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Abstract—This paper presents a new quadratic, partitioning-
based placement algorithm which is able to handle non-convex
and overlapping position constraints to subsets of cells, the
movebounds. Our new flow-based partitioning (FBP) combines
a global MinCostFlow model for computing directions with
extremely fast and highly parallelizable local realization steps.
Despite its global view, the size of the MinCostFlow instance is
only linear in the number of partitioning regions and does not
depend on the number of cells. We prove that our partitioning
scheme finds a (fractional) solution for any given placement
or decides in polynomial time that none exists. In practice,
BonnPlace with FBP can place huge designs with almost 10
million cells and dozens of movebounds in 90 minutes of global
placement. On instances with movebounds, the netlengths of our
placements are more than 32% shorter than RQL’s [25] and our
tool is 9–20 times faster. Even without movebounds, the FBP
improves the quality and runtime of BonnPlace significantly and
our tool shows the currently best results on the latest placement
benchmarks [16].

I. INTRODUCTION

The traditional VLSI placement objective is to find positions
of cells minimizing interconnecting wirelength in such a way
that no cell overlaps any blockage or any other cell. This
problem has been studied for several decades and received
a boost again by the benchmarks [15], [16]. At the same time,
the increasing design sizes, tight timing and wiring constraints
make the placement an ongoing issue in chip design. These
goals often cannot be met with classical density and blockage
constraints in placement which apply to all cells at the same
time.

Hence, there is a particular need to control the positions of
subsets of cells in the design process efficiently: the move-
bounds. Movebounds appear in different chip design method-
ologies and applications: for particular timing and routability
issues [18], for placement of different voltage domains [10]
and to control clock domains [14] or IO-driven placement [28].
They can also be used as a compromise between flat and hi-
erarchical design approaches [3]: movebounds allow to reveal
the interior of hierarchical units (SoC, RLMs) but the overall
hierarchical structure can be kept. Although movebounds are
even part of the OpenAccess standard [20] there has not been
any systematic work on movebounds in placement published
until now to our best knowledge.

Unlike for the movebounded case, there are several
approaches to the classical placement problem. Modern
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placement algorithms follow a MinCut strategy [2], [19] or
an analytic approach. In the latter case one uses quadratic
netlength minimization [5], [11], [21], [24], [25], [26] or
approximates the half-perimeter wirelength (HPWL) by an-
other smooth function [1], [8], [9], [13]. Overlap reduction is
performed by artificial anchors and connections from repulsion
forces [21], [24], [25], [26], from a precomputed cell-region
matching [1], by explicit penalty methods [8], [9], [13], or
by partitioning [5], [17], [27]. In this paper we present a
completely new version of the global placement part of [5],
the BonnPlace FBP. Our main contributions are:

• We introduce a generalized concept of inclusive and
exclusive movebounds in placement. Cells associated to
movebounds must be placed within the movebound area.
Exclusive movebounds are in addition blockages to the
other cells. Movebound areas can be non-convex and
overlapping.

• We present a polynomial-time algorithm which checks
whether a (fractional) placement with movebounds exists.

• We present a placement algorithm which handles several
movebounds simultaneously.

• We present a new global partitioning algorithm which
combines a novel global MinCostFlow model for comput-
ing directions with extremely fast and highly paralleliz-
able local realization steps. This method is of its own
interest even for placements without movebounds. The
size of the MinCostFlow instance is linear in the number
of windows and does not depend on the number of cells.

• We prove that our method guarantees a feasible (almost
integral) partitioning if one exists, even in the presence
of movebounds and for any given placement, unlike
recursive partitioning approaches [5], [17], [27].

• We show how legalization of cells with different move-
bounds can be done simultaneously.

• We present the results of our tool on industrial instances
with and without movebounds as well as on recent
benchmarks.

This paper is organized as follows. In Section II we introduce
the notation and formalize the concept of movebounds. Section
III focuses on partitioning with movebounds. Section IV con-
tains the new partitioning method. In Section V we present the
experimental results and finally we conclude by the summary
in Section VI.



Figure 1. Three movebounds: an exclusive N , and two inclusive M ,L. The
area of L is contained in the area of M (left). The resulting three maximal
regions (right).

