
978-3-9810801-7-9/DATE11/©2011 EDAA

 Multi-Objective Tabu Search Based Topology Generation Technique For
Application-Specific Network-on-Chip Architectures

Anita Tino and Gul N. Khan
Department of Electrical and Computer Engineering

Ryerson University, Toronto, Canada

Abstract – This paper presents a power and performance multi-
objective Tabu Search based technique for designing application-
specific Network-on-Chip architectures. The topology generation
approach uses an automated technique to incorporate floorplan
information and attain accurate values for wirelength and area.
The method also takes dynamic effects such as contention into
account, allowing performance constraints to be incorporated
during topology synthesis. A new method for contention analysis is
presented in this work which makes use of power and performance
objectives using a Layered Queuing Network (LQN) contention
model. The contention model is able to analyze rendezvous
interactions between NoC components and alleviate potential
bottleneck points within the system. Several experiments are
conducted on various SoC benchmark applications and compared
to previous works.

Keywords – Network-on-Chip, Topology Generation, Tabu Search,
Layered Queuing Networks, Contention

I. INTRODUCTION
The Network-on-Chip (NoC) concept has emerged as a result of
the limitations posed by future bus-based systems found in
Multiprocessor System-on-Chip (MPSoC) architectures. As
forthcoming MPSoC designs continue to grow in size and
complexity, hundreds of memory and processing elements are
expected to communicate at a gigascale speed, consuming low
power and minimal on-chip area. NoC systems consist of cores and
on-chip routers to execute packet-switched communication. Cores
access the network by means of network interfaces, and have their
packets forwarded to their destination through a multi-hop routing
path [1]. NoCs replace the busses in MPSoC systems with routers
and links, where packets communicate simultaneously between the
cores, improving overall system performance. Furthermore, the
power consumption in the MPSoC is reduced by using shorter
links as opposed to long shared busses. The NoC approach has thus
shown improvements in issues such as performance, power and
area on a chip [2]. As a result, NoC research and design have
gained significant attention in both industry and academia.
 Previous works in NoC design have dealt with generating
topologies with minimal power dissipation and/or maximum
performance. However, when taking actual SoC applications into
consideration, focusing strictly on power could imply that the
performance constraints in a system will not be met. Similarly,
concentrating solely on maximizing system performance can lead
to an unwarranted amount of power dissipation. Therefore, a
tradeoff between power and performance is needed to design NoC
topologies. Regular topologies such as mesh, torus, butterfly fat
tree etc., result in poor performance due to increases in power
usage and hardware area overhead. MPSoCs often comprise of
different system requirements given an application. Therefore
scalability is not as significant as power, performance, and area
factors that a system must maintain. It has become evident through
research that application-specific NoC architectures are superior in
comparison to regular topologies in terms of power consumption

and NoC resources [3]. As a result, irregular NoC topologies have
become the preferred solution when minimizing area and power
consumption on a chip.
 This paper presents a multi-objective approach to topology
design, employing a Tabu Search (TS) based technique to meet the
power and performance requirements of an application. The
proposed NoC synthesis method takes into account constraints
such as network latencies, power consumption, and dynamic
effects to generate application-specific topologies which cater to
system requirements. A new contention analysis method is also
presented in this work which uses a Layered Queuing Network
(LQN) model to observe rendezvous interactions among the NoC
components and identify possible contention points. The analyzer
aims to relieve contention in an optimal manner by temporarily
inserting virtual channels (VCs) to evaluate performance
improvements and additional power consumption incurred by the
network prior to actual VC insertion. By using this technique, VC
resources are inserted carefully to provide the system with low
resource costs, low power consumption, and high performance.

