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Abstract—
Driven by continued scaling of Moore’s Law, the number

of processing elements on a die are increasing dramatically.
Recently there has been a surge of wide single instruction
multiple data architectures designed to handle computa-
tionally intensive applications like 3D graphics, high defini-
tion video, image processing, and wireless communication.
A limit of the SIMD width of these types of architectures
is the scalability of the interconnect network between the
processing elements in terms of both area and power.

To mitigate this problem, we propose the use of a
new interconnect topology, XRAM, which is a low power
high performance matrix style crossbar. It re-uses output
buses for control programming, and stores multiple swizzle
configurations at the cross points using SRAM cells, signif-
icantly reducing routing congestion and control signaling.
We show that compared to conventionally implemented
crossbars, the area scales with the product of input×output
ports while consuming almost 50% less energy. We present
an application case study, color-space conversion, utilizing
XRAM and show a 1.4x gain in performance while con-
suming 1.5-2.5x less power.

I. INTRODUCTION

Not so long ago, growth in computing was dominated

by PCs in the form of laptops and desktops. Today,

smartphones and handheld devices like the iPad and

iPhone are already poised to outsell PCs within the next

few years. The capability of these devices has increased

rapidly and now provide features like high definition

video, high bandwidth internet access, and 3D graphics

all within the same die. These devices will continue to

grow in terms of capabilities and performance while still

needing to adhere to a strict power budget.

Continued scaling of VLSI technology due to Moore’s

Law allows us to integrate an increasing number of

transistors on a single die. Both in industry and academia

we have seen one of the most power efficient ways to

utilize this transistor area is through integrating multiple

processing elements (PE) within a die [1]. This is rep-

resented by many architectures in the form of increased

number of single instruction multiple data (SIMD) lanes

in processors [2][3], and the shift from multi-core to

many-core architectures [4][5]. As we scale the number

of PEs in these architectures, traditional on-chip inter-

connects such as buses and crossbars are unable to keep

up with the bandwidth required to fully utilize the PEs.

Moreover, traditional interconnects do not scale well in

terms of power and area as the number of PEs increase.

The National Science Foundation held a workshop trying

to identify the most critical challenges facing on-chip

interconnects and their findings showed that power and

latency were the biggest challenges that needed to be

solved [6]. Network-on-Chip architectures [7][8] show

that the crossbar itself consumes between 30% to almost

50% of the total interconnect power. Another critical

problem is that existing circuit topologies in traditional

interconnects do not scale well, because of the complex-

ity in control wire and control signal generation logic

which directly effects the delay and power consumption.

This area and power scaling problem is one of the critical

bottlenecks that limits the increase in the number of PEs

in the future.

This paper studies a low power and scalable crossbar

design, called XRAM [9], which provides a solution

to the bandwidth and scaling problem seen in low

power SIMD architectures. XRAM implements novel

circuit techniques to solve the scaling problem while

providing high bandwidth. Unlike other interconnect

networks [10][11], the XRAM is non-blocking and is

able to perform all permutations and swizzle operations,

including multicasting and broadcasting, illustrated in

Figure 1. One circuit technique that helps solve the

control complexity problem is to embed the interconnect

control within the cross points of a matrix style crossbar

using SRAM cells. This differs from the traditional

technique where interconnections are set by an external

controller. Other circuit techniques, like using the same

output bus wires to program the cross point control, help

reduce the number of control wires needed within the

XRAM. Finally borrowing low voltage swing techniques

that are currently used in SRAM arrays improves perfor-

mance and lowers the energy used in driving the wires

of the XRAM. Though these techniques help solve the

performance and scaling problem of traditional intercon-
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Fig. 1: Permutations are 1-to-1 mappings of input to output ports. Multicasts are mappings that allow individual inputs to connect
to multiple outputs, however, no output may be connected to more than 1 input. Broadcast is a special form of multicast where
a single input is connected to all the outputs. A swizzle interconnect allows for all three forms, including permutations, to occur
in the network.
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Fig. 2: Commonly Used Network Topologies

nects, one drawback is flexibility; the XRAM is only able

to store a certain number of swizzle configurations at a

given time. These configurations are not static and can

be changed and reprogrammed at run-time. Though this

may seem like a major drawback, for many applications

only a small number of interconnect permutations is

required. Furthermore, we show through a case study that

the XRAM achieves 1.4x performance and consumes

2.5x less power in a color-space conversion algorithm.

The remainder of the paper is organized as follows.