II. PLACEMENT AND MOVEBOUNDS

Let C denote the set of rectangular cells and for each
cell c ∈ C we write (x, y)(c) for the cell’s location. Given
a placement (x, y)(c) of c, A(x,y)(c) denotes the rectangle
covered by the cell c and size(c) its size. Given a finite set
of rectangles A we refer to capa(A) as the capacity of A, i.e.
the total amount of space in A available to cells (respecting
density and blockages). A is the chip area.

Definition 1. A movebound M is a pair (A(M), ξ(M)),
where A(M) is a finite set of axis-parallel, nonempty
rectangles (the area) and ξ(M) ∈ {exclusive, inclusive}.
For a set of movebounds M and a cell-movebound map
µ : C → M, a placement (x, y) : C → A is legal w.r.t.
movebounds if each cell c is entirely contained in A(µ(c)) and
for each exclusive movebound M only cells with µ(c) = M
overlap A(M).

One should also note that a placement without movebounds
can be seen as a movebounded one, where A(µ(c)) = A
for any cell c ∈ C. Moreover, we can assume that no
exclusive movebound overlaps any other movebound as such
situations can easily be detected and modified at the input.
Thus, a placement is legal w.r.t. movebounds if and only if
∀c ∈ C : A(x,y)(c) ⊂

⋃
A(µ(c)). A necessary condition for

feasibility with movebounds is hence:∑
c∈C:µ(c)∈M′

size(c) ≤ capa
( ⋃
M∈M′

A(M)
)
∀M′ ⊂M (1)

As it is inconvenient to evaluate all the subsets, we partition
A into regions (see Figure 1) :

Definition 2. A region r is a set of axis-parallel nonempty
rectangles where (a) the rectangles in r do not overlap and
(b) ∀M ∈ M : if the area of r overlaps the area A(M) then
the area of r is contained in the area of A(M). A movebound
M covers r if the area of r is contained in the area of A(M).

In an instance with overlapping movebounds, there might
be 2|M| different intersections and potentially exponentially
many regions. For the minimum number of regions one can
obtain better bounds:

Lemma 1. Let l be the number of rectangles encoding M
in A. Then there exists a decomposition of A into regions

with at most O(l2) rectangles.
Proof. Consider the Hanan grid obtained by coordinates

from rectangles in M. The grid decomposes A into O(l2)
rectangles, which can serve as regions. �

Let R be a set of regions. Define the MaxFlow instance
(G, u, s, t) with graph G = (V,E) and V := {s, t}∪̇C∪̇R and
E := ({s} × C)∪̇{(c, r) ∈ C × R|µ(c) covers r}∪̇(R × {t})
and capacities u((s, c)) := size(c) ∀c ∈ C,
u(r, t) := capa(r)∀r ∈ R and u ≡ ∞ elsewhere. Then, one
obtains:

Theorem 1. The maximum flow in (G, u, s, t) has value
val(f) = size(C) :=

∑
c∈C size(c) if and only if (1) holds.

Proof. (Sketch) ⇒: Pick a subset M′ ⊂ M, check flow
condition. ⇐: By contradiction using the MaxFlowMinCut
theorem. For details see [22]. �

For a simple feasibility check one can do faster:
Theorem 2. One can decide in O(|C| + |M|2|R|) time

whether a (fractional) placement with movebounds exists.
Proof. Recall G from above. Cluster all nodes in C of the same
movebound to one node. Using |M| ≤ |R| one can solve the
(clustered) MaxFlow instance in Theorem 1 in O(|M|2|R|)
time [7]. �

In particular, this is polynomial in the input. For the
remaining part of the paper we assume that the instance is
feasible.

III. PARTITIONING WITH MOVEBOUNDS

Partitioning-based analytical placement tools [5], [17], [27]
subdivide A by regular grids into sets of rectangular windows
and subsequently apply quadratic netlength minimization (QP)
and partitioning. For a set W of windows, partitioning is
a map ρ : C → W , such that

