
Floorplanning Exploration and Performance
Evaluation of a New Network-on-Chip

Licheng Xue, Weixing Ji, Qi Zuo, Yang Zhang
High Performance Embedded Computation Lab

School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China

{xuelicheng, pass, zqll27, young}@bit.edu.cn

Abstract—The Network-on-Chip (NoC) paradigm has emerged
as a revolutionary methodology in current System-on-Chips
(SoCs) for integrating a large number of processing elements
in a single die. It has the advantage of enhanced performance,
scalability and modularity, compared with previous bus-based
communication architectures. Recently, A new Triplet-based Hi-
erarchical Interconnection Network (THIN) has been proposed.
In this paper, we explore the three-dimensional (3D) floor-
planning of THIN and present two different floorplanning and
routing methods using both the Manhattan routing and the Y-
architecture routing architectures. A cycle-accurate simulator is
developed based on Noxim NoC simulator and ORION 2.0 energy
model. The latency, power consumption and area requirement of
both THIN and Mesh are evaluated. The experimental results
indicate that the proposed design provides 24.95% reduction in
average power consumption and 16.84% improvement in area
requirement.

I. INTRODUCTION

Bus schemes are limited for large System-on-Chips (SoCs)

because they are inherently non-scalable and produce a huge

communication overhead that affect their performance and

energy dissipation [1]. Recently, the Network-on-Chip (NoC)

paradigm has been proposed as a solution for the interconnect

problem, as it offers high bandwidth, low latency, and low

power consumption connection between processing elements

[2]. Many researchers have optimized the network in various

ways, such as developing fast and energy-efficient routers, de-

signing new network topologies, improving the fault-tolerance

of the network, and finding better floorplanning designs to

improve its performance and decrease its area requirement.
The Triplet-based Hierarchical Interconnection Network

(THIN) is a new NoC in chip multiprocessors (CMPs).

According to previous studies, THIN has many attractive

properties, such as simple topology and computing locality

characteristic [3, 4]. However it raises some questions regard-

ing the placement of processing elements, and the routing

of wires because of its non-rectangular periphery edge and

special memory hierarchy.
The emerging three-dimensional (3D) integrated circuit (IC)

[5] and non-Manhattan routing architecture [6–8] provided

a new horizon for the floorplanning of the NoC. First, in

This study is supported by the National Natural Science Foundation of
China(No.60973010); and the Research Fund for the Doctoral Program of
Higher Education of Ministry of Education of China(No.200800071005).

3D IC, dies of different types can be stacked with a high

bandwidth, low latency, and low power consumption interface,

implemented using Through-Silicon Vias (TSVs). Therefore,

it improves the performance of the network due to the short

global wires. Moreover, cores and high level caches can be

distributed to different layers [9], resulting in a more flexible

placement of cores and memory blocks in THIN. Second,

diagonal wire routing can be easily achieved using a non-

Manhattan routing architecture. The similarities of diagonal

wires in THIN and Y-architecture make the diagonal wire

routing of THIN feasible. The combination of two emerging

paradigms, namely, 3D IC and non-Manhattan routing, not

only allows for the creation of new structures that enable the

floorplanning of THIN, but also provides significant perfor-

mance enhancements over traditional solutions [10].

This paper investigates the 3D floorplanning of THIN. First,

we placed the tile on the core layer, and then routed the wires

using both the Manhattan and the diagonal routing methods.

The latency, power consumption as well as area requirement

for this on-chip interconnect with different floorplanning meth-

ods were then evaluated and compared with other common on-

chip interconnect architectures, such as 3D Mesh [10]. The

simulation results indicate that the THIN outperforms Mesh

by 1-5% on average packet latency. In addition, the energy

dissipation and area requirement reduction of THIN are 15-

25% and 7-20%, demonstrating that THIN is a low latency,

power- and area-efficient NoC architecture.

The rest of this paper is organized as follows. The next

section provides related work. Section III describes the main

architectural features of THIN and its interconnection network

strategy. Two floorplanning methods of THIN are presented in

Section IV. Section V compares the latency as well as other

performance metrics of THIN with 3D Mesh. Conclusions and

future work are provided in Section VI.

