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Abstract—With the evolution of today’s semiconductor technology, chip temper-
ature increases rapidly mainly due to the growth in power density. For modern
embedded real-time systems, it is crucial to estimate maximal temperatures in
order to take mapping or other design decisions to avoid burnout, and still be able
to guarantee meeting real-time constraints. This paper provides answers to the
question: When work-conserving scheduling algorithms, such as earliest-deadline-
first (EDF), rate-monotonic (RM), deadline-monotonic (DM), are applied, what is
the worst-case peak temperature of a real-time embedded system under all possible
scenarios of task executions? We propose an analytic framework, which considers
a general event model based on network and real-time calculus. This analysis
framework has the capability to handle a broad range of uncertainties in terms of
task execution times, task invocation periods, and jitter in task arrivals. Simulations
show that our framework is a cornerstone to design real-time systems that have
guarantees on both schedulability and maximal temperatures.

Keywords-real-time systems; compositional analysis; worst-case peak tempera-
ture; thermal analysis

I. INTRODUCTION

Power density has been continuously increasing in modern

processors, leading to high on-chip temperatures. A system

could fail if the operating temperature exceeds a certain

threshold, leading to low reliability and even chip burnout.

Therefore, at design time, temperature reduction has been

achieved through appropriate packaging and active heat dissi-

pation mechanisms. Moreover, at run time, dynamic thermal

management (DTM) can be adopted to enhance system reli-

ability and reduce packaging costs. A large area of research

investigates DTM mechanisms, e.g., [1], [10], based on dy-

namic voltage/frequency scaling (DVFS), to reduce system

power consumption and therefore, to prevent the system from

overheating.

There have been many results in recent years about thermal

management, including (1) thermal-constrained scheduling to

maximize performance [1], [3], [4], [8], [9], [14], [18] or

determine the schedulability of real-time systems under given

temperature constraints [5], (2) peak temperature reduction to

meet performance constraints [2], and (3) thermal control by

applying control theory for system adaption [15].

Specifically, for thermal-constrained scheduling, in [1], an

algorithm is developed to maximize the workload that can

complete in a specified time window without violating thermal

constraints. Formal analysis is later adopted in [5] to analyze

schedulability of real-time tasks under thermal constraints. In

[18], approximation algorithms are developed to minimize the

completion time, while each task is restricted to execute at one

speed. In [4], workload maximization is explored for discrete

DVS speeds, under thermal constraints. Moreover, for reducing

the peak temperature in the system in [2], the on-line algorithm

for energy efficiency proposed in [17] is adopted. To model

uncertainties of task execution, ambient temperature changes,

or power variations, control theoretical approaches have been

adopted, e.g., in [15].
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Considering the available results on thermal management,

one of the most fundamental questions for thermal estimation

for real-time embedded systems is:

“What is the worst-case peak temperature of a real-time
embedded system, under all possible scenarios of task
executions?”

The worst-case peak temperature can then be used as a ref-

erence for system designers either to decide whether thermal

management mechanisms have to be applied or to evaluate

the thermal effect of such techniques. Unfortunately, for

non-trivial systems, to our best knowledge, the answer of

this question is open. For example, for traditional schedul-

ing algorithms, such as earliest-deadline-first (EDF), rate-

monotonic (RM), deadline-monotonic (DM), real-time schedu-

lability analysis is based on the critical instant of task releases

to offer timing guarantees. However, for thermal investiga-

tions, even for simple arrival patterns, such as periodic tasks

with jitter, there is no result about the critical instant which

leads to the maximum peak temperature.

In this paper, we propose a method that at first constructs

the worst-case task sequence, which can then be used to

determine the corresponding worst-case peak temperature. The

set of possible task arrival sequences is characterized by arrival

curves as known from Real-Time Calculus [11] and Network

Calculus [6]. An arrival curve bounds the maximal workload

(in terms of accumulated processing times) that might arrive

to the system for any interval length. As a special case, a set of

periodic streams with bounded jitter and bursts can be modeled

by arrival curves. Even though arrival curves constrain the

possible workload injected to the system, there are infinitely

many compliant workload traces in terms of initial phase,

jitter, or burstiness. An exhaustive search to investigate the

peak temperature corresponding to all possible workload traces

constrained by an arrival curve is usually infeasible.