∑
c∈C:ρ(c)=w size(c) ≤

capa(w) ∀w ∈ W and
∑
c∈C cost(c, ρ(c)) is minimized

(usually, cost(c, w) := distL1(c, w)). The procedure is repeated
recursively until the window sizes are small enough. Indeed,
it can be shown that an almost integral partitioning (with at
most |W| − 1 fractionally assigned cells) can be computed
efficiently [4]. To improve placement quality, revisions of the
partitioning are allowed by considering neighboring 2 × 2 or
3×3 windows (Reflow [17], Repartitioning [5], [27]). Without
movebounds, the common invariant of [5], [17], [27] is that
after partitioning no window contains more cell area than
allowed by the window’s capacity. For a feasible partitioning
with movebounds, this condition translates to the requirement
that (1) has to be satisfied in each window w ∈ W . To this
end, the idea behind Theorem 1 can be applied. For each
window w ∈ W , let Rw be a set of regions in w. Instead
of computing ρ : C → W , one computes ρ′ : C →

⋃
w∈W Rw

first. This can be done with the transportation algorithm [5]
and modified costs: cost((c, r)) := ∞, wherever µ(c) does
not cover r and cost((c, r)) := dist(c, r) elsewhere. The
partitioning can then be done in O

(
q2n(log(n) + q log(q))

)
time, where q =

∑
w∈W |Rw|. This method can already be

used for recursive partitioning with movebounds as in the
unconstrained case but one can do better – see Section IV.



The partitioning is also useful for legalization. While for
non-overlapping movebounds legalization can be done inde-
pendently, it is more complicated for the overlapping case:
movement control has to be done for each movebound. Here,
regions come into play again. We decompose A into regions
R, compute a partitioning ρ : C → R and for each r ∈ R
legalize {c : ρ(c) ∈ r} in A(r) using [6]. Hence, legalization
of cells (even with different movebounds) in one region is
done simultaneously.

IV. FLOW-BASED PARTITIONING

Recursive partitioning approaches [5], [17], [27] have sev-
eral drawbacks. For a window w, partitioning into subwindows
of w assumes that a feasible partitioning in w exists, which
is not always true due to rounding effects in partitioning
or increased cell sizes from congestion avoidance [5]. In-
cremental placements are often impossible without restarting
from scratch. Moreover, partitioning decisions in a window
are taken locally, independently from other windows and
are sensitive to slightly modified cell positions. The time-
consuming reflow steps can only compensate these problems
partially.

Our novel partitioning method consists of two major steps:
a new global MinCostFlow model and a new local realization.
The directions and the amount of movement are computed
first. The realization is then done in topological order of the
flow edges by local QP and Partitioning steps. For any initial
placement of some feasible placement instance our method
guarantees a feasible (fractional) partitioning.
A. MinCostFlow Model

Given a set of windows W induced by some regular grid
Γ and a set of cells C with movebounds M, we ask for a
feasible partitioning ρ : C → W with movebounds. We assume
that each cell is assigned to some window w ∈ W (from
incremental placement, previous partitioning or QP). Let CMw

denote the set of cells with movebound M in window w. In
each w ∈ W , there are three types of nodes:

• cell groups: CMw ∀M ∈M,
• transit: TMw = {txMw|x ∈ {N,E, S,W}}∀M ∈M,
• regions: r for each r ∈ Rw.

We may restrict cell group and transit nodes of a movebound
M to windows intersecting A(M)’s bounding box [22] and
omit empty sets. The nodes are embedded in the plane:
(x, y)(CMw) is set to the center-of-gravity of cells in CMw,
transit nodes tNMw, x ∈ {N,E, S,W} are put to the center
of the north, east, south, and west boundary of w and finally
(x, y)(r) is set to the center-of-gravity of the free area of
the region r. We set b(CMw) :=

∑
c∈CMw

size(c) (supply),
b(r) := −capa(r) (demand) and b(TMw) ≡ 0 (transit).
There are four types of edges in each window w ∈ W:
EcrMw := {(CMw, r)|M covers r ∈ Rw}
EttMw := {(txMw, t

y
Mw)|x, y ∈ {N,E, S,W}, x 6= y}

EtrMw := {(txMw, r)|x ∈ {N,E, S,W}, r ∈ Rw,M covers r}
EctMw := {(CMw, t)|t ∈ TMw)}
See also Figure 2. The windows are connected at neighbor-

ing transit nodes by arcs connecting transit nodes of the same
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Figure 2. Example for movebound M in window 1. Edge sets are separated
for better readability: Ecr

M1, Ett
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M1 (right).
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Figure 3. Example containing external edges: Subgraphs of different
windows for the movebound M connected by edges between transit nodes.
Region nodes are omitted here.

movebound, see Figure 3:

Eext
v,w,M :=



{(zSMv, z
N
Mw), (zNMw, z

S
Mv)} if w is below v

{(zNMv, z
S
Mw), (zSMw, z

N
Mv)} if v is below w

{(zWMv, z
E
Mw), (zEMw, z

W
Mv)} if v is right of w

{(zEMv, z
W
Mw), (zWMw, z

E
Mv)} if w is right of v

∅ otherwise.

