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Abstract—In this paper, an efficient embedded software synthesis
approach based on a generalized clustering algorithm for static
dataflow subgraphs embedded in general dataflow graphs is proposed.
The clustered subgraph is quasi-statically scheduled, thus improving
performance of the synthesized software in terms of latency and
throughput compared to a dynamically scheduled execution. The
proposed clustering algorithm outperforms previous approaches by a
faster computation and a more compact representation of the derived
quasi-static schedules. This is achieved by a rule-based approach,
which avoids an explicit enumeration of the state space. Experimental
results show significant improvements in both performance and code
size when compared to a state-of-the-art clustering algorithm.

Index Terms—MPSoC Scheduling, Software Synthesis, Actor-
Oriented Design

I. INTRODUCTION

For the implementation of complex multimedia and signal
processing applications, Multi-Processor System on Chip (MP-
SoC) architectures are becoming more and more important. How-
ever, due to the high degree of parallelism, programming these
MPSoCs with traditional programming languages becomes quite
error prone [1]. Fortunately, dataflow graphs, which have been
applied successfully to application modeling in these domains,
expose inherent application parallelism, and thus, map well into
the MPSoC world. Thus, in the following, it is assumed that
the application is given as a dataflow graph. Nowadays, typical
multimedia applications can neither be modeled by purely static
nor fully dynamic dataflow graphs. In such scenarios, static
dataflow subgraphs are embedded in more general (dynamic)
dataflow graphs. Hence, an embedded software synthesis approach
has to support heterogeneous dataflow graphs.

A dataflow graph is a directed graph g = (A,C), where
the set of vertices A represents the actors and the set of edges
C ⊆ A × A represents the channels. Actors in a dataflow graph
perform the actual computation by so called firings. An actor
can fire if a sufficient number of tokens is available on its input
channels (incoming edges). When an actor fires, it consumes
tokens from its input channels and produces tokens onto its
output channels (outgoing edges). The behavior of an actor might
be either static or dynamic: Whereas static actors consume and
produce tokens with constant rates (synchronous dataflow (SDF),
[2]) or periodically constant rates (cyclo-static dataflow (CSDF),
[3]), dynamic actors have variable rates.

Once the mapping of the actors onto the MPSoC has been
determined, a major problem in embedded software synthesis is
to efficiently schedule the actors bound onto the same resource.
One option is use a dynamic scheduler. In this case, the actors
are checked at runtime for executability following the chosen
scheduling policy, e.g., in a round-robin fashion, and executable

actor are fired by the scheduler. However, dynamic scheduling can
be detrimental to system performance, especially if the scheduled
actors are very fine grained. In this case, the scheduling overhead
incurred by runtime decisions takes up a noticeable amount
of the total computational time. This is especially true if the
multimedia or signal processing application contains parts that
can be scheduled statically, which is often the case.

As static schedules do not require any runtime decisions, stat-
ically scheduling these parts seems to be another option. A static
schedule is a sequence of actor firings τ , which is periodically
executed, and can be derived from the so called repetition vector
µ = (µa1 , µa2 , . . . µam) of the static dataflow graph. Given such a
schedule τ , each actor ai ∈ A is fired exactly µai times. However,
as the resulting subsystem has to communicate with dynamic parts
of the application, computing static schedules is not viable in the
general case.

The scheduling overhead problem could be mended by choos-
ing an appropriate level of granularity, i.e., merging as much
functionality into a single actor such that the computation costs
dominate the scheduling overhead. However, such a merging step
is equivalent to manually clustering the dataflow graph, i.e., static
dataflow actors are clustered into a single composite actor, which
is then scheduled for a single processing core.

In this paper, an approach that clusters static dataflow actors
into a single composite actor implementing a so-called quasi-
static schedule (QSS) is proposed. In a QSS, runtime decisions
are followed by statically scheduled sequences of actor firings.
However, generating too long statically scheduled sequences may
introduce deadlocks. To prevent this, clustering assumes that the
environment exhibits worst case behavior, so-called tight feedback
loops, which occur if each token produced by the composite actor
in one step is again required to produce the input to execute an
immediately following step of the composite actor.