II. RELATED WORK

Floorplanning for some 2D NoCs has been explored in

previous studies [11–14]. In [15] S.Murali proposed an au-

tomatic physical planning approach for 2D NoC architecture

with Quality of Service (QoS) guarantees. Recently, more

studies on 3D NoC have emerged and several works have

been done in the area of 3D floorplanning, placing, and

routing. 3D floorplanning methods of Butterfly Fat Tree and

978-3-9810801-7-9/DATE11/©2011 EDAA

K=1 K=2 K=3

Fig. 1. Interconnection of THIN. The number of processing elements is 3K .

Fat H-Tree are presented in [16] and [17], in which latency

as well as other cost metrics (e.g., energy dissipation and

area requirement) has been described. In [10], the authors

proposed a multilayer VLSI floorplanning method, evaluated

the performance of 3D NoC architectures, and demonstrated

their superior functionality in terms of throughput, latency,

energy dissipation, and wiring area overhead compared with

traditional 2D implementations. The floorplanning of a 3D

topology Xbar-connected Network-on-Tiers (XNoTs), which

consists of multiple network layers tightly connected via

crossbar switches is presented in [18]. Another previous

study proposed a synthesis approach for application-specific

3D NoCs [19]. There are also some thermal-aware mapping

and placement algorithms for 3D NoCs [20, 21]. Most of

recent studies, however, are based on regular networks using

Manhattan routing architecture.

Although some Non-Manhattan routing architectures, such

as the X-architecture [6] and the Y-architecture [7, 8], have

been proposed at the beginning of the 21st century, researchers

did not take notice and adopt these routing architectures to

implement their topologies. Almost all the discussions on the

placement and routing of NoCs are presented using Manhattan

routing architecture. In this paper, we used both the Manhattan

and Non-Manhattan architectures to achieve the 3D placement

and routing of THIN.

III. INTERCONNECTION OF THIN

THIN is a new NoC for chip multiprocessors consisting

of a 2D grid of small processing elements, each physically

connected to its three neighbors [3]. THIN is a hierarchical

network with a number of processing elements increasing by

the power of three at each stage. If the value of K represents

the levels of hierarchy, then K=0 represents a single node.

The interconnection strategy for different levels of THIN is

shown in Fig. 1. Distributed Deterministic Routing Algorithm

(DDRA) has been introduced as a routing algorithm for THIN

in [22].

In this paper, we investigate the 3D floorplanning methods

of THIN. One advantage of 3D THIN is that the crossbars

in THIN have one less port than the widely accepted 3D

Mesh. As we known, crossbars scale upward very inefficiently.

Large crossbars incur significant area and power overhead over

the small ones [23]. TABLE I shows the power consumption

and area requirement of routers with different port count.

TABLE I
POWER CONSUMPTION AND AREA REQUIREMENT OF ROUTERS WITH

DIFFERENT PORT COUNTS.

4-port 5-port 6-port 7-port

Power (w) 0.116985 0.148950 0.188681 0.225024

Area (um2) 73261 157585 219824 292303

The results were taken from ORION 2.0 [24] with 45nm
technology. The supply voltage Vdd is 0.8V , and its clock

frequency is 3GHz. The experimental results show that the

power and area reduction of the router in THIN (5-port, 1

local port, 1 vertical port, and 3 router connection ports) are

26.67% and 39.49% compared with the router in Mesh, which

has one more port (6-port, 1 local port, 1 vertical port, and 4

router connection ports).

IV. FLOORPLANNING EXPLORATION OF THIN

Mesh is widely used in parallel computing platform for

its simple connection and its ease of placement and routing.

Researchers have reached an agreement on the placing and

routing method for Mesh. However, other NoCs (e.g., BFT,

Torus, Spidergon, and THIN) are not widely accepted partly

because the floorplanning of these NoCs is more difficult than

Mesh. THIN is physically difficult to implement because of

its triangle periphery edge and diagonal wires connecting each

router. In this section, we used both Manhattan routing and Y-

architecture routing architecture to achieve the placement of

the processing elements and the routing of wires in THIN.