II. PREVIOUS WORK
A number of researchers have utilized optimization methods to
design NoC topologies. Ahonen et al [4] apply a simulated
annealing (SA) method to optimize NoC synthesis using the
objectives of power and latency with the aid of its OIDIPUS
design automation tool. The cores in the overall topology are
partitioned into two major parts to form two connected ring
topologies, where swaps between the partitions are made until a
stopping criterion is met. The method can only invoke one
objective at a time, and when optimizing for power only considers
wirelength while disregarding other factors such as router
consumption. The overall technique displays that SA and system
partitioning degrade the optimized level of achievable block
placement within a topology. By aiming to lower the cost of the
partition, the method increases the traffic within the resulting
partitions and limits the boundaries of possible solutions in the
search space.
 The work employed by Beraha et al [5] searches for a way to
optimize both power and performance, also using a SA
optimization technique. The general method aims at attaining a
factor trade-off by generating a topology with minimal power
consumption which meets the required latency demands of the
application. The SA randomly assigns the initial mesh topology,
where swaps are made in a random fashion between two cores to
generate another mesh topology with a lower cost. Contention
analysis is taken care of subsequent to designing the on-chip
network. Therefore, the method does not account for the dynamic
effects such as contention when analyzing throughput and latency.
As a result, the minimum performance requirements may not end
up meeting the constraints needed by the application. Furthermore,
the generator does not maintain accurate values for the power
dissipation of the system using a floorplanner or power models, but
simply relies on the cost function which employs router area and
bandwidth of links to account for NoC power.

 Ascia et al [6] use power and performance as objectives in order
to optimize mesh based NoC architectures using a state-machine
and NoC simulator to evaluate mapping alternatives. The
exploration engine evaluates core mapping schemes using a
Genetic Algorithm (GA) to determine the next move until the
stopping criteria is met. The final GA outputs two Pareto curve
solutions of high performance and low energy mappings. Although
the work by Ascia et al aims at designing NoCs with the objectives
of power and performance in mind, the experimental outcomes
represent a performance or power mapping. Therefore, the work
does not combine both objectives when aiming to create an on-chip
network, but instead provides the user with a mono-objective
topology. In terms of power optimization, the work does not assess
the effect of link power consumption within the on-chip network.

 GENERAL TABU SEARCH ALGORITHM
1.
2.
3.
4.

5.
6.
7.
8.
9.
10.
11.
12.
13.

14.
15.

Generate initial solution s = N(s)
Evaluate current solution conditions
TL(s) = {} //initial empty Tabu List
WHILE stopping criteria NOT met
DO
 Identify s' = neighbourhoodSet()
 Move to the temporary solution s'
 Evaluate s' solution
 OptimalityCheck(s', AL(s), TL(s))
 IF optimal solution
 Place solution as last optimal TL(s) entry
 Update current solution, N(s) = s’
 IF Constraints satisfied
 EXIT
 END
 ELSE
 Place as a non-optimal TL(s) entry
 Refer to AL(s) to revert back to last optimal solution
 END
END

Figure 1: General Tabu Search Algorithm

 Leary et al [7] implement a 3-level GA to represent topology
mappings as a set of binary and integer arrays. The algorithm
employs genetic operator techniques, a fitness function, and a
floorplanner to create an application-specific architecture until a
stopping criterion is met. A Pareto curve technique is implemented
based on the factors of power consumption, or the amount of
routers used in the topology. The designer is given the choice of
selecting the best solution of the two mappings. The GA technique
in this work randomly generates solutions. However, given that
information of communication and system requirements are a
priori, there is no logic in generating random solutions. In addition
to these facts, due to the random nature of the GA, the topology
generation scheme invoked in this work can lead to longer wires
and cause invalid solutions within the algorithm. As a result, the
GA method can lead to high execution times and not guarantee a
global optimal solution. Furthermore, making use of the number of
routers as a factor within the GA technique does not directly
address the performance of an on-chip network.

III. TABU SEARCH AND NOC TOPOLOGY DESIGN
The TS topology generator assesses all NoC characteristics given
in the system core graph. Each step in the NoC generation method
analyzes system performance and observes changes in the
frequency of operation and power, while optimizing for other
constraints within the NoC topology arrangement. The Parquet
floorplanner [8] and Orion 2.0 power models [9] are integrated in
order to assess various power consumption factors. The topology is
run through the system-level floorplanner to assess the wirelengths
and area at significant stages of the solution. In cases where the
objectives and constraints do not meet the criteria, the TS method
aims at discovering a new best solution that will satisfy the

objectives. When the system requirements have been met,
contention analysis is performed. The on-chip network is modeled
as a LQN to analyze possible contention points within the system.
The potential bottlenecks are identified through contention analysis
using the Layered Queuing Network Solver (LQNS) tool and
relieved using virtual channel (VC) insertion.