For example, consider the dataflow graph shown in Fig. 1a with
static actors a1, a2 and a3. The repetition vector of the induced
static dataflow subgraph is µ = (2, 1, 2). A possible fully static
single processor schedule for this subgraph is 〈a2, a1, a3, a1, a3〉.
In order to execute this static schedule atomically (otherwise it
would not be a static schedule), at least two tokens must be
available on each input channel (a4, a1) and (a4, a2). Assuming
that the dynamic actor a4 is conservative, i.e., the number of
produced and consumed tokens per firing is identical, this firing
rule is never satisfied as only two tokens are present to be
forwarded by a4, while the static schedule requires four tokens to
be executed. Thus, implementing a static schedule might introduce
deadlocks into the clustered system.

On the other hand, a QSS that does not introduce deadlocks is
shown in Fig. 1b. The QSS is represented by a finite state machine978-3-9810801-7-9/DATE11/ c©2011 EDAA
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Fig. 1. Heterogeneous dataflow graph with a single dynamic dataflow actor a4 and
three static dataflow actors a1, a2, a3. The constant consumption and production
rates of the static dataflow actors are annotated to the edges. The static dataflow
actors can be clustered into a single actor reducing the scheduling overhead. The
resulting quasi-static schedule is represented by an FSM with four states q⊥, q1,
q2, q3 and five transitions t1, . . . , t5. Static schedule sequences are annotated to
the transitions.

(FSM), with edges representing static scheduling sequences. De-
pending on the forwarding decision of the dynamic actor a4, either
〈a2〉 (two tokens on (a4, a2)) or 〈a1, a3〉 (one token on (a4, a1))
can be fired. Note that this will produce new tokens on the cluster
outputs for actor a4 to forward, thus keeping the system running.

This paper presents an improvement of clustering synthesis
starting from a given set of actors to cluster. In contrast to previous
embedded software synthesis approaches based on clustering, the
enumeration of the state space is avoided. For this purpose, state
sets are represented implicitly and state transitions are defined by
rules. Hence, the proposed clustering approach is able to schedule
larger systems and generates more compact schedules. The latter
results in considerable code size reductions of the generated
software.

The remainder of this paper is organized as follows: Related
work will be reviewed in Section II. Section III presents the
proposed embedded software synthesis approach based on a novel
clustering algorithm. Experimental results presented in Section IV
will show the performance improvements by applying the pro-
posed clustering algorithm to heterogeneous dataflow graphs.
Moreover, a comparison to a state-of-the-art clustering approach
will show the efficiency of the proposed clustering algorithm in
terms of scalability and code size reduction.

II. RELATED WORK

A good overview on model-based software design flows for
MPSoCs is given in [4]. When mapping a dataflow application
onto an MPSoC platform, the overall performance of the imple-
mentation is not only highly dependent on the actual mapping
of actors to processing cores ([5], [6], [7], [8], [9]), but also
depends on the scheduling on each individual processing core.
For instance, efficient single processor scheduling algorithms [10],
[11], [12] exist for synchronous dataflow (SDF) graphs [2], a
widely accepted static dataflow model.

Unfortunately, purely static modeling approaches are insuf-
ficient to model real world multimedia and signal processing
applications. Moreover, simply applying these static scheduling
methodologies to static subgraphs embedded in general dataflow
graphs introduces deadlocks into the resulting system in the gen-
eral case. However, the advantages of clustering SDF subgraphs
for the purpose of generating static schedules have been shown
in [13], [14], which introduced the Acyclic Pairwise Grouping
of Adjacent Nodes (APGAN) algorithm for constructing lexical
orderings for later conversion into single appearance schedules.
APGAN could in principle be used for clustering heterogeneous

dataflow systems due to the restriction that only acyclic graphs are
handled. This evades the problem of feedback loops as considered
in the proposed approach in the paper at hand.