For e ∈ Eext
v,w,M we set cost(e) := 0. For e = (u, v) ∈

Ecr ∪ Ect ∪ Ett ∪ Etr, cost(e) := dist(u, v). All edges are
uncapacitated. The MinCostFlow instance is then (G, b, cost)
with

V (G) :=
⋃
w∈W

( ⋃
M∈M

(
CMw ∪ TMw

)
∪Rw

)
and

E(G) :=
⋃

w∈W,M∈M

(
EcrMw∪EctMw∪EtrMw∪EttMw

)
∪

⋃
v,w∈W,M∈M

Eext
v,w,M .

As movebounds are allowed to overlap, there might be
O(|M|) many copies of the graph as in Figure 3. In practice,
|V | and |E| are linear in |R| + |W| (cf. Table 1), unlike in
[1], where the MinCostFlow instance is quadratic in |W| in
the worst case. On the other hand, a feasible solution is always
guaranteed:



(1) (2) (3) (4) (5)

Figure 4. Realization Steps (1) Initial Solution. (2) Choose an external edge e from the flow graph (3) choose window W covering e and push flow along
all other possible edges in W (4) local QP in W with fixed cells outside W (5) partitioning in W and a new solution in W .

Theorem 3 The MinCostFlow instance (G, b, cost) is fea-
sible iff a (fractional) placement with movebounds exists.
Proof. Adding two new nodes {s, t} and edges e = (s, CMw)
with u(e) := b(CMw) for all M ∈M, w ∈ W and e′ = (r, t)
with u(e′) = −b(r) for all r ∈ R to G as well as replacing
any path from CMw to some r covered by M by an edge
(CMw, r) leads to a MaxFlow instance as in Theorem 1. �
B. Realization

Given a solution f of the MinCostFlow instance (G, b, cost),
we consider the flow-carrying graph Gf of G by deleting
all edges with zero flow from G. Now, if there is no flow-
carrying edge e ∈ Eext

v,w,M in Gf , all flow can be absorbed in
the corresponding windows, thus (1) holds in each w ∈ W
and the partitioning is feasible. Otherwise, for an external
flow-carrying edge e cells of total size fe which belong to
movebound M have to be moved from v to w. It can be
shown that proceeding in topological order of Gf , one can
indeed focus on external edges only and delete them after
realization [22].

We now describe which cells are shipped from window v
to w. Here, two other novel ideas are applied. First, we do
not look at cells in v only, but we consider coarser windows
W with {v, w} ⊂ W ⊂ W containing v and its neighboring
windows. Usually W consists of 2 × 3 or 3 × 2 windows
in W . Second, the partitioning is not based on a simple
movement penalty, but a local QP (considering all cells outside
W as fixed) will be computed first to obtain more connectivity
information. Then a partitioning step with movebounds as in
Section III is computed in W using the modified transportation
algorithm. In the transportation algorithm we consider all cells
in W and partition them among all regions and temporary
regions resulting from transit nodes in W . The capacity of
each transit/region node is set to:

capa(z) :=
∑

e=(·,z)∈E(Gf ):e realized

fe −
∑

e=(z,·)∈E(Gf ):e realized

fe (2)

and corresponds to the flow excess at this stage. It can be
shown [22] that this procedure guarantees a feasible (frac-
tional) partitioning in W , and thus in W using induction. The
use of transit nodes as buffer regions is mandatory because a
window w can appear several times during realization. Each
time a window w appears in realization, the partitioning of
cells in w is recomputed. Figure 4 shows a single realization

example without movebounds.
For two external edges e, e′ without external predecessors, the
realization of e and e′ can be done independently, if the coarse
realization windows W of e and W ′ of e′ do not overlap.
This allows parallel processing. Using an efficient scheme, we
can guarantee deterministic behavior and achieve good parallel
speed-ups (up to 7.9 with 8 CPUs) on large grids [22].