The proposed technique can be used to analyze the worst-

case peak temperature for a given arrival curve under work-
conserving real-time scheduling algorithms, including EDF,

RM, and DM. For example, for EDF, RM, and DM, the

critical instant for (timing) schedulability analysis is to release

all tasks/events as early as possible without violating arrival

curve constraints. By contrast, the main contribution of this

paper shows that the workload trace that leads to the worst-

case peak temperature at time instant τ is to release events in

time interval [τ −Δ, τ) such that the processed computation

in time interval [τ − Δ, τ) is maximized under arrival-curve

constraints. For example, for periodic tasks with jitters, the

worst-case peak temperature is to first warm up the system

with periodic arrivals and then heat up the system with burst

arrivals and jitters. Simulation results show that our technique



can be applied to design real-time systems with timing and

peak temperature guarantees.

II. SYSTEM MODEL

Thermal Model. We base our work on the usual thermal model
in the literature, e.g., [1], [2], [4], [14], [18]. In particular, the
temperature follows a first-order linear differential equation,

C
dT

dt
= P −G(T − Tamb),

where C, P , G and Tamb denote thermal capacity,
(temperature- and time-dependent) generated power, thermal
conductance and ambient temperature, respectively. The tem-
perature T as well as the generated power P are depending
on time t, while the other quantities are supposed to be time-
invariant. Note that, for notational simplicity, we will not
present the time variable for T and P if the context is clear.
Throughout this paper, all temperatures are given in the unit of
absolute temperature (Kelvin, K). In addition, we model the
temperature dependence of leakage power by means of a linear
approximation [3], [7]. Therefore, the power consumption P
is equal to φT +ψ, where φ and ψ are constants. As a result,
we get the differential equation

C
dT

dt
= −(G− φ)T + (ψ +GTamb) (1)

with time-dependent temperature T . For notational abbrevia-
tion, we can rewrite the above differential equation as follows:

dT

dt
= −gT + h ,with g =

G− φ

C
, h =

ψ +GTamb

C
(2)

Now, we can determine the steady-state temperature with
dT
dt = 0 as T∞ = h/g. A closed-form solution to the above

differential equation for constants g and h yields

T (t) = T (t0) · e−g(t−t0) +

∫ t

t0

h · egτdτ (3)

⇒ T (t) = T∞ + (T (t0)− T∞) · e−g·(t−t0) (4)

for time t ≥ t0, which has been widely used in the literature.
We distinguish between “active” and “idle” power com-

ponent modes, i.e., Pa and Pi, characterized by different
coefficients of the respective linear model. The active power
Pa is the sum of leakage and dynamic power, and the idle
power Pi can be considered as basically including just the
leakage power.

Pa = φaT + ψa Pi = φiT + ψi. (5)

Therefore, (2) has piecewise constant coefficients

gi =
G− φi

C
, ga =

G− φa

C
,

hi =
ψi +GTamb

C
, ha =

ψa +GTamb

C
,

depending on the component mode.

Throughout this paper, we will implicitly consider a proper
thermal model, in which the following reasonable conditions

are satisfied:

• We have g > 0, i.e. , G > φ for both power modes.

• The steady-state temperature is not smaller in “active”

mode than in “idle” mode, i.e. , we have (T∞)a ≥ (T∞)i
or ψa+GTamb

G−φa
≥ ψi+GTamb

G−φi
.

Moreover, according to the thermal model, the component has

the thermal monotonicity property.

Lemma 1: Suppose we consider two equal timed sequences
of idle and active modes in a time interval from s to t. Then

the sequence with the higher temperature at time s leads to a
higher component temperature at time t.
Proof: If ga is equal to gi, this lemma simply comes from

(3) by taking h as a time-dependent function. Otherwise, we

can divide the interval [s, t) into sub-intervals such that the

component is only in one mode in one sub-interval. With the

higher initial temperature at the beginning of a sub-interval,

the temperature at the end of the sub-interval is also higher.

By considering all the sub-intervals sequentially, we can reach

the conclusion.

