching power dominates total power 

consumption. In our experiments, we take into account both 

switching and leakage power consumption. 

978-3-9810801-7-9/DATE11/©2011 EDAA 

In the second category of predicting per-way cache misses, a non-

membership function called Bloom filter is often utilized [4][5][6]. 

The Bloom filter, utilized on a way basis, can predict cache misses 

with high probabilities (to be explained in more detail in Section 2). 

Thus, it can reduce the overhead of tag comparison significantly 

especially in case of cache misses. However, its accuracy comes at 

the cost of additional power consumption in accessing the Bloom 

filter and its area overhead. In [7], a fully associative buffer is 

managed to hold four tag bits for each cache line and, for predicting 

cache misses, partial tag comparisons are performed, i.e., the four 

tag bits are compared with the tag of incoming address. The benefit 

of the methods in the second category is limited by the accuracy of 

predicting a per-way cache miss since the tag needs to be compared 

consuming power if its way’s prediction is not successful. 

In the third category called cache decay, temporal locality in cache 

accesses is exploited. Based on the estimation on the liveness of 

each cache line, the cache is decayed. That is, if a cache line is not 

expected to be accessed in near future, then it is evicted [8]. The 

eviction reduces the number of valid tags thereby reducing the 

power consumption in tag comparison. In [6], cache decay and 

Bloom filter are combined to further reduce tag comparisons. The 

limitation of cache decay-based methods is additional energy 

consumption in main memory due to increased cache misses (i.e., 

more memory accesses) incurred by the evicted cache lines. 

1.2 Our Contribution 
Our contribution is summarized as follows. 

(1) We present a partial tag-enhanced Bloom filter to improve the 

accuracy of predicting per-way cache misses. Based on our 

observation that singleton entries (entries with the counter value of 

one) dominate non-zero entries in the counting Bloom filter, our 

scheme manages a part of tag called partial tag in the Bloom filter 

and significantly increases the accuracy of Bloom filter prediction 

thereby reducing tag comparisons in case of per-way cache misses. 

(2) We present a method of hot/cold tag access with feedback-

directed data liveness control. Compared with conventional cache 

decay which originally targets leakage power reduction in cache, 

our scheme controls the liveness of cache line in a more fine-

grained and feedback-directed manner in order to minimize the 

power consumption of tag comparisons. 

(3) We present a two-level partial/full tag comparison to further 

reduce the power consumption per tag comparison. This method 

divides the conventional tag comparison into two micro-steps where 

a partial tag comparison is first applied. In case of partial tag miss, 

we can avoid the comparison of remaining tag bits thereby reducing 

the power consumption of tag comparison. 

This paper is organized as follows. Section 2 gives preliminaries 

and explains our motivation. Section 3 presents our tag access 

scheme. Section 4 reports experimental results. Section 5 concludes 

the paper. 



2. Preliminaries and Motivation 

2.1 Bloom Filter for Predicting Cache Misses 
Figure 1 illustrates the counting Bloom filter (in short, Bloom filter 

throughout this paper) used in our work. The Bloom filter (BF) 

consists of BF entries (counters) and a hash function mapping an 

input address to one of BF entries. Note that each cache way has its 

own BF. The figure illustrates how the BF is managed and used to 

detect the non-existence of an input address, i.e., cache miss for the 

corresponding way called per-way cache miss. In Figure 1 (a), an 

address, 0x100 is entered into the BF (i.e., the corresponding cache 

line is fetched to the cache way) and the counter value of its entry is 

incremented by one. In Figure 1 (b), another address, 0x300 is 

entered. It shares a BF entry with the address 0x100. Thus, the 

counter value is incremented by one and set to two. Note that when 

an entry exits the BF, i.e., a cache line is evicted from the cache, the 

counter value of the corresponding BF entry is decremented by one. 

 
Figure 1 Bloom filter example 

In Figure 1 (c), when a new address 0x200 is about to be entered 

(which corresponds to the case where a new cache access arrives at 

the cache), the existence of the address 0x200 in the cache way is 

checked. Since the counter value of corresponding BF entry (shown 

by the dashed arrow) is zero, we can detect that the address 0x200 is 

not in the cache way, i.e., a per-way cache miss. In this case, we do 

not need to perform a tag comparison thereby saving the power 

consumption for the cache way otherwise required for tag 

comparison.  