V. EXPERIMENTAL RESULTS

We performed two sets of experiments to evaluate the
performance of our new tool on instances with and without
movebounds. The first experiment set was done on chips
from industry with and without movebounds on an Intel Xeon
X5365 with 8 CPUs, 3.0 Ghz and 64 GB memory. Table
I shows the sizes and the runtime of our new partitioning
method on the largest instance (in terms of |V | and |E|) in
our testbed. Here we also provide the runtimes for the Min-
CostFlow computation and realization which show that even
partitionings of 2.5 million cells to fifty thousand windows can
be done within 15 seconds. The MinCostFlow was computed
by a (sequential) NetworkSimplex algorithm, the realization
was performed in parallel. On finer grids, the runtime for the
MinCostFlow computation increases, but even instances with
300 000 windows can be processed quickly.

We then compared our BonnPlace FBP to the industrial
version of RQL [25], a state-of-the-art force-directed tool.
Both tools were allowed to run in parallel, our tool used
sequential legalization [6]. Both tools used BestChoice
[17] for clustering with cluster ratio 5. To omit different
density interpretations, the target density was set to 97%
for either tool. We provide the HPWL of legal placements
and wall-clock runtimes. Table II shows the results without
movebounds. Both tools show comparable results but
BonnPlace FBP is more than 5.5 times faster on average. The
differences on particular chips are however remarkable.

Instances with movebounds are summarized in Table III, in
which besides the number of cells |C| and movebounds |M|
the percentage of cells with movebounds and the maximum
density of cells in a movebound are shown. In the last
column we indicate whether the movebounds overlap (O),
and (F) means that movebounds were obtained from flattening
hierarchy. Tomoku, Trips and Andre had nested, overlapping
movebounds which are infeasible in the exclusive case. Table



TABLE I: Sizes and runtimes of the Flow-based partitioning
instances from Erhard (2 578 246 cells, 43 movebounds)

|V | |E| |E|
|V | |W| |R| FBP Algorithm

(×1000) wall clock runtimes
Flow-

computation realization
2 15 5.5 16 94 0:00:00 0:00:26
7 38 4.9 64 206 0:00:00 0:00:11

22 102 4.6 256 520 0:00:00 0:00:06
55 238 4.3 1 536 2 118 0:00:00 0:00:06

165 668 4.0 9 216 9 464 0:00:01 0:00:04
930 3 685 4.0 55 296 45 643 0:00:08 0:00:07

5 198 20 365 3.9 331 776 239 885 0:01:20 0:00:11

TABLE II: Results on instances without movebounds
Chip |C| Industrial RQL [25] BonnPlace FBP