In order to decrease latency, energy dissipation and area

requirement, 3D stacking technology was adopted. Our design

is explored based on placing processing elements in the same

layer which was closest to the heat sink and leaving cache

layers in all remaining layers for the consideration of heat

dissipation. We integrated multiple layers by connecting them

with a dynamic, time-division multiple-access bus spanning

the entire vertical distance of the chip [9]. In this paper, we

only presented the floorplanning of the core layer in THIN,

since the floorplanning of cache layers are similar to the core

layer. We chose 9-core THIN as an example, as both Mesh and

THIN are the same sizes and have nine processing elements.

When researchers discuss the routing algorithms for Mesh

and THIN, they assume that the cost, including the delay

and power consumption of each link, is equal. This equality,

however, is established based on the placing and wire routing

policies. In this section, we placed the router in THIN in order

to make all the links equal first. After the discussion of the

equality of wires, we also present a policy which utilizes wires

of unequal length to connect the routers.

A. Method 1: Design using Y-architecture

Although THIN is a interconnection network and Y-

architecture is a routing architecture, they have some similar-

ities. In THIN, three processing elements make an equilateral

triangle, and three equilateral triangles make a larger equilat-

eral triangle. All the links are equal in length, and the angle be-

tween two links is either 60° or 120°. The Y-architecture also

Space

for I/O

Devices

Space

for I/O

Devices

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE
(0, 0) (0, 1)

(0, 2)

(2, 0) (2, 1)

(2, 2)

(1, 0) (1, 1)

(1, 2)

Fig. 2. Y-architecture floorplanning of THIN with equal wires.

has a similar characteristic in that its consecutive orientations

are separated by a fixed angle of 60°. The angle between two

links is the multiple of 60°. For this reason, the floorplanning

of THIN can be easily achieved using Y-architecture.

The floorplanning of tiles and the routing of wires in the

core layer are illustrated in Fig. 2. As can be seen, each

processing element is placed as a dedicated hard block tile.

All the tiles are connected by the wires that are easy to route

in Y-architecture. In order to utilize the precious area on chip,

the top triangle was rotated 180° and connected to the other

two triangles.

However, there are also two differences between THIN and

Y-architecture. First, the floorplanning of tiles and routers

leaves some space that is not occupied by the processing

elements or wires, in this manner, it seems that we waste the

precious area on chip. Yet, except for the processing elements,

routers and wires, there are also some on-chip I/O devices

distributed on the chip, such as the memory controller, the

media access controller, physical interface and so on. In our

design, we utilized the space on chip as much as possible using

these on-chip I/O devices, so as to improve the chip use rate.

Second, the nodes that are not located in the periphery of the

chip have six degrees of connectivity in Y-architecture. This

means that the node is connected with six directly adjacent

nodes; but within the interconnection of THIN, each node only

has three degrees of connectivity. The degree is the number

of ports in the router, apart from the local port, which is used

to connect the processing element. One more degree in the

node means one more port in the router. TABLE I shows that

the power and area reduction of router in THIN (4-port) are

92.35% and 298.99% compared with router in Y-architecture

(7-port). If we add the vertical port, the gap will be larger.

Therefore, in the implementation of THIN, we simply used the

links in Y-architecture and replaced the 7-port router with the

4-port router for low power and low area requirement design.

B. Method 2: Design using Manhattan Architecture

According to different routing architectures, two methods

can be used to achieve the triangle interconnection in THIN.

Fig. 3 (a) shows an equilateral triangle with a side length of

1.732mm (each side of the rectangle tile is 1.5mm). This type

of interconnection can be easily mapped into Y-architecture.

Fig. 3 (b) presents another solution, in which the long wire

has double the length of the short wires. It can be mapped

into the Manhattan routing architecture, which is discussed at

TABLE II
PARAMETERS OF 1 BIT WIRES WITH DIFFERENT LENGTH (5×5).

Length 1.5mm 1.732mm 3mm
Delay (ps) 248 259 310

Link Power (w) 0.092835 0.097011 0.154725

(a)

Equilateral

Triangle

L=1.732

Different

metal layers

(b)

1.5 1.5

3

Fig. 3. Methods for connect three nodes in THIN.

the end of this section. If the transmission of the longer wire

previously mentioned (3mm) can be completed in one cycle, in

other words, if we can make all the transmissions in different

routing architecture are one cycle transmission, the delay of

all wires can be recognized as equal.