A. Tabu Search Based Optimization
Tabu search is a meta-heuristic algorithm that employs an
aggressive search procedure. The procedure progresses iteratively
from one solution to another by moving in a neighbourhood space
with the assistance of adaptive memory [10]. TS reaches a better
solution by considering the influence of a move within the
neighbourhood and incorporating factors of search history and the
problem context [11]. The TS method escapes the trap of local
optimality by using its ability to retrieve prior optimal and non-
optimal solutions from memory. By keeping track of solutions
within the search, it is possible to locate the global optimal solution
with less computational effort and time as compared to other
optimization methods.

 As seen in Figure 1, the algorithm commences with an initial
feasible solution N(s) and explores other possible neighbourhood
space solutions in neighbourhoodSet(). TS inquires with its short
term memory lists in order to prevent the reversal of recent moves
as performed in OptimalityCheck(s', AL(s), TL(s)). The function
ensures that the new temporary solution s' coincides with the
Aspiration List AL(s) and Tabu list TL(s) to find a new local or
global optimal solution. In order to escape a local minimum, AL(s)
refers to TL(s) to understand whether the current solution is
inferior to a previous solution. If the latter is true, the algorithm
reverts back to the state it was previously in and places the current
solution into the TL(s) to escape a local minimum. The algorithm
continues until the stopping criteria are met.
 The memory structures within the TS method play a
fundamental role in strategizing for optimal solutions and provide
a quality solution by supporting multiple objectives during the
search. Memory in the TS method relies on the four principles of
recency, frequency, quality and influence [10]. The TS method
makes use of explicit and attributive memory types to guide the
search in finding a solution which employs the four principles.

Explicit Short Term Memory: Explicit memory directs the search
towards an influential and quality-based solution, keeping record
of past solutions within the TS to avoid cyclic behavior. Explicit
memory services are provided by the Aspiration List, AL(s), and
Tabu List, TL(s). The TL(s) is responsible for keeping track of the
non-optimal solutions to prevent the algorithm from revisiting
previous solutions. During each TS iteration, the algorithm checks
the TL(s) entries to verify that solution s’ is an optimal solution,
and that its current evaluated criteria does not match other non-
optimal entries. The Aspiration criterion is satisfied if a move
yields a solution better than the best obtained so far. The AL(s) is
therefore responsible for overriding restricted TL(s) entries if the
outcome of the move under consideration is sufficiently desirable
[10]. The final type of explicit memory is known as the Candidate
List CL(s). CL(s) is responsible for generating a list of possible
moves within the neighbourhood. More advanced TS methods use
candidate list strategies to help narrow the examination of
solutions in order to achieve a high quality solution within a
shorter period of time and a reasonable amount of effort.

Attributive Long Term Memory: Attributive memory acts as long
term memory known as Frequency-Recency based memory (FR-
Memory). This memory is made use of during neighbourhood
exploration for a new possible solution. FR-Memory encourages
the search to explore different regions within the neighbourhood
and allow for the diversification amongst the different feasible

solutions. FR-Memory keeps track of the frequency of moves
within each area of the neighbourhood, and the recency of the
vertices which have been previously moved.

B. NoC Design Flow
1) Input Model
It is assumed that the target application selected by the user has
been mapped to processing cores, and that the corresponding
communication volume requirements between the cores have been
determined statically. The application can be specified as a
directed graph G(V,E), where:

→ Each vertex vi ∈ V represents a core within the graph.
→ The communication between vertex i and j represent a

directed edge (vi, vj), expressed as ei,j ∈ E.
→ The weight found on an edge ei,j denoted by b(ei,j)

characterizes the bandwidth.
→ A destination vertex (core) dx, where dx ∈ V may have 1

to many sources cores sx.
→ The source vertex sx ∈ V, and ∀x ∈ 1...N.
→ N represents the number of cores in the core graph.

The core graph is a model based on the cores and their
communication, with details about the source and destinations used
within the system.
 Switch and link power models are used in the generator and are
based on 65nm technology established on Orion 2.0 values. The
floorplanner performs wirelength minimization, compaction on the
final solution to minimize the area within the design, in addition to
detecting timing violation within the system. Characteristics such
as average arbitration delay, packetization and de-packetization
delays, maximum number of ports, flits per packet, and maximum
operating frequency can also be specified. Although the TS
technique is successful in finding optimal solutions, its downfall
occurs in memory allocation. Given a problem space with a
predetermined amount of cores and edges, the user can specify the
required amount of TL(s) entries needed for a successful optimal
solution to be reached.