Process merging while keeping throughput constraints has been
explored by Stefanov et al. [15]. However, the presented method-
ology is only applicable to acyclic graphs, thus, the deadlock
problem handled in this paper does not appear. Furthermore, these
acyclic graphs are not arbitrary acyclic graphs but graphs induced
by nested loop programs.

Plishker et al. [16], [17] have presented a scheduling method-
ology for dynamic dataflow graphs which improves on the simple
round-robin scheduler. The actors in this dynamic graphs are
constrained to switch between static modes. If an SDF subgraph
exhibits multirate behavior, an optimized schedule is constructed,
which checks actors for activatability in correct proportion to each
other. Plishker’s approach is more general, as it can handle certain
kinds of dynamic actors, but also more limited as it still needs
to check the activatability of each actor firing. In contrast, the
approach presented here can detect whole chains of actor firings
which can be executed statically.

Finally, in [18] the deadlock problem due to tight feedback
loops has been handled. However, schedules are represented by
FSMs, which has some severe disadvantages. Looking again at the
QSS shown in Fig. 1b, it can be observed that transitions t1 and
t4 as well as t2 and t3 have the same actor firings. Moreover, the
state sets can be described more succinctly by the rules presented
in this paper, whereas the explicit enumeration of states generally
leads to huge schedule representations.

The proposed approach in this paper has two major contribu-
tions: (1) the construction of a QSS for clustered static dataflow
subgraphs is faster than the approach proposed in [18] due to
an implicit representation of the states in the QSS, and (2) the
generated QSS generally leads to considerably more compact
source code when compared to the approach in [18] due to a
rule-based representation of the quasi-static schedule.

III. CLUSTERING OF STATIC DATAFLOW SUBGRAPHS

The clustering approach presented in this section replaces a
given static dataflow subgraph gS = (AS , CS) by a composite
actor ac based on the computation of a quasi-static schedule (QSS)
for ac. This is done in such a way that ac does not introduce
deadlocks into the system, assuming that the original system is
deadlock-free.

The proposed algorithm works on the set of cluster input and
output actors, AI ⊆ AS and AO ⊆ AS , respectively. Input actors
are static actors having at least one incoming channel from an
actor outside the cluster, while output actors are static actors
having at least one outgoing channel to an actor outside the cluster.
Note that AI and AO may not be disjoint sets. For example, the
static dataflow subgraph from Fig. 1 with AS = {a1, a2, a3}
has two input and two output actors, i.e., AI = {a1, a2} and
AO = {a2, a3}. Note that a static dataflow subgraph can only be
clustered by the proposed method if for each pair of input and
output actors (ai, ao) ∈ AI×AO a directed path p ∈ C∗ from actor
ai to actor ao exists (the so-called clustering condition, cf. [18]).

The proposed clustering approach basically works in two steps:
In the first step, the state space given by static dataflow actor
firings is implicitly constructed using a rule-based approach. The
result of the first step are rules that specify possible actor firings



TABLE I
INPUT/OUTPUT DEPENDENCY FUNCTION VALUES FOR SUBGRAPH gS FROM

FIG. 1 AND CORRESPONDING INPUT/OUTPUT DEPENDENCY STATES.

depio(ao, n) = (qa1 , qa2 ) Qio

n ao = a2 ao = a3 q = (qa1 , qa2 , qa3 )

0 (0, 0) (0, 0) (0, 0, 0) (0, 0, 0)
1 (0, 1) (1, 0) (0, 1, 0) (1, 0, 1)
2 (2, 2) (2, 1) (2, 2, 2) (2, 1, 2)
· · · · · · · · · · · · · · ·

in the static dataflow subgraph in dependence of previous actor
firings. Note that the possible actor firings are still unscheduled.
Hence, in a second step, a feasible single processor schedule
is computed resulting in static actor firing sequences that don’t
require any dynamic scheduling decisions.