For all types of wires, we used HSPICE with 45nm tech-

nology low power model from PTM [25]. The supply voltage

Vdd is 0.8V , and the operation temperature is supposed to be

70°C. Repeaters were then inserted in order to accelerate the

transmission in long wires. Hence, the transmission in long

wires consumes more energy compared with short wires and

long wires without repeaters. The resulting delay and power

consumption for wires of different lengths are listed in TABLE

II. The slowest wire is the 3mm wire with a delay of 310ps.

This can sufficiently sustain a 3GHz network in such a way

that every link requires just one clock cycle to transmit a

signal. Therefore, wires of different lengths are allowed as

long as the transmission can be completed within one clock

cycle.

Subsequently, we performed the second routing method

using Manhattan routing architecture which is common and

easy to implement. The long wire is adopted based on the

previous discussion. The placement and routing of nine pro-

cessing elements in the core layer are shown in Fig. 4. The

placement of tiles in our method is similar to Mesh which is

linear and aligned. All the wires are parallel or orthogonal and

easy to route. The routing of wires followed the scheme shown

in Fig. 3 (b). The tiles of a small triangle in THIN were laid

in a linear pattern. The two short wires had a length of 1.5mm,

and the long wire was 3mm; here, 4 long and 8 short wires

were enough to construct the 9-core THIN. The long wires

were placed in different metal layers compared with the short

wires. Based on the previous discussion, the transmission of

all the wires can be completed in a single clock cycle, but the

long wires need the addition of repeaters, thereby consuming

much more energy.

V. EVALUATION RESULTS AND ANALYSIS

In this section, we present a detailed evaluation of two dif-

ferent floorplanning designs. We compare the network latency,

power consumption and area requirement of THIN with 3D

Mesh. We do the simulation after the floorplanning because

R

PE

R

PEPE

R

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Sub-THIN

(0, 0) (0, 1)

(0, 2)

(2, 0) (2, 1)

(2, 2)

(1, 0) (1, 1)

(1, 2)

Fig. 4. Manhattan floorplanning of THIN with unequal wires.

TABLE III
CONFIGURATION OF THE SIMULATOR.

Technology 45nm
Vdd / Frequency 0.8V / 3GHz

Network 9-core, 1 core and 2 cache layers
VC number / depth 4 / 4 f lits

Flit size 128 bits
Routing algorithm DDRA for THIN, XYZ for Mesh

Traffic pattern Random, Transpose, Bit Reversal
Warmup / Simulation time 1,000 / 100,000 cycles

the latency and power consumption of link are dependent on

the length of the link, and they cannot be accurately estimated

without floorplanning information. Next, we will present the

detailed evaluation methodology followed by the results.

A. Simulation Infrastructure

To compare the different floorplanning designs, we extended

a cycle-accurate 2D NoC simulator Noxim [26] developed in

SystemC to a 3D network simulator. It integrated multiple

layers of Mesh and THIN networks by connecting them with

a dynamic, time-division multiple-access bus spanning the

entire vertical distance of the chip. One core layer and two

cache layers are used to construct the 3D NoC structure. This

simulator allows NoC evaluation in terms of latency and power

consumption. The energy parameters of routers and wires were

obtained from ORION 2.0 [24] and HSPICE, respectively.

ORION 2.0 is an architecture level network energy and area

model that can evaluate the power consumption and area

requirement of routers.

The parameters used in our simulator are listed in TABLE

III. All our experiments were done in 45nm technology. The

router had typical components as in a state-of-art NoC router

and supported wormhole switching of packets. Each router in

THIN and Mesh had 5 and 6 ports, respectively, and each

port of the router had 4 virtual channels (VCs). The buffer

depth of each VC was 4. We used DDRA routing algorithm in

THIN and XYZ routing algorithm in 3D Mesh. Our synthetic

workloads consisted of three traffic patterns: uniform random,

transpose and bit reversal.

B. Results

1) Latency: Fig. 5 plots the average flit latencies for Mesh

and THIN using deterministic routing algorithm under the

uniform random, transpose and bit reversal traffic patterns.

The curves labeled Mesh, THIN Y, and THIN M are the

results from standard 3D Mesh, our Method 1 and Method

2, respectively.