Section II will discuss the traditional crossbar approaches

that have been used in on-chip interconnects and the

problems that are faced as we scale. Section III will

introduce and discuss the operation of XRAM, a low

power and scalable crossbar network. Section IV will

present a case study of the XRAM, and provide power

and performance comparisons against other interconnect

topologies. Finally, Section V will present our conclu-

sions.

II. RELATED WORKS

Many techniques are currently used to implement per-

mutation networks and swizzle networks. In this section

we discuss traditional crossbar designs. Others solutions

such as Benes̆ [10] and Banyan [11] networks are

omitted due to space limitations.

Typically in modern designs when permutations are

needed they are implemented using fully connected

networks like crossbars. Crossbars are able to realize

all permutations and swizzle operations. These networks

are implemented in two different ways: MUX based

crossbars or matrix style crossbars. Figure 2(a) and

(b) show the topology of these two networks. MUX

based crossbars utilize Nx1 MUXes to drive the outputs,

while matrix style crossbars use switching elements such

as transmission gates or tristate buffers to drive the

output at each cross point. Current SIMD processors

which have narrow SIMD widths, between 4 and 8,

implement these style of crossbars. The problem with

these networks is that as the number of SIMD processing

elements increase, the complexity of these networks

grows quadratically. In a MUX based crossbar, the

data passes through log2(N) number of 2x1 MUXes

which, combined with driving the wires, determines the

critical path delay of the network. The area of the MUX

based crossbar increases by (2N − 1)N2. As we start

increasing N to large numbers, the area and energy

consumption increase dramatically. With matrix style

crossbars, the area increases N3 with respect to the

numbers of ports. This increases the wire capacitance

that the input and output drivers need to drive, increases

the delay but more importantly dramatically increases

the energy consumption. Generating control for both of

these types of networks is straight forward in that only a

simple decoder is needed to select the interconnections.

However, routing the wires for the control signals is

very costly, increasing both area and power of the total

network. Because of these drawbacks, these types of

networks can only be used when the number of ports

is relatively small.

III. XRAM FUNDAMENTALS

XRAM is a matrix crossbar that leverages some of the

circuit techniques used in SRAM arrays for improving

area and performance. Figure 3 shows a system level

diagram of XRAM. The input buses run horizontally
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Fig. 3: XRAM is a low power high performance matrix style
crossbar that re-uses output buses for control programming
and stores multiple swizzle configurations at the cross points
using SRAM cells. The XRAM controller sends the control line
to pick which configuration SRAM cell to use. The encoder
and decoder are the transition encoding/decoding logic used to
minimize the switching power when the input and output bits
do not change values.

while the output buses run vertically, creating an array

of cross points. Each cross point contains a 6T SRAM

bit cell. The state of the SRAM bitcell at a cross point

determines whether or not input data is passed onto the

output bus at the cross point. Along a column, only

one bitcell is programmed to store a logic high and

create a connection to an input. Matrix type crossbars

incur a huge area overhead because of quadratically

increasing number of control signals that are required

to set the connectivity at the cross points. To mitigate

this, XRAM uses techniques similar to what is employed

in SRAM arrays. In an SRAM array, the same bit line

is used to read as well as write a bit cell. Until the

XRAM is programmed the output buses do not carry

any useful data. Hence, these can be used to configure

the SRAM cells at the cross points without affecting

functionality. Along a channel (output bus), each SRAM

cell is connected to a unique bit line of the bus. This

allows for the programming of multiple SRAM cells (as

many bit lines available in the channel) simultaneously.

Swizzle networks have traditionally been highly in-

terconnect dominated, rendering a significant amount of

logic space under-utilized. This gets aggravated in sub

100nm technology nodes because of poor scalability

of interconnect wires in comparison to transistors. In

a 128x128 port swizzle network with 16 bit channels

fabricated using industrial standard libraries in an IBM

65nm technology, the silicon utilization is only 18%.

XRAM mitigates this to some extent by re-using output

channels for programming, resulting in improvement of

silicon utilization to 45%. To further improve silicon uti-

lization, multiple SRAM cells can be embedded at each

cross point to cache more than one shuffle configuration.

In 65nm, a 16-bit bus width allows six configurations to

be stored without incurring any area penalty. Any one

of these configurations can be selectively programmed

or used to shuffle data. We find that many applications,

especially in the signal processing domain, only utilize

a small number of permutations over and over again. By

caching some of the patterns that are most frequently

used, XRAM reduces power and latency by eliminating

the need to configure and reprogram the XRAM for those

patterns.