A. Implicit State Space Representation
The proposed algorithm operates on the so-called input/output

dependency function depio : AO × N0 → N0
|AI|, which is

a vector-valued function that associates with each output actor
ao ∈ AO and a given number of firings n ∈ N0 the minimum
number of required input actor firings (qai,1 , qai,2 , . . . , qai,|AI|

).
With this information, it can be calculated how many tokens are
required on the input channels in order to produce output tokens.
Consequently, an actor can be fired as soon as the specified
amount of tokens is available. Hence, to perform a requested
number n of firings of a given output actor ao ∈ AO, at least
depio(ao, n) input actor firings are required. Consider again the
dataflow graph given in Fig. 1: In order to fire actor a3 once,
depio(a3, 1) = (1, 0) input actor firings are required, i.e., actor
a1 has to be fired once. From the consumption rate of actor
a1, it is known that in this case one token on input channel
(a4, a1) is required. However, in order to fire actor a3 twice,
depio(a3, 2) = (2, 1) input actor firings are required, i.e., actor
a1 must be fired twice and actor a2 must be fired once. Further
values are depicted in Table I. Note that while this table is infinite
it is also periodic with respect to the repetition vector µio, e.g.,
µio = (2, 1, 2) for the example in Table I where (2, 2, 2) is
an equivalent value for (0, 1, 0) and (2, 1, 2) for (0, 0, 0). The
periodicity can be exploited to only work on the finite number of
values in a period.

Given depio, the so-called input/output dependency states
Qio can be calculated. Each input/output state q =
(qa1 , qa2 , . . . , qam

) ∈ Qio ⊂ N0
|AI∪AO| represents a possible state

of the cluster in a self scheduled execution, and is additionally
constrained to provide the maximum possible number of output
actor firings for a minimum number of required input actor
firings. This constraint stems from the fact that the clustering
algorithm has to assume a worst case behavior of the subgraph’s
environment, and thus, must neither consume more input tokens
than necessary nor postpone the production of output tokens.

Due to the definition of depio, the number of input actor
firings from the input/output dependency function depio are
already minimal. Therefore, in order to derive an input/output
dependency state from depio, only the output actor firings have
to be maximized, as defined below:1

Qio = {q⊥} ∪ {(qa1 , qa2 , . . . qam
) | a ∈ AO, n ∈ N0,

∀ao ∈ AO : qao
= max{k ∈ N0 | depio(ao, k) ≤ depio(a, n)}

∀ai ∈ AI : qai = depio(a, n)ai}

1In the following, comparisons between two vectors a and b will be defined
as follows: a ≤ b ⇐⇒ ∀i : ai ≤ bi and a < b ⇐⇒ a ≤ b ∧ a 6= b.

The initial state q⊥ is the all zero vector representing the fact
that in the beginning, no actor of the subgraph has been fired.
Note that the maximum operation calculates for each output actor
ao the maximum number of firings which can be performed by
at most depio(a, n) firings of input actors. This can be done
efficiently, as the values of depio for a given output actor ao are
totally ordered under ≤, i.e., depio(ao, n) ≤ depio(ao, n + 1).
For the subgraph of Fig. 1, Qio is shown in Table I (fourth and
fifth column).

As the calculation of the input/output dependency states Qio

considers each output actor individually, Qio does not contain
states resulting from different interleavings of actor firings that
are permitted by the partial order of these actor firings. These
interleavings are captured by the state space Q, which is defined
as the least fixpoint Q = lfp(Q′ = {max(q1, q2) | q1, q2 ∈
Q′} ∪Q′ ∪Qio) which enlarges Q′ starting from Qio by adding
the pointwise maximums of all pairs of input/output states from
Q′ until no more new states are created. However, to avoid this
explicit enumeration of the state space Q, rules r ∈ R will be
used instead. A rule maps a subspace Qr of the state space Q to a
vector of actor firings s (in the following called partial repetition
vector) that can be executed if the current state is element of Qr.

Definition III.1 (Rule) A rule is a tuple r = (l,u, s). The
vectors l ∈ N0

|AI∪AO| and u ∈ N0,∞
|AI∪AO|, l ≤ u, define

the subspace of the state space Qr ⊆ Q where the rule is active,
i.e., Qr = {q ∈ Q | l ≤ q ≤ u}.2 The partial repetition vector
s ∈ N0

|AI∪AO| specifies for each input/output actor how many
firings to perform when r is executed.