(103) HPWL hh:mm:ss HPWL hh:mm:ss
Dagmar 50 0.95 0:02:13 0.80 0:00:40

100.0% 1.0 83.2% 3.3
Elisa 67 2.60 0:02:35 2.86 0:00:36

100.0% 1.0 109.8% 4.4
Lucius 77 3.42 0:03:30 3.73 0:01:48

100.0% 1.0 109.2% 1.9
Felix 87 8.17 0:03:05 7.68 0:00:36

100.0% 1.0 94.0% 5.2
Paula 129 3.14 0:06:30 3.21 0:01:41

100.0% 1.0 102.3% 3.9
Rabe 175 12.42 0:08:09 12.36 0:01:44

100.0% 1.0 99.6% 4.7
Julia 190 10.65 0:08:39 10.84 0:02:15

100.0% 1.0 101.8% 3.9
Max 328 17.22 0:18:00 17.99 0:06:25

100.0% 1.0 104.5% 2.8
Roger 456 27.42 0:22:21 27.74 0:10:37

100.0% 1.0 101.2% 2.1
Ashraf 867 61.05 0:49:03 61.53 0:09:54

100.0% 1.0 100.8% 5.0
Patrick 1052 43.84 1:00:13 44.64 0:12:24

100.0% 1.0 101.8% 4.9
Erhard 2578 463.76 2:24:24 413.64 0:32:45

100.0% 1.0 89.2% 4.4
Arijan 3753 485.04 3:30:35 484.29 0:59:36

100.0% 1.0 99.8% 3.5
Philipp 3946 358.91 4:22:42 342.37 0:54:52

100.0% 1.0 95.4% 4.8
Tomoku 5296 356.44 7:51:32 354.37 1:10:10

100.0% 1.0 99.4% 6.7
Trips[23] 5747 616.05 6:31:12 589.69 1:25:13

100.0% 1.0 95.7% 4.6
Valentin 5838 671.49 8:15:01 610.40 1:36:21

100.0% 1.0 90.9% 5.1
Andre 6794 437.01 9:16:52 448.74 1:38:04

100.0% 1.0 102.7% 5.7
Ludwig 7500 598.40 9:19:11 603.38 1:30:30

100.0% 1.0 100.8% 6.2
Leyla 8472 711.90 13:43:02 718.22 2:09:18

100.0% 1.0 100.9% 6.4
Erik 9316 559.34 13:25:50 547.43 2:07:02

100.0% 1.0 97.9% 6.3
Total 100.0% 81:44:09 99.3% 14:52:29

1.0 5.5

TABLE III: Industrial instances with movebounds
Chip |M| |C| % cells w/ max mb. remarks

moveb. dens
Rabe 2 175 646 4.3% 67%
Ashraf 206 866 777 22.0% 92% (F)
Erhard 43 2 578 246 97.8% 74%
Tomoku 85 5 296 120 1.2% 74% (O)(F)
Trips[23] 114 5 747 007 99.4% 81% (O)
Andre 43 6 794 323 3.8% 73% (O)(F)
Ludwig 33 7 500 446 2.7% 70% (O)(F)
Erik 39 9 316 938 84.6% 85% (F)

TABLE IV: Results with inclusive movebounds
Chip Industrial RQL [25] BonnPlace FBP

HPWL hh:mm:ss viol. HPWL hh:mm:ss
Rabe 16.68 00:10:22 12.44 0:01:58

100.0% 1.0 74.6% 5.3
Ashraf crashed 61.59 0:34:12

Erhard 549.62 04:49:16 499.31 0:39:11
100.0% 1.0 90.8% 7.4

Tomoku 737.34 13:20:44 361 367.00 1:32:13
100.0% 1.0 49.8% 8.7

Trips[23] 703.88 11:37:42 611.58 2:27:59
100.0% 1.0 86.9% 4.7

Andre 1023.65 37:36:58 62 462.23 3:08:50
100.0% 1.0 45.2% 12.0

Ludwig 1207.63 26:22:04 624.09 2:53:31
100.0% 1.0 51.7% 9.1

Erik 879.12 36:44:33 4655 598.15 2:55:50
100.0% 1.0 68.0% 12.5

Total 100.0% 130:41:47 64.5% 13:38:31
w/o Ashraf 1.0 9.6

TABLE V: Results with exclusive movebounds
Chip Industrial RQL [25] BonnPlace FBP

HPWL hh:mm:ss viol. HPWL hh:mm:ss
Rabe 16.73 00:11:18 12.85 0:01:41

100.0% 1.0 76.8% 6.7
Ashraf 93.21 02:09:14 64.44 0:15:17

100.0% 1.0 69.1% 8.5
Erhard 633.64 04:25:35 518.64 0:30:01

100.0% 1.0 81.9% 8.8
Andre 1144.21 47:08:58 463 494.04 1:41:37

100.0% 1.0 43.2% 27.8
Erik 864.74 *43:20:47 5630 624.82 2:10:34

100.0% 1.0 72.3% 19.9
Total 100.0% 97:15:52 67.1% 04:39:10

1.0 20.9

TABLE VI BonnPlace FBP with inclusive movebounds
Chip Wall-clock runtimes (hh:mm:ss)

Global Pl. Legalization Total Global/Total
Rabe 0:01:20 0:00:38 0:01:58 67.8 %
Ashraf 0:09:32 0:24:40 0:34:12 27.9 %
Erhard 0:24:52 0:14:19 0:39:11 63.5 %
Tomoku 0:47:44 0:44:29 1:32:12 51.8 %
Trips 1:14:51 1:13:08 2:27:59 50.6 %
Andre 1:35:41 1:33:09 3:08:50 50.7 %
Ludwig 1:12:23 1:41:08 2:53:31 41.7 %
Erik 1:30:24 1:25:26 2:55:50 49.2 %
Total 6:56:47 7:16:57 14:13:43 48.8%