 
Figure 2 Majority of non-zero counter values are one in the BF 

The prediction cannot give false negative, i.e., predicting a cache 

miss in case of cache hit. However, it can give a false positive, i.e., 

predicting a cache hit in case of cache miss. Figure 1 (b) illustrates 

how a false positive can occur. Assume that the request to access 

address 0x300 just arrives at the cache and its existence is checked 

with the BF. Since its entry, which is shared by the address 0x100, 

has a positive counter value of one, we cannot tell that the address 

0x300 is not in the cache. Thus, we need to search the cache way, 

i.e., perform a tag comparison with the address. However, as shown 

in Figure 1 (a), the address 0x100 set the counter value to one 

previously. Thus, the address 0x300 is not in the cache way when 

the address 0x300 arrives at the cache in Figure 1 (b). Such a false 

positive degrades the BF accuracy significantly and finally requires 

larger BFs incurring large area and power overhead [5]. 

In our work, we tackle the problem of false positive in the BF. The 

main reason of false positive is that the BF cannot tell which 

address is in the cache when the corresponding entry has a positive 

counter value. According to our observation, most of positive 

counter values in the BF are ‘one’. Figure 2 (obtained by running 

our simulations with benchmarks) shows that more than 60% of 

positive counter values are one in the case of BF where the number 

of BF entries is 2x that of cache tags. Our work aims at improving 

the BF accuracy in such a case that the counter value is one. To do 

that, we manage the partial tag information of cache lines mapped 

to the BF entry. More details will be given in Section 3.2.  

2.2 Hot/Cold Cache Lines and Tag Comparison 
Figure 3 illustrates a cache line’s life. During the period between t1 

and t2, it is frequently referenced. Between t2 and t3, it is no longer 

referenced. At time t3, it is evicted. We call the two periods hot and 

cold periods, respectively, as shown in the figure. We call cache 

lines in hot (cold) period hot (cold) cache lines. 

 
Figure 3 A cache line’s life 

Hot/cold information of cache lines is utilized in several studies, 

e.g., deadblock-correlated prefetch2 [9], virtual victim cache [10], 

etc. Hot/cold information can be managed in terms of timer [11], 

counter [12], traces [9], etc. For instance, in the case of counter-

based hot/cold management, each cache line is equipped with a 

liveness counter. Whenever a cache line is referenced, its liveness 

counter is initialized to a value, TH. The counter is decremented by 

one every N (= 16 in our experiments) references to the cache. If the 

counter reaches zero3, the corresponding cache line is considered to 

be cold. 

 
Figure 4 Fraction of hot data in cache hit (at the optimum TH) 

In our work, the hot/cold information is exploited in order to reduce 

tag comparisons. Our method is based on the observation that hot 

cache lines have higher probabilities of being referenced than cold 

cache lines. Figure 4 shows that the fraction of hot data in cache hits 

in our experiments where the counter-based method is used for 

hot/cold information. As the figure shows, the majority of cache hits 

go to hot cache lines. Our idea is that on a cache access, hot cache 

                                                                    

2 We use the term ‘cold’ cache line instead of the term ‘deadblock’ 

used in existing work in order to differentiate two liveness 

management methods, ours and cache decay. 

3 In Section 2.2, we consider the cache line whose liveness counter 

is zero to be a cold cache line. However, as explained in Section 

3.3, for an efficient implementation of feedback-directed control, 

we consider the tag whose liveness counter is one to be a cold 

cache line in our implementation. 

0x100

0x200

0x300

1

0

0x100

0x200

0x300

2

0

0x100

0x200

0x300

2

0

(a) 0x100 is entered (b) 0x300 is entered (c) 0x200 is checked

BF
entries

BF
entries

BF
entries

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

mcf vortex ammp art

1x 2x 4x

Time

hit accesses eviction

cold period

t1 t2 t3

hot period

0%

20%

40%

60%

80%

100%

mcf vortex ammp art



lines are searched (one cycle) earlier than cold cache lines. In case 

of hits to hot cache lines, we can save tag comparisons with cold 

cache lines, which can reduce the average number of tag 

comparisons. Compared with conventional cache decay-based 

methods, our difference is that the cold data are not evicted but their 

tag comparisons are performed later than those of hot data in order 

to avoid the overhead of additional cache misses caused by decay-

based eviction. 