B. Derivation of Rules
The first step of the proposed clustering approach is to find a

set of initial rules rules Rini based on the input/output dependency
states Qio. Basically, the elements of Rini correspond to the edges
of the Hasse diagram induced by the partial order of the elements
in Qio under ≤ (cf. Fig. 2a). Given an edge q1 → q2 in this
diagram, we know that q1 < q2 and @q ∈ Qio : q1 < q < q2.

Obviously, the rule r generated by such an edge has to perform
s = q2−q1 > 0 actor firings. The lower bound l of r is equal to
q1, representing the minimum number of previous actor firings in
order to enable the rule. The upper bound u of r can be derived as
follows: If an actor a is fired by r, i.e., sa > 0, the exact number of
previous firings of a has to be known. This is expressed by setting
ua = la. This constraint stems from the fact that the availability
of sufficient tokens in order to execute a sa times can only be
guaranteed for the lower bound la. If an actor a is not fired by
r, i.e., sa = 0, only the minimum number of previous firings of
a has to be ensured. This is expressed by setting ua = ∞. This
constraint ensures that at least the minimum number of tokens
have been produced by a. Note that if more firings of a have
already been performed than indicated by la, a must also have
produced more tokens than required, not less.

For example, the Hasse diagram corresponding to the in-
put/output dependency states from Table I is shown in Fig. 2a.
The rule r3 corresponding to edge e3 is then derived as fol-
lows: s = (2, 1, 2) − (0, 1, 0) = (2, 0, 2), l = (0, 1, 0), and
u = (0,∞, 0). Therefore, in order to enable the rule, actors a1 and
a3 must not have been fired before, whereas a2 must have been

2N0,∞ = N0∪{∞} denotes the set of non-negative integers including infinity.
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Fig. 2. a) Hasse diagram corresponding to the input/output dependency states from Table I, b) rules derived from the edges of the Hasse diagram, c) FSM resulting
from simulating rules Rmin (applied rules and actor firings are annotated to the edges), and d) final rules derived from the rules in (b) through conflict resolving.

fired once (or more). Further rules are given in Fig. 2b. Similar
to Table I this table is infinite but periodic, e.g., rules r1 and r5

as well as r2 and r6 are equivalent with respect to the repetition
vector µio = (2, 1, 2).

In principle, the set of rules can be simulated in order to obtain
an FSM corresponding to these rules: Starting from state q = 0,
each rule’s subspace Qr is compared to the current state q. If
q ∈ Qr then rule r is selected for execution. The destination
state q′′ is then calculated in two steps: First, the number of actor
firings specified by r.s are added to the current state, i.e., q′ =
q + r.s. Then, q′′ = q′ mod µio, where µio is the projection of
the cluster’s repetition vector µ onto input and output actors.3 The
simulation is finished when no more new states are discovered.

Note that the the modulo operation is permitted due to the fact
that the state of the cluster is equivalent before and after executing
a schedule τ corresponding to the repetition vector µ. Due to this
fact, it is sufficient to only consider a subset of rules Rmin ⊂ Rini

to simulate the FSM. This set of rules is only responsible for states
q in the first period 0 ≤ q � µio of the infinite state space Q.

For example, simulating the set of rules Rmin = {r1, r2, r3, r4}
(cf. Fig. 2b) results in the FSM depicted in Fig. 2c. In contrast
to the FSM shown in Fig. 1b, it can be observed that the state
(1, 1, 1) has no outgoing transitions. This is due to the fact that
the FSM generated by the rules is non-deterministic: If the current
state of the FSM is (0, 1, 0) and there are enough tokens to execute
r2, the next state is (1, 1, 1). When enough tokens are available
to fire a1 and a3 for the second time (as done by transition
q3 → q⊥ in Fig. 1b), a backtracking to state (0, 1, 0) is required
where a1 and a3 are fired twice (by rule r3). Obviously, such a
backtracking approach is unrealistic for dataflow graphs, as actors
cannot be “unfired”, thus leading to deadlock. This is caused by
so-called conflict rules, which can, however, be resolved by adding
additional rules, e.g., adding a rule which can transition from
(1, 1, 1) to (0, 0, 0).