XRAM operates in two modes: programming mode

and transmission mode. In programming mode, the con-

troller sends a one-hot signal onto each output bus.

A global wordline is then raised high to program the

XRAM. With 16-bit buses, a 16x16 XRAM can be

programmed in a single clock cycle. Larger XRAMs are

divided into multiple sections with independent word-

lines and one section is programmed at a time. For

example a 128x128 XRAM with 16 bit buses is divided

into 8 sections using 8 independent wordlines to select

each section—a total of 24 wires in each channel. To

program a channel, in the first cycle all wordlines are

raised high while sending an all zero code(16’b0) on the

channel. This writes a logic low in all the bitcells in that

channel. In the next cycle a one hot signal is sent while

selectively raising only one wordline high to allocate

the channel. For instance, to allocate the channel to

input 43, the third wordline is raised high while sending

16’b0000100000000000 on the channel.

In transmission mode, incoming data is passed onto

the output bus at any cross point storing a 1 using a

precharge followed by conditional discharge technique.

During the positive phase of clock, input data is launched

and the bit lines are precharged to logic high. During

the negative phase of clock, the bit lines are selectively

pulled down if the data is high and the cross-point signals

a connection. A bank of sense amplifiers evaluates the

bit lines to retrieve data. The bit lines need not be pulled

down all the way thereby saving power and improving

performance. However, this technique results in power

dissipation even with a non-switching input because the

bit lines get precharged and discharged every cycle. To

mitigate this, the incoming data is transition encoded at

the input of XRAM. The original data is retrieved back

at the output using transition decoders.
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A. Embedded Configurations in XRAM

The fully programmable implementation of XRAM

discussed above is most suited for generic SIMD pro-

cessors that run a variety of algorithms, each requiring a

small subset of vector permutations. This will allow the

host processor to program the XRAM before running

the application, thereby improving runtime. If larger

numbers of permutation operations are required, a one

cycle programming penalty will be incurred to reprogram

one of the configurations stored locally within the SRAM

cell. However, this requires shuffle patterns to be stored

in SRAM cells beneath the crossbar wiring. Hence, only

a few (6 in 65nm implementation with 16 bit buses)

shuffle patterns can be supported; technology scaling will

increase the number of configurations stored. But for

systems that only support a limited number of shuffle

patterns in their ISA—application specific engines or

generic SIMD processors like Ardbeg [12]—this may

be sufficient.

B. Tradeoffs with Placement of XRAM in Processor
Architectures

Figure 4 shows multiple placements of XRAM within

a SIMD processor: as a separate functional unit, con-

nected to the register file, and between the memory sys-

tem and processor. Each placement has its benefits and

drawbacks. In Figure 4(a), the XRAM is implemented

as another SIMD functional unit, in Figure 4(b) all

SIMD register file reads pass though the XRAM. Imple-

mentation (a) minimizes delay and power consumption

when the re-arrangement functions carried out by the

XRAM are infrequent. Implementation (b) improves the

CPI performance of the whole machine because swizzle

operations can occur every time a register is accessed,

however, it increases the total power consumption be-

cause the XRAM is used even on instructions when no

swizzle is necessary.

The benefit of placing an XRAM between the mem-

ory blocks and the processing elements, as shown in

Figure 4(c), is that the system can cope with a larger

number of memory banks than the number of processing

elements. This is an interesting possibility because, as

shown by Lawrie [13], access to rows, columns, diago-

nals, reverse diagonals, and blocks of a matrix cannot all

be implemented if the number of memory banks is equal

to the number of PEs. However, all these access patterns

can be supported if the number of memory banks is twice

the number of PEs. Because one of the major appli-

cations that SIMD processors can accelerate are signal

processing algorithms, optimizing matrix data alignment

for SIMD can improve performance dramatically.

IV. CASE STUDIES

Case studies for the XRAM were done across sev-

eral applications in the signal processing and graphics

domain. These applications benefit from not only in-

crease in processing elements but also the shuffle and

multicasting operations. Comparisons to MUX based

implementations are performed. Each of the case stud-

ies were synthesized using IBM65nm technology with

Synopsys design compiler and place-and-routed using

Cadence encounter. Energy dissipation were generated

from the synthesis results. The FFT results were verified

with a test chip fabricated in TSMC 65nm.