 
Figure 5 Relationship between # tag comparisons and TH 

Figure 5 illustrates that the number of tag comparisons is a function 

of the initialization value of liveness counter, TH. As shown in the 

figure, as TH increases, the hit ratio for hot lines increases which is 

desirable for reducing tag comparisons in our method. However, as 

TH increases, the number of hot lines (=# ways - # cold lines) also 

increases. Thus, the efficiency of tag comparison for hot lines 

decreases since more tag comparisons for hot cache lines will be 

done in such a case. Thus, as shown in Figure 5, we can obtain a 

function of number of tag comparisons where we have a minimum 

level in between the minimum and maximum TH values. If we can 

set TH to the one giving the minimum number of tag comparisons, 

we can reduce the power consumption due to tag comparisons. The 

relationship between TH and the number of tag comparisons 

(illustrated in Figure 5) changes over different programs and 

different phases for a program. Thus, we propose a method of 

determining TH by tracking the dynamically changing behavior of 

programs (Section 3.3). 

3. Proposed Tag Access Scheme 

3.1 Solution Overview 
We assume a serial tag-data access in the L2 cache. Figure 6 shows 

the overall flow of the proposed tag access scheme. On arrival of a 

new access to the cache, the partial tag-enhanced BF is first checked. 

If the check gives a per-way cache miss as the result, there is no tag 

access in the cache way. For the cache ways where their BF checks 

do not give a prediction of per-way cache miss, the tags of hot 

cache lines are compared with the input tag (Hot check in the 

figure). We call the hit in hot check hot hit. If there is no hot hit, 

then the tags of cold cache lines are compared with the input tag 

(Cold check).  

 

Figure 6 Overall flow of proposed tag access scheme 

3.2 Partial Tag-Enhanced Bloom Filter 
Figure 7 shows the internal structure of partial tag-enhanced Bloom 

filter. Each BF entry consists of a tuple <partial tag, S, Z, C>, where 

S, Z, and C represent singleton, zero, and counter value. If the 

counter value C is one (zero), flag S (Z) is set to one. As shown in 

the figure, when a new address arrives at the BF, if the flag Z in the 

corresponding entry is one (i.e., the counter value is zero), then the 

BF signals a per-way cache miss. If the counter value is one (i.e., 

S=1) and the partial tag in the BF does not match with that of the 

input address, then the BF also signals a per-way cache miss. 

 
Figure 7 Prediction of cache miss with partial tag-enhanced BF 

As shown in the figure, the partial tag in the BF is used only when 

the flag S = 1, i.e., the cache way has only one address associated 

with the BF entry. The partial tag is managed as follows. It is first 

initialized to zero. When an address enters (e.g., data fetch from the 

memory) and exits (eviction from the cache) the BF, its partial tag is 

XORed with the existing partial tag of its BF entry as follows. 

PTnew = PTcur XOR PTenter/exit     (1) 

where PTnew and PTcur are the new and current partial tag and 

PTenter/exit is the partial tag of entering/exiting address. When the 

flag S is one, the partial tag contains that of only one address in the 

cache way. It is because the partial tags of other addresses which 

previously shared the same BF entry are canceled out with two 

times of XORing. Assume that an address a is associated with BF 

entry i. After the address a is evicted from the cache, the partial tag 

of BF entry i, PTi is calculated as follows. 

PTi = PTinit XOR … XOR PTa XOR … XOR PTa  (2) 

There are two occurrences of the partial tag of evicted address a, 

PTa, the first one for BF entry and the second one for BF exit. As 

shown in the equation, XORing the same partial tags cancels out 

each other. Thus, when the flag S of a BF entry is ‘1’, the partial tag 

in the BF entry contains that of only one address associated with the 

BF entry. Note that the partial tag management does not incur any 

new BF access since each address needs to access the BF twice 

(once for each of BF entry and exit). 