C. Resolving Conflict Rules
The set of deadlock-free rules R is calculated by the least

fixpoint operation R = lfp(R′ = {r′1, r′2 | r1, r2 ∈ R′ ∧
r1 and r2 are in conflict}∪R′ ∪Rini) which enlarges R′ starting
from Rini by adding the rules r′1 and r′2 calculated by the conflict
resolution of the two conflicting rules r1 and r2 until no more
new rules are created.

Two rules r1 and r2 are said to be in conflict if both have at
least one common state q in which they can be activated and fire at

3We define the modulo operation between two vectors a and b such that a mod
b denotes the smallest vector a′ = a−m · b, m ∈ N0 such that a′ ≥ 0.

least one common actor. Hence, as both rules are enabled in state
q (assuming enough tokens are available), executing either rule
disables the other rule (proof omitted due to space constraints).
Note that if two rules have no common state, they cannot be in
conflict, as they can never be enabled at the same time. Also, if
two rules have indeed a common state q, but fire no common
actors, they are not in conflict either.

In order to resolve such a conflict situation, new rules will be
added to R: For each conflicting rule pair r1 and r2, common actor
firings are extracted from both rules, resulting in two additional
rules r′1 and r′2. Then, r′1 can be applied after r2, and analo-
gously, r′2 can be executed after r1 (proof omitted due to space
constraints). Let sc = min(r1.s, r2.s) be the pointwise minimum
of the partial repetition vectors r1.s and r2.s representing the
common actor firings of r1 and r2. Then, the lower bounds and
partial repetition vectors of r′1 and r′2 can be calculated as follows:

r′1.l = r1.l+ sc r′1.s = r1.s− sc

r′2.l = r2.l+ sc r′2.s = r2.s− sc

The upper bounds r′1.u and r′2.u are then calculated from
these lower bounds and partial repetition vectors as described
in Section III-B. A special case, which leads to the marking of
rules as redundant during conflict resolving, arises if for a pair
of rules r1 and r2, r1.s > r2.s and Qr1 ⊆ Qr2 . Then r1 is
a redundant rule (proof omitted due to space constraints). An
analogous observation applies to rule r2. Redundant rules are
added to the Rred set and are removed in the final post-processing
step to calculate the final rules Rfin. A resulting rule r′1 or r′2
with zero partial repetition vector, i.e., s = 0, is discarded and
not added to R, as it does not fire any actors.

Considering the set of rules Rmin = {r1, r2, r3, r4} from
Fig. 2b, a pair of conflicting rules is, e.g., r2 and r3: A common
state of these rules is, e.g., q = (0, 1, 0), and the vector of common
actor firings is sc = (1, 0, 1) > 0. As a result, applying the
conflict resolving operation to r2 and r3 results in two rules:
r′2 = ((1, 0, 1), (∞,∞,∞), (0, 0, 0)) (discarded due to the zero
partial repetition vector), and r′3 = ((1, 1, 1), (1,∞, 1), (1, 0, 1)).
Note that r′3 is exactly the missing rule which creates the transition
between states (1, 1, 1) and (0, 0, 0) in Fig. 2c. The other pair of
conflict rules, r1 and r4, does not introduce any other new rules,
as r′4 = ((1, 1, 1), (1,∞, 1), (1, 0, 1)) = r′3 in this case. Note that
r3 and r4 have been marked as redundant in the process, resulting
in the final set of rules as shown in Fig. 2d. Compared to the FSM
from Fig. 1b, we can observe that transitions t1 and t4 are created
by r1, t2 and t3 by r2, and t5 by r′3.