TABLE VII: Results on ISPD 2006 Benchmarks
Kraftwerk2 BonnPlace FBP ratio

HPWL H+DENS H+D+CPU HPWL DENS Runtime
(H) (H+D) (H+D+C) (H) (D) wall time (sec) (C) (H+D) (H+C+D) (H+D) (H+D+C)

ad5 433.84 449.48 407.46 430.43 1.81 % 1571 -9.52% 438.22 396.50 97.5 % 97.3%
nb1 65.92 66.22 60.67 69.05 2.04 % 378 -10.00% 70.46 63.42 106.4 % 104.5%
nb2 203.91 206.53 185.88 200.77 1.92 % 1076 -8.16% 204.62 187.92 99.1 % 101.1%
nb3 278.51 279.57 251.62 273.48 1.15 % 709 -8.25% 276.63 253.82 98.9 % 100.8%
nb4 304.24 309.44 282.74 313.72 2.27 % 1124 -10.00% 320.83 288.75 103.7 % 100.2%
nb5 548.38 563.15 509.65 545.82 1.31 % 2030 -10.00% 552.96 497.66 98.2 % 97.7%
nb6 528.59 537.59 484.42 520.19 1.42 % 2800 -9.42% 527.59 477.62 98.1 % 98.7%
nb7 1126.58 1162.12 1056.84 1075.98 0.97 % 5461 -8.35% 1086.40 995.70 93.5 % 94.2%

99.4 % 99.5%



IV and V show the comparison between RQL and BonnPlace
FBP tool. Though RQL is able to respect movebounds in
general, it produced several movebound violations (viol.) and
crashed on Ashraf in the inclusive case. Our tool produced
legal placements on each design. The run on Erik with
exclusive movebounds (∗) was done in sequential mode
as the parallel one failed. Comparing the results, our tool
performs better on each design, in both HPWL and runtime.
On inclusive movebound instances, our placements are more
than 35% shorter on average, on Tomoku and Andre even by
50%. Our tool is more than 9.5 times faster. With exclusive
movebounds the gap is 32% in favor of our tool and we
are more than 20 times faster. Table VI shows that our new
global placement is fast and takes about 50% of the total
placement runtime on movebounded instances.

In the second experiment set we ran our tool on ISPD 2006
benchmarks [16] in standard mode (using BestChoice with
cluster ratio 2) on an Opteron 852 machine. The same machine
type has been used for the contest runs. Our tool ran in parallel
mode and used up to 8 CPUs in global placement, followed
by sequential legalization [6]. We compare the results to the
currently best tool on this benchmark set (Kraftwerk2, taken
from [21]) in Table VII. For both tools, we provide the HPWL
(H) with the density penalty (D) and the CPU penalty/bonus
(C). The CPU bonus in italics was truncated at −10%, as
in [16]: (without we would have obtained −10.9%,−10.3%
and −10.7% for nb1, nb4 and nb5 resp). On the mixed-size
instance nb1, our placer produces inferior results as the large
blocks are fixed at an early stage in placement.

In total, we are able to improve the currently best results
on ISPD 2006 benchmarks [21], [16] significantly. Our tool
benefits from its high parallelization ability during global
placement, which allows speedups of up to 4.5 with 8 CPUs
for the global part and preserves deterministic behavior [22].
The sequential legalization [6] leads to overall speedups be-
tween 1.5 - 3.5 with 8 CPUs and leaves room for further
acceleration.

VI. SUMMARY AND CONCLUSIONS

In this paper we presented for the first time a non-trivial
approach to handle non-convex and overlapping position con-
straints in placement, the movebounds. Our BonnPlace FBP
is able to handle simultaneously dozens of movebounds and
millions of cells in an efficient way and seems much more
suitable to instances with movebounds than the previous tools
such as RQL [25]. On instances with movebounds, our tool
performs much better in terms of wirelength and runtime. The
new core routine of our placer, the flow-based partitioning,
compensates several drawbacks of previous partitioning algo-
rithms and leads to highly competitive placements even on
unbounded instances. BonnPlace FBP computes the currently
best results on ISPD2006 benchmarks [16].
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