In general, the latency increases with the flit injection

rate. The latency increases slow at low loads, and soars

in heavy injection rate. The results are consistent with our

expectations. For uniform random, the latencies of THIN Y

and THIN M are higher than Mesh by 12.75% and 19.58%

on average. Given that the links between routers in THIN are

longer than the links in Mesh, the large wire delay increases

the latency of packets, even though Mesh has larger and

slower routers. However, the other two traffic patterns show

the opposite results. There are two reasons. First, THIN has

smaller and faster routers. Second, the average hop count is

lower between the frequently communicate PE pairs in THIN.

For example, the PE0 (0, 0) and PE8 (2, 2) are frequently

communicate PEs in transpose and bit reversal. The distance

of this PE pair is 4-hop, 1-hop and 1-hop in Mesh, THIN Y

and THIN M, respectively. The positive impacts conceal the

long wire negative impact in these traffic patterns. The average

latency improvements of THIN Y and THIN M are 15.76%

and 10.17%.

2) Power consumption: The main power consumption com-

ponents in NoCs are the wires and the blocks in routers, such

as buffers, crossbars and arbitrators. In addition, power due to

the clocking of routers is also modeled in our evaluation. To

precisely evaluate the relative energy efficiency of the different

interconnection networks, we added ORION 2.0 energy model

into our simulator and simulated 100,000 cycles for each

configuration, collecting energy data.

Fig. 6 summarizes the results with different traffic patterns.

Our methods show lower power consumption than 3D Mesh

in all traffic patterns. The average power improvements of our

methods are 24.95% and 16.36% compared with 3D Mesh,

respectively. The Mesh consumes the most energy due to the

relatively high connectivity routers at each network hop. Our

methods are more energy-efficient as a result of their compact,

low-radix routers. The less hop counts also contribute to the

improvements. In our method, the power of wires is about

15.37% on average of each tile’s total power. Due to the short

and low power consumption TSVs in 3D network, the power

consumption of links is less than 2D Mesh which consumes

about 30% of total power [27].

Until recently, we have assumed some synthetic traffic

patterns. In a SoC environment, different functions would be

mapped to different parts of the chip, and the traffic patterns

would be expected to be localized to different degrees [28].

The advantage of THIN over other topologies, such as Mesh,

binary trees and torus, is its efficient exploitation of local-

ity characteristics in complex scientific computations [3, 4].

However, the weak locality synthetic workloads decrease the

performance of THIN, and the real workload performance on

THIN will be better due to the locality of workloads.

C. Area Requirement

To verify the feasibility of our interconnection network, we

considered area requirements of THIN and compared it with

30

40

y
c
le
s
) Mesh

THIN_Y

10

20

30

40

a
t
e
n
c
y
 (
c
y
c
le
s
) Mesh

THIN_Y

THIN_M

0

10

20

30

40

1 5 9 13 17 21 25 29 33 37 41

L
a
t
e
n
c
y
 (
c
y
c
le
s
) Mesh

THIN_Y

THIN_M

0

10

20

30

40

1 5 9 13 17 21 25 29 33 37 41

L
a
t
e
n
c
y
 (
c
y
c
le
s
)

Injection Rate (%flits/cycle)

Mesh

THIN_Y

THIN_M

0

10

20

30

40

1 5 9 13 17 21 25 29 33 37 41

L
a
t
e
n
c
y
 (
c
y
c
le
s
)

Injection Rate (%flits/cycle)

Mesh

THIN_Y

THIN_M

0

10

20

30

40

1 5 9 13 17 21 25 29 33 37 41

L
a
t
e
n
c
y
 (
c
y
c
le
s
)

Injection Rate (%flits/cycle)

Mesh

THIN_Y

THIN_M

(a) Uniform Random

10

20

30

40

a
t
e
n
c
y
 (
c
y
c
le
s
) Mesh

THIN_Y

THIN_M

0

10

20

30

40

1 3 5 7 9 11 13 15 17 19 21 23 25 27

L
a
t
e
n
c
y
 (
c
y
c
le
s
)

Injection Rate (%flits/cycle)

Mesh

THIN_Y

THIN_M

(b) Transpose

10

20

30

40

a
t
e
n
c
y
 (
c
y
c
le
s
) Mesh

THIN_Y

THIN_M

0

10

20

30

40

1 5 9 13 17 21 25 29

L
a
t
e
n
c
y
 (
c
y
c
le
s
)

Injection Rate (%flits/cycle)

Mesh

THIN_Y

THIN_M

(c) Bit reversal

Fig. 5. Average network latency for 9-core Mesh and THIN.