Figure 5 compares the results of XRAM and MUX

based implementations of a SIMD processor that ac-

celerates FFT operations. The XRAM enables us to

build accelerators which contain many more processing

elements running at a lower voltage and thus lower fre-

quency. When performing at iso-throughput, the XRAM

consumes almost 50% less total energy than the MUX

based counterpart.

A. Color-space Conversion Hardware

Many smartphones and portable internet devices

are based around systems like the Qualcomm Snap-

dragon [14] and ARM Mali [15] which integrate together

a Mobile GPU and high definition video engine (HDVE).

These systems typically are design where the HDVE

decodes the video stream data and the mobile GPU
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performs video overlay of the menu system and post

processing. Problems arise between the communication

between the HDVE and GPU when we start going to

high definition standards such as 1080p. In these systems

interconnect bandwidth and memory storage are scarce

and expensive commodities, so the HDVE and GPU

typically read and write out a form of compressed pixel

data—YUV. The problem is that current mobile GPUs

operate on RGB data only [16]. In order to use YUV
data, the GPUs have to perform color-space conversion

on the YUV output of the HDVE and convert the data

into RGB for subsequent processes. At this point the

GPU can output the image directly to the display or

perform another color-space conversion to compress the

RGB data back into YUV data. Typically in desktop

GPUs from Nvidia and ATI, power consumption is in

the hundreds of watts, so the number of streaming

processors is extremely large—typically in the hundreds.

Performing color-space conversions for post processing

on these GPUs utilizes very little of the total resources.

In mobile GPUs, such as Imagination Technologies’

PowerVR SGX [17] or ARM’s Mali, there are less than

ten’s of stream processors because the power budget is in

the hundreds of mW. Performing color-space conversion

on mobile GPUs can saturate the whole GPU processing

power. In addition, for video modes like 1080p real time

rendering may be impossible.

In the literature, accelerators for color conversion

have been designed to convert between YUV and RGB
formats. However, these systems only support a spe-

cific set of YUV modes—such as YUV 4:2:0 or YUV
4:2:2 [18]. This is done because the pixel data is

laid out differently in each format. Figure 6 shows

a few different color-space modes. As you can see

the pixel data itself can be in many different places,
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but only a single XRAM configuration is needed to

perform a specific input color-space to output color-

space conversion. This configuration can be programmed

once and performed multiple times amortizing the one



cycle programming penalty across the entire conversion.

However, the memory access pattern causes the color-

space conversion accelerators to add increased amounts

of contention into the memory system. Figure 7 shows

our implementation of a color space conversion acceler-

ator that can reduce the number of memory requests to

the bus while also increasing performance. Because we

need to buffer a larger number of pixels and then per-

form multicasting and permutations based on the color

compression scheme, XRAM becomes a key enabler for

this architecture. One example is to first convert YUV
4:2:0 to YUV 4:4:4 then perform the YUV to RGB
conversion. After the pixel data is buffered, the system

can efficiently process the pixels and convert them to

the corresponding color-space. If a MUX based system

is used the power consumption, area, and delay of the

MUX would dominate the accelerator. These increases

would lead to an alternative solution where more stream

processors would be added to the GPU rather than using

a color space conversion accelerator. Figure 7 shows that

compared to the MUX based implementation of the color

space conversion accelerator, we are able to perform

1.7x faster, and consume almost 2.5x less power. This

allows the use of such an accelerator without the need

to increase the number of processing elements.

V. CONCLUSION

In this paper we evaluate a low power and scal-

able crossbar design, called XRAM, which provides a

solution to the bandwidth and scaling problem seen

in traditional interconnect implementations. XRAM im-

plements novel circuit techniques to solve the scaling

problem while providing high bandwidth. It is a non-

blocking swizzle interconnect able to perform all per-

mutations, multicasts, and broadcasts. XRAM solves

the control complexity by embedding the cross point

control within the cross points of a matrix style crossbar

using SRAM cells rather than having it driven by an

external controller. Other techniques like using the output

bus to program the control helps reduce the number

of control wires needed within the XRAM. Finally

borrowing techniques that are currently used in SRAM

arrays helps improve performance and lower the energy

used in driving the wires of the XRAM.

We showed that compared to conventionally imple-

mented crossbars, the area scales linearly with the prod-

uct of the input×output ports while consuming almost

50% less energy. We present an application case study

using XRAM and show that compared to conventional

MUX based implementations, the XRAM improves per-

formance by 1.4x and between 1.5-2.5x lower power for

applications such as color-space conversion.
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