2) Tabu Search Based Topology Generator

Initial Tabu Search Solution: Given the constraints specified by
the user, the topology generator creates an initial NoC topology,
referred to as N(s, f, P). Each vertex Vi in the core graph is
assigned to a Network Interface (NI). The initial NoC topology
generation is referred to as the crossbar approach, where all the
NIs/vertex cores are connected to one central router [12]. An initial
NoC frequency is determined based on all the connections within
the on-chip network. The iterations within the TS method divide
the initial large crossbar router, where preference is given to
grouping frequently communicating cores within the same routers.
Router connections are based on the communication requirements
between source cores sx, and their respective destination cores dx.

Problem Formulation: Let N(s, f, P) represent the current feasible
NoC topology solution s consuming power P at a frequency f, and
N(s) express a new possible solution s’ within the neighbourhood
set. We define a TS based TL(s) that contains non-optimal
solutions, and AL(s) that is responsible for consulting the Tabu list
to ensure that s’ is optimal and more desirable than the previous
encountered solutions. Thus in order for the new solution N(s) = s’
to be an optimal solution 𝜑 (s), and a possible current feasible
solution N(s, f, P), the following must be satisfied:

 𝜑(𝑠) = {𝑁(𝑠) ∩ 𝑇𝐿(𝑠)} = ∅ (1)

If the 𝜑(𝑠) condition in (1) holds true, N(s) is disjoint with the
Tabu list set and is an optimal entry with respect to TL(s). N(s) is
then consulted AL(s) to verify that it is an element which is optimal

Figure 2: Tabu Search Topology Generation Algorithm

with respect to the previous encountered solutions. This can be
expressed as:

 𝑁(𝑠) ∈ {𝜑(𝑠) ∪ 𝐴𝐿(𝑠)} (2)

If expression (2) holds true, the old solution s can be updated to the
new solution s', and frequency f can be changed to reflect the new
frequency f'. The TS based NoC design algorithm of Figure 2
iterates through feasible solutions, each time identifying a new
possible topology configuration N(s). The method rearranges the
topology to the new solution in order to assess the factors within
the system. Latency, NoC frequency of operation, and router port
constraints for the possible new NoC topology solution are
evaluated during each iteration in ‘Check Constraints’ to verify
whether the stopping criteria have been met. The power is also
determined for each new solution, where the NoC design method
ensures that the power consumption has not significantly increased
from the last N(s, f, P) move. If the operating frequency exceeds
the maximum possible frequency, or the power is significantly
increased within the current possible solution being evaluated,
AL(s) is referred to and the last optimal solution is restored. The
undesired solution is placed into TL(s) and the algorithm attempts
to obtain another neighbourhood solution.
 Frequency is determined by evaluating the bandwidth and
datawidth values, but also considering factors related to a pipelined
wormhole network. In order for a flit to traverse through a
network, latencies must be considered as it can greatly affect the
frequency of operation between communicating cores. As a result,
the user must specify the intended arbitration delay within a router,
flits per packet, and the intended packing and unpacking delays of
the NIs. As discussed by Dimitriu and Khan [12], the transfer
latency in a pipelined wormhole network can be expressed as:

 Dlat = Dpk + (N�l − 1) + �Darb
n

i=0

 + Ddpk (3)

 Here, Dlat represents the latency of a packet consisting of Nfl
flits, traversing to its destination with n hops. Dpk and Ddpk
represent the packetization and de-packetization delays within the
network interfaces respectively. Finally Darb represents the
arbitration delay within each switch throughout the n hops incurred
in the network. These latency values are then converted into time
units and incorporated to assess the frequency of operation.

Neighbourhood Selection Structure: The initial topological
solution in this work implements a crossbar and can be considered
to be a poor solution as a large router consumes a considerable
amount of power. Furthermore, contention within this central
router is also at the highest since all connected cores contend for
the same crossbar. Finding a new solution within the
neighbourhood of possible solutions is therefore greatly desired.
The CL(s) and the candidate list strategy employed in this work,
known as the Successive Filter Strategy (SFS), assist the TS in

Figure 3: Successive Filter Strategy Example

finding a new solution N(s) within the neighbourhood. A high
quality solution in this work results in a low power, high
performance topological arrangement which does not exceed the
maximum frequency of operation. Hence, the SFS initially aims at
first filtering the cores with low transaction rates since their moves
have less effect on the frequency and performance of the topology
as compared to the highly utilized cores. Power consumption is
also decreased in comparison to the initial crossbar approach, as
the large central router is divided into smaller components.
 The head of the CL(s) is the core chosen by the SFS based on
either the initial low transactional cores, or the neighbourhood
cores being kept track of by the FR-Memory. Given the initial head
candidate list condition, low transactional cores are chosen by
employing the following expression:

𝑀𝑖𝑛𝑇𝑟𝑎𝑛𝑠 = 𝑚𝑖𝑛𝑛 �𝑉𝑛 ��𝑁𝑡𝑟(𝑠𝑥) + �𝑁𝑡𝑟(𝑑𝑥) �� (4)

Given a vertex/core n, N is the total number of vertices/cores in the
core graph, where n = {1,2,…,N}. Ntr is the number of source, sx,
and/or destination, dx, transactions that the vertex Vn is expected to
incur. X is the total amount of sources or destinations for the
respective core n, where x = {1,2,…,X}. Vn(f) represents vertex n
and its expected total number of transactions f.
 The candidate list is formed initially based on the minimum
ceiling function of the vertex which exemplifies the lowest amount
of transactions with other cores. In addition to this, the candidate
list and SFS also verify with the FR memory whether the core has
been previously selected, which allow for other low transactional
cores to also take the head candidate position. The SFS then filters
through the cores which communicate with the head of the
candidate list. Subset arrangements of these cores are formed in
different combinations, where the topology generator selects the
subsets and configures the topology such that the cores are
positioned according to the SFS combinations. The subset core
combinations are then evaluated for solution quality. Let:
→ π Є Π, where Π is a set of positions in the search space.
→ π(j) represent core j attaining the head candidate position.
→ Ω(s) denote the set of possible moves that core j can have,

when core j has occupied the position π(j).
→ m signify all possible combination of moves formed by the

SFS.
→ Ω(s) be divided into subsets Ω(1,s), Ω(2,s), ... Ω(m,s), where

Ω(1,s) denotes the 1st subset move in the possible set of total
moves generated by the topology generator etc.

An example of the SFS applied to a 16 core application is given in
Figure 3. The head of the candidate list is core 11. Core 11
performs transactions with cores 9, 13 and 16. When finding a new
N(s), core 11 has occupied the position π(11) in the possible set
of moves Ω(s). The SFS then generates a set of m possible

Figure 4: Possible Subset Configurations of Successive Filter Strategy

combination of moves given core 11, analyzing cores 9, 13 and 16
and their respective transactions with other cores as well. The
resulting topological arrangements are then evaluated for quality
given the factors of operational frequency, power, and port
constraints. Two possible subset combinations Ω(1,s) and Ω(2,s)
for the SFS example is shown in Figure 4.

IV. CONTENTION ANALYSIS

LQN and Performance: LQN was developed as an extension to
the concept of queuing networks using a layered structure
approach [13]. Employing LQNs can determine factors of system
performance. A system can have multiple functionalities, where
each function is carried out by a subcomponent. A subcomponent
can also perform various tasks. Contrary to queuing networks,
LQN is modeled as subcomponents, which are interconnected to
simulate the functionality of the entire system. These
subcomponents are then divided into layered tasks which
communicate amongst each other. The role of an LQN is to model
the wait-and-reply rendezvous interactions that the multiple task
layers can experience. An LQN task can also consist of multiple
entries that characterize its different operations.
 An example of an LQN representing a real benchmark is shown
in Figure 5. The LQN of Figure 5 is an example of a
subcomponent of the MPEG-4 Decoder, where each element is
clearly labeled. The first layer in this example consists of three
tasks, where each of these tasks contain a thinking time Z. These
tasks are referred to as reference tasks (represented by a square)
which await other tasks to complete. Task 4 and 5 are non-
reference tasks (represented by parallelograms), where the number
in brackets within the task characterizes the execution time to
perform its functionality. Task 4 contains two entries, E1 and E2,
which perform different functions. The values on the arcs represent
the number of transactions that a task i makes to a task j.
 Contention can occur in a network when a task is heavily
utilized, in turn creating bottleneck points and limiting the
throughput of a system. Utilization can therefore be defined as the
fraction of time when the task is busy or blocked by a rendezvous
[13]. As an example, the heavy utilization of Task 4, E2, in Figure
5 is noted. By dividing the network into subcomponents and
observing rendezvous, it is possible to pinpoint and relieve various
contention points to achieve higher throughput and increase system
performance. In the proposed methodology for contention analysis,
the NoC network is divided into subcomponents/sub-networks,
where the router-to-router connections and respective
interconnected cores are modeled as LQNs to pinpoint potential
bottlenecks during the topology synthesis stage. LQNS is used to
evaluate factors of utilization and throughput in the topology.