Computational Model. A component can process for t − s
time units in a time interval [s, t). Tasks/events that have not

been completed yet are queued. The only requirement towards

the processing component is work-conserving, in which the

processing component has to process an event if there is

(at least) one event in the ready queue. There is no further

assumption on the scheduling (queuing) discipline, may it

be preemptive, non-preemptive, EDF, fixed priority, or any

combination thereof.
The computation model follows the arrival curves in Net-

work and Real-Time Calculus [6], [11]. For completeness, we
will provide the required terms based on their definition in
real-time calculus. We suppose that the component receives
in time interval [s, t) a cumulative workload (trace) of R(s, t)
time units, i.e. , in [s, t) tasks with total workload of R(s, t)
arrive. The cumulative workload R is upper-bounded by the
concept of an upper arrival curve α, where

R(s, t) ≤ α(t− s) ∀s < t (6)

with α(0) = 0. If this relation holds, we also say that a
cumulative workload R complies to an arrival curve α. The
arrival curve is assumed given in this paper, and the derivation
is provided in the literature, e.g., [13]. A tight upper arrival
curve is a monotonic increasing staircase function, i.e. , it has
slope 0 almost everywhere. Moreover, the arrival curve is sub-
additive if it satisfies

α(x) + α(y) ≥ α(x+ y), ∀x, y ≥ 0.

Note that in case of several independent workload functions

Rj that need to be concurrently processed in a single com-

ponent and that are bounded individually by arrival curves

αj , the accumulated workload can be bounded by R(s, t) ≤∑
∀j αj(t− s) = α(t− s). Therefore, the results in this paper

will hold for several input event streams as well.
For work-conserving scheduling, the accumulated comput-

ing time Q(s, t) of the component (for computing the incom-
ing workload) in time interval [s, t) is Q(s, t) = infs≤u≤t{(t−
u) + R(s, u), provided that at time s there is no buffered
workload in the ready queue [11]. As a result, the upper
bound on the accumulated computing time γ(Δ) for intervals
of length Δ, with Q(s, t) ≤ γ(t− s), can be given as

Q(t−Δ, t) ≤ γ(Δ) = inf
0≤λ≤Δ

{(Δ− λ) + α(λ)}. (7)

Clearly, if α is a tight upper bound on R, then the above

upper bound γ on Q is tight too. Throughout this paper,

curve α is assumed sub-additive, which also leads to the sub-

additivity of curve γ.

Note that, for peak temperature analysis, we implicitly

assume the schedulability test for real-time systems has been

passed, and do not intend to apply any thermal management

to reduce the temperature.



Problem Definition. Now, we can formulate the worst-case

peak temperature analysis problem:

Given is a work-conserving component characterized by
a proper thermal model. The objective is to determine the
peak temperature T ∗ for any cumulative workload R that
complies to a given sub-additive arrival curve α.

The most naı̈ve solution to this problem is to state that T ∗

is upper-bounded by (T∞)a = ha

ga
, which simply ignores the

arrival curve by assuming the component is always active.

However, this is far beyond acceptable when the utilization is

low. We would like to find the worst-case workload R that

complies to the given arrival curve and that leads to the peak

temperature T ∗.

III. THERMAL ANALYSIS

In order to determine such an upper bound T ∗, we will first

construct worst-case accumulated computing time Q∗(0, t) and

then determine a corresponding feasible workload R∗.

A. Worst-Case Computing Time
The accumulated computing time Q(s, t) for any fixed

s with s < t as well as its upper bound γ(t − s) are
monotonically increasing and their slopes at any time instant
are either 1 or 0. Therefore, the mode function S(t) defined
as

S(t) =
d Q(s, t)

dt
∈ {0, 1} (8)

determines the operating mode of the processing component.

S(t) = 1 or S(t) = 0 denote that the processing component

is in “active” or “idle” mode at time t, respectively. By com-

bining (5) and (8), we can state that a component consumes

Pi whenever S(t) = 0 and Pa if S(t) = 1.

As a first prerequisite, we will show in Lemma 2 that

shifting an active processing mode closer to some time τ will

always increase the temperature at time τ .

Lemma 2: For a given time instant τ , we consider two mode
functions S(t) and S(t) defined for t ∈ [0, τ). Mode function
S(t) only differs from S(t) in time interval [σ, σ + 2δ) with
δ > 0, σ ≥ 0, σ + 2δ < τ . In particular,

• S(t) = 1 for all t ∈ [σ, σ + δ) (“active mode”),
• S(t) = 0 for all t ∈ [σ + δ, σ + 2δ) (“idle mode”), and
• S(t) = 1− S(t) for all t ∈ [σ, σ + 2δ).