3.3 Feedback-directed Hot/Cold Management 
The goal of hot/cold line management is to determine TH (a global 

value for the entire cache) which minimizes the number of tag 

comparisons as explained in Section 2.2. Figure 8 illustrates how to 

adjust TH during runtime by tracking the dynamically changing 

behavior of programs.  As shown in the figure, we manage three 

global counters (for the entire cache) to track the numbers of tag 

comparisons at the three threshold values of THcur-d, THcur, and 

THcur+d, where THcur represents the current threshold value and d is 

a user defined value for the range of tracking.  

TH

hit ratio for hot lines# cold lines

minimum # tag matches

# tag comparisons

BF check

Hot check

Cold check

if misses in all the ways,

send a cache miss to memory

hit

per-way miss

hot hit

S Z

tag

=

partial
tag

per-way cache miss

address

BF
entries

C



 
Figure 8 Tracking the minimum number of tag comparisons 

The principle of tracking is simple. As shown in Figure 8, we 

compare the values (i.e., the numbers of tag comparisons 

accumulated over a time period) of the three counters. Then, we 

change THcur to the one whose counter value is the minimum 

among the three. In Figure 8, we set the TH value to THcur-d since it 

gives the lowest number of tag comparisons. The TH value is 

adjusted periodically (once every 1024 cache accesses in our 

experiments). On the beginning of a period, the three counters are 

reset. In our work, we set d to 1. Thus, we explain our method with 

the three counters for THcur-1, THcur, and THcur+1. 

Managing the three global counters requires that each cache line is 

equipped with three liveness counters (LCs) for the three cases of 

TH values, which incurs a high area overhead. In our work, we 

present an efficient implementation which utilizes a single LC per 

cache line while being able to calculate the three global counters.  

 
Figure 9 Counting the numbers of tag comparisons 

Figure 9 and 10 show the procedure and an example to calculate the 

three counters. In Figure 10, we assume a set in the 4-way set 

associative cache. The four numbers in the rectangles represent LCs 

for four cache lines in a set.  The LCs for the current THcur are 

assumed to be 5, 0, 1, and 2. If we had two more LCs for the cache 

line to track the LCs for THcur-1 and THcur+1, we would have a set 

of numbers (4, 0, 0, 1) for THcur-1 and another set of numbers (6, 1 

or 0, 2, 3) for THcur+1 as shown in the figure.  

Assume there is a hot hit to the fourth cache line as the thick arrow 

(denoted with ‘(1) hot hit’) shows. Since it is a hot hit, the number 

of tag comparisons for THcur will be two, i.e., the number of tags 

whose LCs >= 2 as shown in Figure 10 and line 4 of Figure 9. Note 

that, as mentioned in Section 2.2, the cache line with LC <=1 is 

considered to be cold in our implementation.  

If the TH value were THcur+1, then the number of tag comparisons 

would be the number of tags whose current LCs >=1 (line 3 in 

Figure 9), i.e., 3 (W0, W2, and W3 in Figure 10), which gives one 

more tag comparisons than the case of THcur. Thus, in this case, 

THcur gives a less number of tag comparisons than THcur+1. 

 
Figure 10 Example of calculating three global counters 

If the TH value were THcur-1, depending on the LC value of 

currently accessed line, the counter for THcur-1 is calculated 

differently. If the LC value of currently accessed line (LC(addr) in 

Figure 9) is 2 (line 5 in Figure 9 and as shown in Figure 10), THcur-

1 would not give a hot hit, but a cold hit thereby requiring the Cold 

check which finally requires # ways of tag comparisons. Thus, the 

counter for THcur-1 is incremented by # ways in this case (line 6 in 

Figure 9). However, if LC(addr) were larger than 2 (line 7), though 

it is not the case in Figure 10, THcur-1 could further reduce the 

number of tag comparisons. In this case, the counter for THcur-1 is 

incremented by the number of tags whose LC >= 3 (line 8). Thus, it 

can give a less number of tag comparisons than the case of THcur. 

We calculate the counters in a similar way in the cases of cold hit 

(the arrow denoted with ‘(2) cold hit’ in Figure 10) and miss as 

shown in Figure 9. After accumulating the three global counters, at 

the end of period, we choose the TH value whose global counter 

gives the minimum number of tag comparisons among the three 

counters. Then, we set the global TH value to that one for the next 

period. Note that this method requires only three global counters 

instead of additionally requiring two more LCs per cache line. 