Table 1: LQN/Contention Model Conversion
LQN Element Contention Model Element
Reference Task Source Core

Non-Reference Task Router/ Destination Core
Thinking Time (Z) Packetization Delay

Execution Time of Task Reference Task Packetization Delay
Non-Reference Task De-packetization Delay

Router Arbitration Delays
Number of Transactions Number of packets sent from component i to j

Figure 5: LQN Subcomponent for MPEG-4 Decoder

LQN/Contention Model: The LQN model conversion is presented
in Table 1, where each LQN element models an element in the
contention analysis method. Each source core in the NoC is
considered as a reference task which awaits a response from the
lower layers. The lower layers are considered to be the router’s
ports and/or destination cores. The source core and its respective
NI have a packetization delay, and are modeled as the reference
task’s thinking time Z. Each router port task is modeled as a non-
reference task with two entries representing the router operations
of receiving (Rx) and transmitting (Tx) data. The execution time
within the router entries represent the arbitration delay.

VC Insertion Technique: The contention analyzer is given a finite
amount of VC resources imposed on by the user, and aims at
equally distributing the VCs according to the hot spots within the
system. The generator models the NoC topology subcomponents
using the LQN/contention model. Throughput and utilization
factors are noted, and the bottleneck points are verified. Thereafter,
temporary VCs are inserted at the bottleneck points to model the
task once again and evaluate the improvement in performance and
extra power dissipation. The following criteria must be satisfied in
order for the temporary VC insertion to take permanent effect:
→ The performance improvement is greater than the extra power

dissipation that the on-chip network will experience.
→ There are enough VC resources for the insertion to take place.
→ The new frequency of operation will not exceed the maximum

allowable frequency.
If all criteria are satisfied, the system permits the temporary VC to
be inserted into the system at the designated spot to relieve
contention. The algorithm inserts multiple VCs if all criteria are
satisfied and there are enough resources. Given the scenario that all
the contention points have not been analyzed, or one of the criteria
has not been satisfied, the analyzer proceeds to search for and
relieve other potential bottleneck points within the topology.

V. COMPLEXITY ANALYSIS
Given a solution space of N cores, determining a move within the
TS given the constraints imposed by the SFS yields N(N-1)/2
moves, expressed as O(N2). The swaps needed to place the cores in
the new topological arrangement results in a complexity of O(1),
where O(N) time is needed to evaluate the N cores. Given k total
iterations within the search, and an average TL(s) search time of i,
the overall complexity of the proposed method can be expressed as
O(k(N2+N+ i)), further simplified as O(N2 + N), assuming k and i
as negligible.

VI. EXPERIMENTAL RESULTS
The TS topology generator is applied to five different multimedia
and networking benchmark applications: Video Object Plane
Decoder (VOPD – 12 cores), Multi-Window Display (MWD – 15
cores), Network Communication System (NCS – 15 cores), MPEG-
4 Decoder (12 cores), and the Set Top Box (25 cores). We refer
readers to the work of various researchers for the application core
graphs [12,14,15,16]. The topology generator implementation for
the proposed method was tested using a computer with a 1.66 GHz
atom processor and 1 GB of RAM, running a Linux operating
system. Network Interfaces are taken into account within the core
area, where each NI is estimated to be approximately 0.2 mm2 [17].
The routers are modeled as individual components within the
floorplanner. Power is calculated with virtual channel consumption
being considered, where router port buffers are sized for 4 flits.
Topologies in this work were generated using a restriction of 6
ports per router and a maximum operating frequency of 1 GHz.