Then, with the same initial temperature at time 0 for both mode
functions S(t) and S(t), the temperature, denoted as T (τ), at
time τ for mode function S(t) is no less than the temperature,
denoted as T (τ), at time τ for mode function S(t). That is,
T (τ) ≥ T (τ).
Proof: As the mode functions satisfy S(t) = S(t) for all t ∈
[0, σ) and T (0) = T (0) we clearly have T (σ) = T (σ). As

S(t) = 1 for t ∈ [σ, σ+δ) and S(t) = 0 for t ∈ [σ+δ, σ+2δ)
we find

T (σ+2δ) =
hi
gi

+(
ha
ga

− hi
gi
)·e−giδ+(T (σ)− ha

ga
)·e−(gi+ga)δ.

As S(t) = 0 for t ∈ [σ, σ + δ) and S(t) = 1 for t ∈ [σ +
δ, σ + 2δ) we find

T (σ+2δ) =
ha
ga

+(
hi
gi

− ha
ga

)·e−gaδ+(T (σ)− hi
gi
)·e−(gi+ga)δ.

For a proper thermal model, we have T (σ + 2δ) − T (σ +
2δ) = (ha

ga
− hi

gi
) · [(1− e−gaδ) · (1− e−giδ)] ≥ 0.

Moreover, for all t ∈ [σ + 2δ, τ), as S(t) = S(t),
according the thermal monotonicity in Lemma 1, the condition

T (σ+2δ) ≥ T (σ+2δ) also implies that T (t) ≥ T (t), which

concludes the proof.

The following lemma shows that we obtain a higher tem-

perature at time τ if the component is in the active mode at

τ and has longer accumulated computing time in any interval

ending at τ .
Lemma 3: For any given time instant τ , we consider two

accumulated computing time functions Q resulting from mode
function S(t), and Q resulting from mode function S(t), with

Q(τ −Δ, τ) ≥ Q(τ −Δ, τ)

for all 0 ≤ Δ ≤ τ . Then, with the same initial temperature
at time 0, the temperature T (τ) at time τ for mode function
S(t) is no less than the temperature T (τ) at time τ for mode
function S(t).
Proof: Because of space limitation, only a sketch of the proof

is provided. First note that because of (8), the condition

Q(τ − Δ, τ) ≥ Q(τ − Δ, τ) can be translated equivalently

to
∫ τ

τ−Δ
S(t) dt ≥ ∫ τ

τ−Δ
S(t) dt. In other words, for Q,

the component is in the active mode at τ and has longer

accumulated computing time in any interval ending at τ .

Now we will stepwise transform S(t) into S(t) and, in each

step, the temperature will not decrease because of Lemma 2.

In order to simplify the proof technicalities, we suppose

discrete time, i.e. , S(t) and S(t) may change values only

at multiples of δ. In other words, S(t) and S(t) are constant

for t ∈ [kδ, (k + 1)δ) for all k ≥ 0. Let us define τ = kmaxδ.

We now execute the following algorithm:

1) Determine the smallest 1 ≤ k1 ≤ kmax such that S(τ −
k1δ) �= S(τ − k1δ). If there is no such k1, then S(t) =
S(t) for all 0 ≤ t ≤ τ and therefore, T (τ) = T (τ) and

the algorithm stops.

2) Determine the smallest k2 with k1 < k2 ≤ kmax such

that S(τ − k2δ) = 1. If such a k2 exists, then change

S(t) for t ∈ [τ − k2δ, τ − (k2 − 1)δ) from value 1 to

value 0.

3) Change S(t) for t ∈ [τ −k1δ, τ − (k1−1)δ) from value

0 to value 1. Then continue with step 1.

Now, one can simply prove that after each iteration of the

three steps, T (τ) increases until it reaches T (τ) and therefore,

the initial T (τ) was not larger than T (τ).
Based on Lemma 3 we will present the first main result

of this section. The following theorem provides a constructive

method to determine the worst-case accumulated computing

time Q∗ for a work-conserving scheduling algorithm.

Theorem 4: Suppose that T (t) is the temperature at time
instant t for an arbitrary feasible workload trace that is
bounded by the arrival curve α. When the scheduler is work-
conserving and the thermal model is proper, the following
statements hold:

• Suppose that the accumulated computing time function
Q∗(0,Δ) = γ(τ) − γ(τ − Δ) for all 0 ≤ Δ ≤ τ leads
to temperature T ∗(τ) at time τ . Then T ∗(τ) is an upper



bound on the highest temperature at time τ , i.e. , T ∗(τ) ≥
T (τ).