To calculate Rfin we remove the redundant rules Rred from
R and project all remaining rules into the first period, i.e.,
Rfin = {(l − m · µio,u − m · µio, s) | (l,u, s) ∈ R −
Rred, where m = ldivµio}. 4 Finally, for each rule r ∈ Rfin,
its actor firings as specified by the partial repetition vector s are
scheduled by a modified version of the cycle-breaking algorithm
presented in [11], which, for pure SDF graphs, always finds a
single appearance schedule (SAS) if one exists.

IV. RESULTS

In order to illustrate the benefits of our clustering algorithm
developed in Section III, we have applied it to both, synthetic
dataflow graphs as well as an mp3 decoder (cf. Fig. 3), which
works on the mp3 granule level (i.e., 576 frequency/time domain
samples). For two subgraphs QSSs have been computed using
our proposed approach. To evaluate the scheduling overhead
reduction in isolation, we first removed as much functionality
as possible from all actors. The dynamic scheduler for this mp3
decoder required about 184 ms runtime for a given mp3 input
stream (approx. 20 MB). This decreases to 57 ms when using
the previously computed QSSs for the two subgraphs, i.e., an
improvement of approx. 69%. For a real world test we switched
back to the unmodified mp3 decoder. This resulted in about
2,230 ms decoding time for the same input stream using the
dynamic scheduler, and 2,100 ms when using the QS schedules.
This corresponds to an improvement of approx. 6%. However,
for dataflow graphs with more fine grained actors, the achievable
scheduling overhead reduction is expected to be higher.

In order to evaluate the methodology more thoroughly, we also
applied it to 400 randomly generated dataflow graphs: Using the
SDF3 tool [19], we generated four different SDF graphs G2, G3,
G5, and G7 with 60 actors each. The generated graphs are cyclic,
i.e., they contain strongly connected components, with random
but consistent SDF rates and sufficient initial tokens in order
to guarantee a deadlock-free self-scheduled execution. All four
graphs have the same properties, except the degree of connectivity,
i.e., the number of edges. The average input/output degree of each
actor in G2 is 2, in G3 it is 3, in G5 it is 5, and in G7 it is 7. Based
on these four graphs, test cases G2-ND, G3-ND, G5-ND, and
G7-ND have been constructed, by randomly marking a variable
number ND of actors as dynamic. For each test case, the settings
ND = 6, 12, 18, . . . , 54, 60 have been considered, and for each

4We define the div operation between two vectors a and b such that adiv b
denotes the largest integer m such that a−m · b ≥ 0.
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Fig. 3. Dataflow graph of a mp3 decoder. Shaded vertices correspond to
static actors, which are grouped into four subgraphs (two subgraphs consist of
a single actor only). The remaining two subgraphs are processed by the proposed
scheduling method to compute their QSS schedules.

setting, ten instances have been generated, i.e., G2-06-01, G2-06-
02, . . . G7-60-10. The ten different instances per setting are used
to compute average results in the experiments.

A first observation is that the size of the clusters satisfying
the cluster condition depends not only on the number of dynamic
actors in the graph but also on the degree of connectivity. This
is illustrated in Fig. 4a. It can be seen that a lower degree of
connectivity leads to a smaller number of static actors that can be
clustered. Hence, the test case G2-ND has on average smaller
clusters than the test case G3-ND for the same ND. G3-ND

again has on average smaller clusters than G5-ND, and so on.
A further result is that test cases with ND greater than or equal
to 30 dynamic actors can be neglected. This is due to the fact
that by randomly marking actors as dynamic, the more dynamic
actors exist, the smaller the clusters become, i.e, in the worst case
the remaining n static data flow actors are evenly scattered in the
graph, eventually resulting in n clusters of size one.

Next, for all the test cases we applied our proposed rule-based
clustering for computing quasi static schedules and used them
during software synthesis. In order to identify clusters that satisfy
the cluster condition, we use a greedy algorithm based on a
SAT-solver engine. Note that there are generally many different
clusterings for a single graph. In future work, we will use this
fact to improve our results by an automatic optimization.