3.4 Two-level Partial/Full Tag Comparison 
The method of two-level partial/full tag comparison reduces tag 

comparisons on the bit granularity. Figure 11 shows how to perform 

a tag comparison in two micro-steps. In the first step, we compare a 

partial tag (shaded rectangle in the figure) of the input address with 

those of the tags in the cache (e.g., partial tags of cold cache lines in 

case of cold check). If the partial tag comparison gives a miss, then 

there is no need for further comparison of remaining part of the tag 

for the corresponding cache way. In case of partial hit, the 

remaining part of tag is compared to give the full comparison result. 

 
Figure 11 Partial/full tag comparison 

The method in Figure 11 can reduce the average number of 

involved bits in tag comparison. In the tag array, the selection of 

remaining part of tag is controlled by ANDing the partial hit and the 

original word line (WL) enable signal as shown in the figure.  

The two micro-steps of partial and full tag comparison can be 

performed in one or two clock cycles depending on the target clock 

frequency. In the case of high frequency operation, the proposed 

TH

Adjust TH to reduce
# tag comparisons

# tag comparisons

THcurTHcur-d THcur+d

1  On each cache access, 

2   If hot hit
3      Counter(THcur+1) += # tags whose LC >=1
4      Counter(THcur) += # tags whose LC >= 2

5      If LC(addr) == 2

6         Counter(THcur-1) += # ways
7      Else // LC(addr) > 2
8         Counter(THcur-1) += # tags whose LC >=3

9   Else If cold hit

10    If LC(addr) == 1
11       Counter(THcur+1) += # tags whose LC >=1

12    Else // LC(addr) = 0
13       Counter(THcur+1) += # ways
14    Counter(THcur) += # ways 

15    Counter(THcur-1) += # ways

16 Else
17    Counter(THcur+1) += # ways
18    Counter(THcur) += # ways 

19    Counter(THcur-1) += # ways

4 0 0 1 LCs for THcur-1

5 0 1 2 LCs for THcur

6 1 or 0 2 3 LCs for THcur+1

W0 W1 W2 W3

(1)
hot hit

(2)
cold hit

=

tag

=

address tag
entry

Dec

hit

partial tag

index

WL
enable

partial
comparison

full comparison

possible
cycle 
boundary

partial hit



method can incur one additional cycle in case of full tag comparison 

by performing partial and full comparisons in two clock cycles. In 

our experiments, we apply the partial/full tag comparison only to 

the cold check and report the impact of additional latency. 

4. Experiments 

4.1 Experimental Setup 
We performed experiments with a cycle-accurate model of target 

architecture consisting of CPU core, L2 cache, and DRAM memory 

controller. Table 1 shows the architectural details. 

Table 1 Architecture details 

Component Details 

CPU core Tensilica LX2 (7 stage pipeline) [17], 48b address, 

64b data, 4-way 16KB I/D, 400MHz 

L2 cache 16 and 32-way 256KB, I/D shared, 64B cache line, 

400MHz 

5 pipe stages: input buffering, tag retrieval, tag 

comparison, data access, and output 

Memory 

controller 

FR-FCFS [13], express path (1+CL latency in case 

of no previous request), open row scheme 

Memory 32b DDR2 800, CL/tRP/tRCD=12.5ns/12.5ns/12.5ns 

The L2 cache model was designed in SystemC based on the L2 

cache in OpenSparc T2 [14]. Each way in the L2 cache is equipped 

with a Bloom filter. The size of Bloom filter is varied between 2x 

and 4x the number of tags in the corresponding way [5].  

For the power estimation of L2 cache, we utilize CACTI with 32nm 

LP technology [15]. In terms of the cycle latency of each step in 

Figure 6, each of hot check (together with the BF access), cold 

check, partial and full tag comparisons takes one cycle, respectively. 

We use DRAMsim [16] for DRAM power estimation in order to 

evaluate decaying Bloom filter [6] since the method incurs 

additional energy consumption in DRAM due to increased miss rate 

while the other methods do not change the number of DRAM 

accesses. In addition, in order to find the best threshold of cache 

decay in decaying Bloom filter, we sweep the threshold and utilize 

the best threshold for the results of decaying Bloom filter. We run 

10 programs from SPEC2000 and SPEC2006 on the commercial 

simulator of Tensilica LX2 [17]. 