• If, in addition, T (0) ≤ (T∞)i holds for the initial
temperature, then for any feasible workload trace we have
T ∗(τ) ≥ T (t) for all 0 ≤ t ≤ τ .

Proof: At first, we show that Q∗(0,Δ) = γ(τ) − γ(τ − Δ)
satisfies (7). We have Q∗(t−Δ, t) = Q∗(0, t)−Q∗(0, t−Δ) =
γ(τ)−γ(τ−t)−γ(τ)+γ(τ−t+Δ) = γ(τ−t+Δ)−γ(τ−t).

Now, we will show the first item of the theorem by

contradiction. Suppose that there is an accumulated computing

time function Q, which leads to a higher temperature T (τ) at

time τ . Then according to Lemma 3 there exists some Δ ≤ τ
such that Q∗(τ − Δ, τ) < Q(τ − Δ, τ). As we know that

Q∗(τ −Δ, τ) = γ(Δ) − γ(0) = γ(Δ) we can conclude that

Q(τ −Δ, τ) > γ(Δ) and therefore, Q violates (7).

Now, let us prove the second item of the theorem by contra-

diction. Suppose now that there exists some time σ ≤ τ where

we have T (σ) > T ∗(τ). From the first item in this theorem we

know that the bound on T (σ) is maximal if Q(σ −Δ, σ) =
γ(Δ) for 0 ≤ Δ ≤ σ. As Q∗(τ − Δ, τ) = γ(Δ), we can

conclude that Q∗ shifted by τ−σ and Q are identical, i.e. , we

have Q(σ−Δ, σ) = Q∗(τ−Δ, τ) for 0 ≤ Δ ≤ σ. Therefore, if

we would set T (0) = T ∗(τ−σ), then we have T (σ) ≤ T ∗(τ).
Because of the thermal monotonicity in Lemma 1, the fact that

T (σ) > T ∗(τ) would require that T (0) > T ∗(τ − σ).
As T (0) ≤ (T∞)i and (T∞)i ≤ (T∞)a, temperatures which

are caused by Q∗ satisfy T ∗(t) ≥ T ∗(0) for all times 0 ≤
t ≤ τ . This holds in particular for time t = τ − σ, i.e. ,

T ∗(τ−σ) ≥ T ∗(0). As we have the same initial conditions for

both scenarios with T (0) = T ∗(0), we find T (0) ≤ T ∗(τ−σ),
which is a contradiction.

B. Worst-Case Accumulated Workload

Note that Theorem 4 only provides an upper bound T ∗(τ)
on the actual worst-case temperature and there may be no

workload trace that leads to the critical accumulated comput-

ing time Q∗(0,Δ) = γ(τ) − γ(τ − Δ). Now, we will show

that actually there exists a single workload trace R∗(0,Δ) for

0 ≤ Δ ≤ τ which (a) is compatible to the given arrival curve

α and (b) results in Q∗(0,Δ).
We first determine a continuous accumulated workload

function R∗(0,Δ), i.e. , which has slopes 1 and 0. It can be

interpreted as the limit case of task arrivals with infinitesimally

small inter-arrival time and infinitesimally small computation

time. This condition will be relaxed in Lemma 6.

Theorem 5: The worst-case continuous workload function
R∗(0,Δ) = Q∗(0,Δ) for 0 ≤ Δ ≤ τ from Theorem 4

• leads to the accumulated computing time Q∗(0,Δ),
• complies to the arrival curve α, and
• leads to the highest possible temperature T ∗(τ) ≥ T (t)

for all 0 ≤ t ≤ τ for any feasible workload trace with
the same initial temperature T ∗(0) = T (0) ≤ (T∞)i.

Proof: For the first item we actually need to prove that

Q∗(0,Δ) = inf0≤u≤Δ{(Δ − u) + Q∗(0, u)} as R∗(0,Δ) =
Q∗(0,Δ). At first, we find that there exists a u′ such that

(Δ−u′)+Q∗(0, u′) = (Δ−u′)+Q∗(0,Δ), namely u′ = Δ.