20

25

30

w
)

Mesh THIN_Y THIN_M

5

10

15

20

25

30

P
o
w
e
r
 (
w
)

Mesh THIN_Y THIN_M

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50

P
o
w
e
r
 (
w
)

I j ti R t (%flit/ l)

Mesh THIN_Y THIN_M

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50

P
o
w
e
r
 (
w
)

Injection Rate (%flit/cycle)

Mesh THIN_Y THIN_M

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50

P
o
w
e
r
 (
w
)

Injection Rate (%flit/cycle)

Mesh THIN_Y THIN_M

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50

P
o
w
e
r
 (
w
)

Injection Rate (%flit/cycle)

Mesh THIN_Y THIN_M

(a) Uniform Random

25

30

35

w
)

Mesh THIN_Y THIN_M

10

15

20

25

30

35

P
o
w
e
r
 (
w
)

Mesh THIN_Y THIN_M

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40

P
o
w
e
r
 (
w
)

I j ti R t (%flit / l)

Mesh THIN_Y THIN_M

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40

P
o
w
e
r
 (
w
)

Injection Rate (%flits/cycle)

Mesh THIN_Y THIN_M

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40

P
o
w
e
r
 (
w
)

Injection Rate (%flits/cycle)

Mesh THIN_Y THIN_M

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40

P
o
w
e
r
 (
w
)

Injection Rate (%flits/cycle)

Mesh THIN_Y THIN_M

(b) Transpose

25

30

35

w
)

Mesh THIN_Y THIN_M

10

15

20

25

30

35

P
o
w
e
r
 (
w
)

Mesh THIN_Y THIN_M

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40

P
o
w
e
r
 (
w
)

I j ti R t (%flit / l)

Mesh THIN_Y THIN_M

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40

P
o
w
e
r
 (
w
)

Injection Rate (%flits/cycle)

Mesh THIN_Y THIN_M

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40

P
o
w
e
r
 (
w
)

Injection Rate (%flits/cycle)

Mesh THIN_Y THIN_M

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40

P
o
w
e
r
 (
w
)

Injection Rate (%flits/cycle)

Mesh THIN_Y THIN_M

(c) Bit reversal

Fig. 6. Average power consumption for 9-core Mesh and THIN.

TABLE IV
AREA REQUIREMENT OF DIFFERENT INTERCONNECTION NETWORKS.

Area (mm2) routers wires Total

Mesh 1.9782 0.6903 2.6685
THIN Y 1.4220 0.7970 2.2190
THIN M 1.4220 1.0355 2.4575

3D Mesh. We developed analytical models to estimate the

area of NoC based on the previous discussion on floorplanning.

Since the unused space in Method 1 and Method 2 can be

occupied by on-chip I/O devices, the area of unused space is

not included in the interconnection area.

Generally, the main components concerning area require-

ment include the wire, the storage buffer and logic to imple-

ment routing and flow control. We used ORION 2.0 [24] for

developing the area models for wire, buffer and logic.

The area requirement of 3D interconnection network ANoC
is determined by the area of routers Ar and links Al (Al stands

for the area of 1mm wire). Therefore, the total interconnection

area can be calculated as follows:

ANoC =
Nr

∑
j=1

Ar(j)+
Nl

∑
k=1

Al(k) (1)

where Nr is the number of routers, Nl is the length of links

in millimeter. TABLE IV summarizes the area requirement

comparison of THIN with Mesh where Al = 0.03835mm2

Ar = 0.2198mm2 for Mesh and Ar = 0.158mm2 for THIN.

The area requirement reductions of our designs are 16.84%

and 7.91% compared with Mesh. This is probably because

the low connectivity routers in THIN occupy smaller area.

D. Scalability

The recursive algorithms of the first floorplanning method

is listed in Algorithm 1. The algorithm calls itself in line 6. In

order to decrease the area requirement, three sub-networks are

rotated (see lines 7-9) and connected by the function connect()

which connects the sub-networks through triangle pattern.

When Core Count decreases to 1, the single core is returned.