 

Figure 12 Reduction in energy consumption (16 way) 

4.2 Experimental Results 
In our experiments, we compare three existing solutions (way 

prediction [3], Bloom filter only method [5], decaying Bloom filter 

[6]) and ours in terms of energy consumption and performance 

overhead.  Figure 12 shows the comparison of energy reduction 

with respect to the baseline of serial tag-data access in case of 16 

way cache. Our scheme gives average 22.45% reduction in energy 

consumption while existing solutions give average 11.98%~16.55% 

reduction. Note that decaying Bloom filter includes an increase in 

DRAM energy consumption due to additional misses.  

Figure 13 shows a decomposition of the effects of proposed method 

for four programs in the 32 way cache. Tag comparisons consume 

more power in the 32 way cache than in the 16 way cache. Thus, the 

proposed method becomes more effective and gives average 23.69% 

and 8.58% reduction in energy consumption compared with the 

baseline and existing methods, respectively. Figure 13 shows that 

partial tag-enhanced BF (pBF) contributes 21.18% to the energy 

reduction compared with the baseline. Hot/cold checks (HC) 

contribute 10.87%. Two-step partial/full tag comparison contributes 

12.16% comparing pHC (HC and partial/full tag comparison) and 

HC. 

 

Figure 13 Decomposition of effects of proposed method (32 way) 

Figure 14 shows the comparison of energy consumption between 

the baseline of serial tag-data access (Base_AVG, average of the 

four programs) and ours in the 16-way cache case. The figure shows 

that the proposed scheme reduces the energy consumption of tag 

comparison by 87%~91% while incurring the overhead of Bloom 

filter thereby giving 21%~23% reduction in total energy 

consumption. 

 

Figure 14 Energy decomposition: serial tag-data vs. ours 

Figure 15 compares the number (normalized to the serial tag-data 

access case) of tag comparisons between BF only method (BF) [5] 

and the proposed partial tag-enhanced BF (pBF). As the figure 

shows, the proposed pBF with 2x size gives much less number of 

tag comparisons, i.e., much higher prediction accuracy than the 

original 2x and 4x BFs. In terms of area, both our 2x pBF (e.g., 8.45% 

in 512KB cache) and the original 4x BF (8.43%) are almost the 

same size. However, our pBF consumes by 20.15% less energy per 

BF access than the original 4x BF. The combination of less power 

consumption and more accurate prediction (shown in Figure 15) 

gives the gain in energy consumption in Figures 12 and 13 

compared with the original BF-based method.  

0%

5%

10%

15%

20%

25%

30%

MMRU

decay BF

BF(x4)

pBF+pHC

pBF+pHC

0%

5%

10%

15%

20%

25%

30%

mcf vortex ammp art avg

MMRU

decay BF

BF(x4)

BF(x2)

HC

BF+HC

pBF

pHC

pBF+HC

BF+pHC

pBF+pHC

pBF+pHC
decay BF

0%

20%

40%

60%

80%

100%

data

tag

BF

mcf vortex ammp artBase_AVG



 

Figure 15 Number of tag comparisons 

Figure 16 shows the decomposition of hit/miss ratio. The sum of hot 

and cold hits corresponds to hit ratio. Full-way miss represents the 

case that BF prediction at all the cache ways gives the prediction of 

miss. In such a case, no tag comparison is performed in the entire 

cache. Figure 16 shows that, in case of high hit (miss) ratio, hot hit 

(cold-partial miss) occupies the majority of cache hits (misses). 

 

Figure 16 Decomposition of hit and miss ratio 

Figure 17 shows the comparison of runtime overhead in terms of 

total cycles for the 16 way cache. The proposed scheme gives 0.57% 

overhead in total cycles. It is because the proposed tag access 

scheme can require additional cycles in cold check and partial tag 

comparison. Note that the methods (BF and pBF) based only on 

Bloom filter do not incur performance degradation since the Bloom 

filter operation can be done in tag comparison stage [5]. 

 

Figure 17 Comparison of runtime overhead in total cycles 

Figure 18 shows a snapshot of TH tracking in mcf. As the figure 

shows, TH varies over time. The figure shows that the proposed 

feedback-directed method (solid line) tracks well the varying ideal 

TH (dashed line) which is obtained, in an off-line calculation, as the 

TH value which gives the minimum tag comparisons. 