Therefore, we only have to show that (Δ− u) +Q∗(0, u) ≥
Q∗(0,Δ) for all 0 ≤ u ≤ Δ. This condition is equivalent

to (Δ − u) ≥ Q∗(0,Δ) − Q∗(0, u) = Q∗(u,Δ). As the

accumulated processing time in interval [u,Δ) can not exceed

the available time Δ− u, the first item is proven.

With R∗(0,Δ) = Q∗(0,Δ), Q∗(0,Δ) = γ(τ)− γ(τ −Δ)
and γ(Δ) = inf0≤λ≤Δ{(Δ− λ) + α(λ)} we find

R∗(x, y) = γ(τ − x)− γ(τ − y)

= inf
0≤λ≤t−x

{(t− x− λ) + α(λ)}
− inf

0≤η≤t−y
{(t− y − η) + α(η)}

≤ inf
0≤u≤(y−x)

{((y − x)− u) + α(u)} ≤ α(y − x)

where we use the fact that x, y ≤ τ , x ≤ y, η ≤ γ as well as

the subadditivity of α.

The third item is a simple consequence of Theorem 4 as

(a) R∗ leads to the accumulated computing time function Q∗

and (b) Q∗ leads to the highest temperature T ∗(τ) ≥ T (τ)
according to Theorem 4.

As a result of Theorem 5, the upper bound T ∗(τ) deter-

mined through Theorem 4 is tight, i.e. , there exists a worst-

case workload trace R∗ that actually leads to T ∗(τ). As it has

been described, R∗(0,Δ) has slope 1 or 0 and corresponds to

a continuous arrival of tasks. There are many possibilities to

convert such a workload trace into one that has discrete task

arrivals, but still (a) is compliant to the provided arrival curve

α and (b) leads to the worst-case peak temperature at time τ .

In the following, let us describe one of these possibilities.

Lemma 6: Let us suppose that for some constant c the given
arrival curve α satisfies α(Δ) = c · � 1

cα(Δ)� for all Δ ≥
0, i.e. , the step size of α(Δ) is an integer multiple of c.
Suppose that the observation time τ is chosen such that γ(τ)
according to (7) is a multiple of c as well. Then the worst-case
accumulated workload R̂∗(0,Δ) = c · � 1

cR
∗(0,Δ)� according

to Theorem 5

• is piecewise constant with a step size which is an integer
multiple of c,

• complies to the arrival curve α according to (6), and
• leads to the highest possible temperature T ∗(τ) ≥ T (t)

for all 0 ≤ t ≤ τ for any feasible workload trace with
the same initial temperature T ∗(0) = T (0) ≤ (T∞)i.

Proof: Let us first suppose without restricting the generality

that c = 1. The first item is obvious from R̂∗(0,Δ) =
�R∗(0,Δ)�.

The second item can be shown as R̂∗(x, y) = �R∗(0, y)�−
�R∗(0, x)� ≤ �R∗(0, y) − R∗(0, x)� = �R∗(x, y)� ≤ �α(y −
x)� = α(y − x) for x < y.

In order to show the third item, we start from Q∗(0,Δ) =
γ(τ)− γ(τ −Δ) in Theorem 4 and γ(Δ) = inf0≤λ≤Δ{(Δ−
λ) + α(λ)} from (7). From the last equation one can observe

that γ(Δ) has slope 1 or 0 and it has an integer value if it has

slope 0. Therefore, if γ(τ) is integer as well, then we also find

that Q∗(0,Δ) has slope 1 or 0 and it has an integer value if

it has slope 0. If we can show that the accumulated workload

function R̂∗(0,Δ) = �R∗(0,Δ)� = �Q∗(0,Δ)� leads to the

same worst-case accumulated processing time Q∗(0,Δ) as



R∗(0,Δ), the theorem would hold. Note that Q∗(0,Δ) =
inf0≤u≤Δ{(Δ − u) + Q∗(0, u)} from Theorem 5. Because

of the property of Q∗(0, u) mentioned before, one can easily

deduct that inf0≤u≤Δ{(Δ−u)+Q∗(0, u)} = inf0≤u≤Δ{(Δ−
u) + �Q∗(0, u)�} = inf0≤u≤Δ{(Δ− u) + R̂∗(0, u)}.

Note that R∗(0,Δ) does not necessarily contain the conven-

tional critical instance scenario that is often used in real-time

analysis in order to determine the worst-case timing behavior.

For example, for periodic tasks with jitters, the worst-case

peak temperature is to first warm up the system with periodic

arrivals and then heat up the system with burst arrivals and

jitters.