For method 2, the algorithm is similar to the first method

except that the connection of sub-network is divided into

two situations. If K which represents the hierarchy levels of

THIN is odd, three sub-networks are arranged and connected

horizontally. Otherwise, the sub-networks are arranged and

connected vertically.

Algorithm 1 floorplan(CoreCount)

1: if CoreCount=1 then
2: return single core /*recursive termination*/

3: else
4: CoreCount ←CoreCount/3

5: /*build three sub-networks*/

6: top triangle ← le f t triangle ← right triangle
← f loorplan(CoreCount)

7: rotate 180(top triangle) /*rotate the sub networks*/

8: rotate 120(left triangle)

9: rotate 240(right triangle)

10: return connect(top triangle,left triangle,right triangle)

11: end if

The growth rates of the core counts in THIN and Mesh are

different. For THIN, the increase of core count is 3, 9, 27,

81. . . The increase factor is three. THIN and Mesh only have

the same number of cores when the core count is 9, 81. . .

When the core count rises to 81, the length of the longest

wire in the THIN becomes 6mm. The transmission of this

long wire cannot be completed within a signal clock cycle.

We thus have to insert flip-flops into the wire to make the

transmission of flit completed in more than one cycle. Under

the configuration, we evaluate that the delay of this type of

long wires using HSPICE. Two clock cycles are enough to

complete the transmission of long wires. We also evaluated the

latency, energy dissipation and area requirement of THIN and

3D Mesh with 81-core. The experimental results with uniform

random traffic at 0.05 injection rate are shown in TABLE V.

When the core count increases to 81, the latency of THIN

is 14.78 cycles which is 11.63% higher than Mesh. However,

energy and area reduction of THIN is 22.92% and 20.39%,

respectively. The results indicate that our design is feasible

for large core count.

TABLE V
COMPARISON OF THIN AND MESH WITH DIFFERENT 81-CORE

Latency (cycles) Power (w) Area (mm2)

Mesh 13.24 93.64 26.09
THIN Y 14.78 72.18 20.77
THIN M 15.34 75.29 22.92

E. Discussion

We arrived at several observations upon analyzing the

results of the synthesis workloads. First, the average latency

of packets in THIN Y is a little lower than Mesh (6.26% on

average), THIN M and Mesh have almost the same average

latency. Second, the energy reduction of THIN is 15-25%

and the area requirement reduction is 7-20% compared with

Mesh. All the results indicate that THIN is not only a feasible

but also a power- and area-efficient NoC architecture. The

Manhattan routing method is thus considered a better approach

at present for its high performance and easy implementation.

As non-Manhattan routing architecture becomes mature, the

non-Manhattan method will improve the performance further.

VI. CONCLUSION AND FUTURE WORK

3D stacking and Non-Manhattan routing technology is used

to provide an high performance, energy- and area-efficient

interconnection network for CMPs. In this paper, we have

explored the 3D floorplanning methods of THIN which is a

new NoC. Two possible methods that include a Manhattan

design with equal length wires and a Y-architecture design

with unequal length wires are investigated. The proposed

floorplanning methods achieve the diagonal links of THIN in

two different ways. The small routers in THIN contributed to

the low power consumption and low area requirement designs.

To ensure a comprehensive evaluation, we utilized a NoC

simulator to expose our methods to several synthesis traffic

patterns. The experimental results show that THIN is not

only a feasible architecture in its physical implementation, but

also a power- and area-efficient interconnection architecture.

In order to verify our methods further, we will do more

evaluations on THIN using some real workloads in the future.

REFERENCES

[1] T. Bjerregaard and S. Mahadevan, “A survey of research and practices of
network-on-chip,” ACM Computing Surveys, vol. 38, no. 1, p. 1, 2006.

[2] L. Benini and G. De Micheli, “Networks on chips: A new SoC
paradigm,” Computer, vol. 35, no. 1, pp. 70–78, 2002.

[3] F. Shi, B. Qiao, and B. Liu, “A Triplet-based Computer Architecture
Supporting Parallel Object Computing,” in ASAP, 2007, pp. 192–197.

[4] S. Feng, J. Xinli, and B. Ziru, “Performance of Triplet Based Intercon-
nection Strategy for Multi-Core On-Chip Processors,” in HPCC, 2009,
pp. 163–170.