 

Figure 18 TH tracking (mcf case) 

5. Conclusion 
In this paper, we presented a novel tag access scheme for low power 

L2 cache. First, a partial tag-enhanced Bloom filter is proposed to 

improve the prediction accuracy of per-way cache misses. Second, a 

feedback-directed method of hot/cold tag access exploits temporal 

locality to reduce tag comparisons. Third, a two-level partial/full tag 

comparison reduces the bit-level tag comparisons by avoiding full 

tag comparison in case of miss in partial tag comparison. The 

presented scheme gives 23.69% and 8.58% reduction in the total 

energy consumption of L2 cache compared with the conventional 

serial tag-data access and other existing solutions, respectively. 

6. Acknowledgement 
This research was supported by Basic Science Research Program 

through the National Research Foundation of Korea (NRF) funded 

by the Ministry of Education, Science and Technology (2010-

0007909 and 2010-0015336) and by Samsung Electronics and IC 

Design Education Center (IDEC). 

7. References 
[1] K. Inoue et al., “Way-Predicting Set-Associative Cache for High 

Performance and Low Energy Consumption,” Proc. ISLPED, 2009. 

[2] M. Powell et al., “Reducing Set-Associative Cache Energy via Way-

Prediction and Selective Direct-Mapping,” Proc. MICRO, 2001. 

[3] Z. Zhu and X. Zhang, “Access-Mode Predictions for Low-Power 

Cache Design,” IEEE Micro, 22 (2), 2002. 

[4] J. J. Peir et al., “Bloom Filtering Cache Misses for Accurate Data 

Speculation and Prefetching,” Proc. Supercomputing, 2002. 

[5] M. Ghosh et al., “Way Guard: A Segmented Counting Bloom Filter 

Approach to Reducing Energy for Set-Associative Caches,” Proc. 

ISLPED, 2009. 

[6] G. Keramidas et al., “Applying Decay to Reduce Dynamic Power in 

Set-Associative Caches,” Proc. HiPEAC, 2007. 

[7] C. Zhang et al., A Way-Halting Cache For Low-Energy High-

Performance Systems, ACM TACO, 2 (1), pp. 34-54, 2005. 

[8] S. Jaxiras et al., “Cache Decay: Exploiting Generational Behavior to 

Reduce Cache Leakage Power,” Proc. ISCA, 2001. 

[9] A. Lai et al., “Dead-Block Prediction & Dead-Block Correlating 

Prefetchers,” Proc. ISCA, 2001. 

[10] S. Khan et al., “Using Dead Blocks as a Virtual Victim Cache,” 

Proc. ASPLOS, 2009. 

[11] Z. hu et al., Timekeeping in the Memory System: Predicting and 

Optimizing Memory Behavior,” Proc. ISCA, 2002. 

[12] F. Roesner et al., “Counting Dependence Predictors,” Proc. ISCA, 

2008. 

[13] S. Rixner et al., “Memory Access Scheduling,” Proc. ISCA, 2000. 

[14] Sun Microsystems, Inc., OpenSPARC™ T2 System-On-Chip (SoC) 

Microarchitecture Specification, No. 820-2620-10, May 2008. 

[15] HP Labs., CACTI 6.5, http://www.hpl.hp.com/research/cacti/. 

[16] D. Wang et al., “DRAMsim: A Memory System Simulator,” ACM 

SIGARCH Computer Architecture News, 33 (4), Sept. 2005. 

[17] Tensilica, Inc., XPRES Compiler, http://www.tensilica.com/.

0%

10%

20%

30%

40%

50%

mcf vortex ammp art mcf vortex ammp art

16way 32way

BF(4x)

BF(2x)

pBF(2x)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

mcf vortex ammp art mcf vortex ammp art

16way 32way

Hot hit

Cold hit

Full-way miss

Cold-partial
miss

Cold-full miss

-0.6%

-0.4%

-0.2%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

mcf vortex ammp art avg

MMRU

decay BF

BF(x4)

BF(x2)

HC

BF+HC

pBF

pHC

pBF+HC

BF+pHC

pBF+pHC