C. Computational Aspects
Theorem 4 implies a constructive method to determine the

upper bound T ∗(τ) for some time τ : Starting from a given

arrival curve α(Δ) for 0 ≤ Δ ≤ τ one can determine the

function γ(Δ) for 0 ≤ Δ ≤ τ using (7). With Q∗(0,Δ) =
γ(τ)−γ(τ −Δ) for all 0 ≤ Δ ≤ τ and (8) one can determine

the critical mode function S∗(t), 0 ≤ t ≤ τ . It determines the

critical trace of “idle” and “active” modes (5) which is used to

solve the thermal model (2), i.e. , at time t = τ . As a result,

we can find T ∗(τ).
There is one question remaining: How to choose an appro-

priate observation time τ such that a bound with an appropriate

precision is determined? The following theorem provides an

answer to this question.

Theorem 7: Suppose an arbitrarily feasible workload trace
with the corresponding temperature T (t) and initial tem-
perature T (0) ≤ (T∞)i. The worst-case peak temperature
T ∗ = maxt≥0T (t) is bounded by

T ∗ ∈ [T ∗
i (τ), T

∗
a (τ)],

for any τ > 0. T ∗
i (τ) and T ∗

a (τ) denote the temperatures at
time τ for the workload in Theorem 5 with initial temperatures
T ∗
i (0) = (T∞)i and T ∗

a (0) = (T∞)a, respectively. In addition,
all observation times τ that satisfy the following relation
guarantee a precision T ∗

a (τ)− T ∗
i (τ) for estimating T ∗ with

its upper bound T ∗
a (τ)

τ ≥ 1

min{gi, ga} · log (T∞)a − (T∞)i
T ∗
a (τ)− T ∗

i (τ)
. (9)

Proof: Because of space restrictions, only a sketch of the proof
is given here. At first note, that for any trace with initial
temperature T (0) < (T∞)i there exists always a feasible trace
with initial temperature T (0) = (T∞)i (and therefore larger
temperatures T (t)) as one can prepend the given one with
an arbitrarily long idle mode. Following Theorem 5, we can
construct a workload function that leads to the highest possi-
ble temperature T ∗ when using the same initial temperature
(T∞)i. Because of Lemma 1 and Theorem 4, we can easily
see that T ∗

i (τ) ≤ T ∗ ≤ T ∗
a (τ) because T ∗(0) = (T∞)i. For

the bound on τ , we use (4) and find

T ∗
a (τ)− T ∗

i (τ) = (T ∗
a (0)− T ∗

i (0)) · e−
∑

k gkΔtk

≤ (T ∗
a (0)− T ∗

i (0))e
−min{gi,ga}τ

where gk ∈ {gi, ga} denote the coefficient in the kth

piecewise constant power section and Δtk its length.

Following Theorem 7, we can determine a suitable observa-

tion time τ before the worst-case temperature simulation while

Video Audio Network

period (p) [20, 90]ms 30ms 30ms

jitter [20, 90]ms 10ms 10ms

min. inter-arrival 1ms 1ms 1ms

execution demand 6ms 3ms 2ms

deadline period(p) 30ms 30ms

TABLE I
PARAMETERS OF THE SIMULATED SYSTEM.

G C φi = φa ψi ψa Tamb (T∞)a (T∞)i

0.3W
K 0.03 J

K 0.1W
K −25W −11W 300K 395K 325K

TABLE II
ARCHITECTURAL PARAMETERS.

guaranteeing a precision on the worst-case peak temperature

bound.

IV. EXPERIMENTAL ANALYSIS

System Description. A multi-processing video-conferencing

system is considered, including a video codec, an audio

codec, and a network process for communication management

executing on an embedded processor. We use the period-jitter-

delay model [12], our parameters being summarized in Table I.

For the considered system, the video codec operation range

varies from 12fps to 50fps (frames per second).This offers

the possibility to investigate a large range of task invocation

periods between 20ms and 90ms. The invocation periods of

audio codec and network processes are 30ms. The relative

deadline of each event stream is assumed identical to its

invocation period.

We use the thermal and power consumption parameters as

shown in Table II for demonstration. The base parameters were

taken from [16], and these were set such that (T∞)a = 395K
and (T∞)i = 325K.