[5] S. Das, A. Fan, K. Chen, C. Tan, N. Checka, and R. Reif, “Technology,
performance, and computer-aided design of three-dimensional integrated
circuits,” in ISPD, 2004, pp. 108–115.

[6] T. Ho, C. Chang, Y. Chang, and S. Chen, “Multilevel full-chip routing
for the X-based architecture,” in DAC, 2005, pp. 597–602.

[7] M. Paluszewski, P. Winter, and M. Zachariasen, “A new paradigm for
general architecture routing,” in GLSVLSI, 2004, pp. 202–207.

[8] H. Chen, C. Cheng, A. Kahng, I. Mandoiu, Q. Wang, and B. Yao, “The
Y-architecture for on-chip interconnect: analysis and methodology,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 24, no. 4, pp. 588–599, 2005.

[9] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanan, and M. Kan-
demir, “Design and management of 3D chip multiprocessors using
Network-in-Memory,” in ISCA, 2006, pp. 130–141.

[10] B. Feero and P. Pande, “Networks-on-chip in a three-dimensional envi-
ronment: A performance evaluation,” IEEE Transactions on Computers,
vol. 58, no. 1, pp. 32–45, 2009.

[11] T. Ye and G. De Micheli, “Physical planning for on-chip multiprocessor
networks and switch fabrics,” in ASAP, 2003, pp. 97–107.

[12] J. Kim, J. Balfour, and W. Dally, “Flattened butterfly topology for on-
chip networks,” in MICRO, 2007, pp. 172–182.

[13] J. Hu and R. Marculescu, “Exploiting the Routing Flexibility for
Energy/Performance-Aware Mapping of Regular NoC Architectures,” in
DATE, 2003, pp. 141–155.

[14] S. Murali and G. De Micheli, “Bandwidth-constrained mapping of cores
onto NoC architectures,” in DATE, 2004, pp. 896–901.

[15] S. Murali, L. Benini, and G. De Micheli, “Mapping and physical
planning of networks-on-chip architectures with quality-of-service guar-
antees,” in ASPDAC, 2005, pp. 27–32.

[16] H. Matsutani, M. Koibuchi, D. Hsu, and H. Amano, “Three-Dimensional
Layout of On-Chip Tree-Based Networks,” in ISPAN, 2008, pp. 281–
288.

[17] A. DeHon, “Compact, multilayer layout for butterfly fat-tree,” in SPAA,
2000, pp. 206–215.

[18] H. Matsutani, M. Koibuchi, and H. Amano, “Tightly-Coupled Multi-
Layer Topologies for 3-D NoCs,” in ICPP, 2007, pp. 75–85.

[19] S. Yan and B. Lin, “Design of application-specific 3D networks-on-chip
architectures,” in ICCD, 2008, pp. 142–149.

[20] C. Addo-Quaye, “Thermal-aware mapping and placement for 3-D NoC
designs,” in IEEE International SOC Conference, 2005, pp. 25–28.

[21] M. Pathak and S. Lim, “Thermal-aware Steiner routing for 3D stacked
ICs,” in ICCAD, 2007, pp. 205–211.

[22] B. Qiao and F. Shi, “A New Hierarchical Interconnection Network for
Multi-core Processor,” in ICIEA, 2007, pp. 246–250.

[23] J. Kim, C. Nicopoulos, D. Park, R. Das, Y. Xie, N. Vijaykrishnan,
M. Yousif, and C. Das, “A Novel Dimensionally-Decomposed Router
for On-Chip Communication,” in ISCA, 2007.

[24] A. Kahng, B. Li, L. Peh, and K. Samadi, “ORION 2.0: A fast
and accurate noc power and area model for early-stage design space
exploration,” in DATE, 2009, pp. 423–428.

[25] “Predictive technology model,” http://www.eas.asu.edu/∼ptm/.
[26] F. Fazzino., M. Palesi, and D. Patti, “Noxim,”

http://noxim.sourceforge.net/.
[27] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. Loh,

D. McCaule, P. Morrow, D. Nelson, D. Pantuso et al., “Die stacking
(3d) microarchitecture,” in MICRO, 2006, pp. 469–479.

[28] P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “Effect of traffic
localization on energy dissipation in NoC-based interconnect,” in ISCAS,
2005, pp. 1774–1777.