Using the greedy algorithm, software has been generated by
(M1) fully dynamically scheduling the dataflow graph (as refer-
ence), (M2) our proposed rule-based approach, and (M3) the FSM
approach proposed in [18]. The achieved average speedup (SU)
by M2 and M3 compared to M1 and its standard deviation as
well as the average code size (CS) of the binary and its standard
deviation for both clustering approaches is shown in Table II.
Better values are printed in bold. It can be seen that in all cases
the code size generated by our proposed approach (M2) is smaller
than the code size of the software produced by the FSM approach
(M3). In some cases, the code size is even smaller than the code
size of the dynamically scheduled software (M1).

For the speedup it can be observed that the FSM approach (M3)
produces better results for dataflow graphs with low connectivity
and for graphs with few dynamic actors. For the harder cases,
our proposed approach often produces faster code. However,
the performance might drop to the performance of the dynamic
scheduler in very hard cases.

Our proposed rule-based clustering approach (M2) has another
advantage when comparing it with the FSM approach (M3) on the
basis of the required compile time. In these results, M2’s compile
time is always a small fraction of M3’s compile time (orders of
magnitude). This significantly extends the area of applicability of
clustering during embedded software synthesis.

In embedded systems, the available amount of memory is
typically constrained. Hence, we tested both clustering approaches
with given code size constraints. The code size constraints have
been set to 133% of the memory requirements of the previously
computed dynamic schedules (M1). The average speedup is shown
in Fig. 4c. It can be seen that in all cases the proposed rule-based
approach outperforms the FSM approach. Even more, while the
FSM approach is only able to produce moderate speedup for the
easy test cases (ND = 6 and ND = 12), our proposed rule-based
approach is even able to improve the throughput in many hard
cases ND > 12).
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TABLE II
AVERAGE SPEEDUP, CODE SIZE, AND THEIR STANDARD DEVIATIONS

test case M1 ND = 6 ND = 12 ND = 18 ND = 24 ND = 30
CS[kB] SU CS[kB] SU CS[kB] SU CS[kB] SU CS[kB] SU CS[kB]

G2-ND M2 18 1.74±0.87 27±6 1.03±0.06 19±2 1.05±0.06 18±0 1.08±0.11 18±0 1.04±0.04 18±0
M3 18 3.31±2.27 286±495 1.16±0.47 138±360 1.11±0.17 225±509 1.06±0.10 113±283 1.07±0.05 24±18

G3-ND M2 58 4.34±1.61 41±6 2.10±0.91 54±8 1.75±0.35 54±4 1.46±0.33 57±3 1.27±0.18 60±2
M3 58 5.35±1.73 138±109 2.36±1.30 746±784 1.92±0.84 448±532 1.41±0.39 171±122 1.31±0.20 207±374

G5-ND M2 82 3.57±0.99 55±9 1.72±0.66 74±12 1.50±0.39 74±7 1.10±0.16 80±5 1.02±0.06 82±4
M3 82 5.16±1.80 467±511 1.54±1.24 167±225 1.24±0.31 475±616 1.10±0.26 141±168 1.04±0.09 274±477

G7-ND M2 86 2.98±0.73 66±13 1.70±0.30 88±9 1.42±0.14 94±4 1.29±0.20 97±4 1.17±0.13 99±2
M3 86 2.81±0.98 363±255 1.62±0.77 269±334 1.16±0.30 189±272 1.11±0.19 296±465 1.10±0.11 298±315

V. CONCLUSIONS

We presented an embedded software synthesis approach based
on a generalized clustering approach for static dataflow subgraphs.
The proposed clustering algorithm computes a quasi-static sched-
ule and reduces the scheduling overhead for one processor of
an MPSoC without an explicit state space enumeration. As a
consequence, more complex systems can be handled and more
compact schedules can be generated as by previously proposed ap-
proaches. Especially when considering hard memory constraints,
our rule-based approach significantly outperforms state-of-the-art
approaches and, thus, extends the area of applicability of such
kind of embedded software synthesis. Future work will focus on
optimal clustering techniques, i.e., to identify which actors should
be clustered in order to minimize the scheduling overhead.
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