Peak Temperature Analysis. By setting τ = 1s and both task

invocation period and jitter equal to 20ms for the video codec,

Figure 1 presents the results of transient temperatures of the

system in the interval [0s, 1s) for 100 randomly generated

workload traces that comply to the arrival curves, where (1)

the time critical instance (the workload trace that fits to the

critical instant for timing analysis by releasing the workload as

early as possible) and (2) the thermal critical instance (worst-

case workload trace generated by Theorem 5) are highlighted.

All traces start from the steady-state idle temperature of 325K.

As shown in Figure 1, the time critical instance has the

higher transient temperature before its first idle time (around

0.31s) than the other traces. However, its temperature starts to

decrease after that moment, and does not lead to the worst-

case peak temperature. In contrast, the 100 random simulations

might keep the system at higher temperature later on, but still

under-estimate the worst-case peak temperature. Only thermal

critical instance can reach the highest temperature at time

τ = 1s. As shown in Figure 1, the thermal critical trace first

warms up the system with periodic arrivals and then heats up

the system with burst arrivals and jitters.
However, T ∗

i (τ) only gives the peak temperature of a fea-

sible trace. As shown in Theorem 7, for estimating the worst-

case peak temperature T ∗, we also need the peak temperature

at time τ , by starting at the steady-state temperature (T∞)a for



Fig. 1. Temperature (in time) for different traces (gray - 100 random traces;
dashed black - time critical; red - temperature critical).

Thermal critical Timing critical Random Simulation

385.00K 380.00K 378.00K

TABLE III
PEAK TEMPERATURE FOR TRACES IN FIGURE 1 IN TIME INTERVAL [0, 1)S.

the trace generated by Theorem 5. Figure 2 demonstrates the

temperature bound [T ∗
i (τ), T

∗
a (τ)] by varying τ from 0.3s to

1.5s when task invocation period and jitter are both 20ms for

the video codec. Note that, for different values of τ , the worst-

case traces are also different. When τ is small, the bound is

not precise. For example, the bound [T ∗
i (τ), T

∗
a (τ)] is equal

to [381.44K, 390.91K] when τ = 0.3s. However, when τ is

equal to 1.5s, T ∗
i (τ) and T ∗

a (τ)] tend to converge, with the

precision of the 1st digit of decimal point, i.e., 385.0K. As a

result, we can conclude that the worst-case peak temperature

is 385.0K for the invocation period of the video codec of 20ms

and when the initial temperature T (0) is not more than (T∞)i.
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Fig. 2. Convergence of T ∗
i (τ) and T ∗

a (τ).

Worst-Case Temperature Analysis under Scheduling Nonde-
terminism. We would also like to analyze the effect of changes

in invocation periods and jitter on both timing guarantees and

worst-case peak temperature. We restrict ourselves to EDF

scheduling in the reminder of this section, but the analysis

is similar for any other work-conserving approach.

Figure 3 illustrates the dependence of the worst-case peak

temperature and the schedulability of the system for different

task invocation periods and jitters of the video codec. Note

that τ is chosen carefully with precision loss less than 0.1K

for the peak temperature analysis by applying Theorem 7.

As shown in Figure 3, we observe that a larger jitter and a

smaller invocation period will increase the worst-case peak

temperature. This is because a larger jitter and a smaller

invocation period both increase the size of a burst of active

modes in the worst cases. If the jitter or the invocation period

leads to an unacceptable temperature, designers can redesign

the system by using proper parameters or adopt dynamic

thermal management mechanisms.

V. CONCLUSION

We have presented an analytical approach to determine the

worst-case peak temperature for any given work-conserving
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Fig. 3. Worst-case peak temperature for different set-ups of video codec.

real-time system. The system is characterized by an upper

bound on accumulated workload arriving from all task invo-

cations, in any time interval. The analysis complexity comes

from the non-determinism due to unknown initial phases,

jitters, or bursts. It is shown, that the method (a) gives tight

upper bounds on the worst-case peak temperature, (b) is con-

structive in the sense that the worst-case arrivals of tasks can

be determined, and (c) provides bounds on the length of the

observation interval for a given precision. With experimental

results we show that our analysis method provides guarantees

on (a) schedulability and (b) maximal system temperature.

Direct impacts of such a method could be to avoid triggering

dynamic thermal management, that is known to have high

performance penalties, and to be a baseline reference for

system designers when building a thermal critical system.
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