Table 2: Topology Technique and Area Comparisons
Application Method Topology Area (mm2)

MPEG4
Decoder

Tabu
1
2

App Specific
App Specific 1 [12]
App Specific 2 [12]

4.13
11.89
4.43

VOPD Tabu
1
2

App Specific
App Specific [18]
App Specific [3]

2.55
3.11
1.93

Set Top Box Tabu
1
2

App Specific
App Specific[7]

App Specific[19]

6.41
6.19
6.35

NCS Tabu
1
2

App Specific
ANOC [7]

App Specific [7]

4.58
No Solution
No Solution

MWD Tabu
1
2

App Specific
App Specific 1 [12]
App Specific 2 [12]

4.42
9.00

10.87

Figure 7: Power Dissipation Benchmark Comparison

 The benchmarks have been compared to previous NoC
topology design techniques [3,7,12,18,19]. Due to inconsistencies
between power libraries used in the various works, the topology
layouts were redesigned with the 65nm library used in this work to
accurately compare power dissipation and area values. All
topologies required less than one minute to be generated and
analyzed. The NoC area distributions for the techniques are
presented in Table 2 and take network components such as NIs and
routers into account. The ANOC and GA technique employed in
the work of Leary et al [7] was unable to generate solutions for the
NCS benchmark. Analysis of the results display a reduction of
2.03x in power dissipation compared to other topology generation
techniques, with comparable values of on-chip area distribution.
Figure 7 compares the normalized power consumption of the
various methods to their respective applied benchmarks.
 The throughput oriented topology generation technique of
Dumitriu et al [12] was used to compare performance results. The
MPEG4 and MWD used in [12], and NCS benchmark which
required VC insertion were assessed for system performance. The
NoC routers invoked in both [12] and in this work use round-robin
arbitration amongst all the ports to prevent the system from

starvation. Livelock is prevented by incorporating minimum length
paths from source to destination cores. The topologies were tested
using an in-house cycle accurate NoC SystemC simulator.
 The throughput values for the different techniques are presented
in Figure 8. The VC insertion technique for the MPEG4 Decoder
displayed a 17% improvement in throughput due to a 5% increase
in power, where the NCS networking benchmark demonstrated a
67% performance improvement as a result of a 13% dissipation
increase. The comparison of this work to the work of Dumitriu et
al showed a slight throughput improvement of 0.57x and 0.84x for
the MPEG4 Decoder and MWD application respectively. This
signifies that the multi-objective power and performance technique
presented in this work was capable of reaching and exceeding the
performance levels that a mono-objective throughput oriented
topology generator was able to achieve.

Figure 8: Performance Benchmark Comparison

Figure 9: Power/ Performance Tradeoff for MPEG4 and NCS

 An example of the power and performance tradeoffs for the
MPEG4 and NCS benchmarks applied to the VC insertion
technique is depicted in Figure 9. VC insertion for a NCS
subcomponent/sub-network initially shows significant increases in
throughput as compared to extra power dissipation incurred by the
system. The tradeoff is substantially high until 3 VCs are inserted.
The additional performance improvement and power consumption
levels then intersect, where performance is no longer at an
advantage. Therefore, 2 VCs were inserted at the designated
contention point, in addition to considering the effects of frequency
and available resources. The MPEG4 tradeoff depicted in Figure 9
illustrates the contention at the SDRAM core sub-network, where
inserting 1 VC gives a fair trade-off between power and
performance. The insertion of 2 VCs leads to a higher power
consumption than performance increase. Hence 1 VC is inserted
into the system. During topology synthesis, the contention analyzer
had estimated a 6.6% and 66.67% increase in performance due to a
5.7% and 21% increase in power consumption for the MPEG4 and
NCS benchmarks respectively. The contention analyzer was
therefore able to predict the power and performance values within
a 96.5% accuracy rate when compared to the actual simulation
results.

V. CONCLUSION
This paper presented an efficient methodology for a multi-
objective power and performance NoC design using an automated
technique. The work also introduced a LQN/contention model to
analyze and relieve various contention points within an on-chip
network during topology generation. Results demonstrated a 2.03x
reduction in power dissipation in comparison to previous works,
with performance values which were comparable to a mono-
objective throughput oriented topology generation technique. The
contention analyzer was able to predict the power and performance
tradeoff for VC insertion with a 96.5% accuracy rate during
topology synthesis. The contention analyzer was thus successful in
increasing performance and eliminating contention points while
considering power dissipation and system requirements.

REFERENCES

 [1] Bertozzi, D., Benini, L.," Xpipes: a Network-on-Chip Architecture For Gigascale
Systems-on-Chip," IEEE Circuits and Systems Magazine, Vol. 4, Issue 2, pp. 18
– 31, 2004.

[2] Goosens, K., Dielissen, J., Radulescu, A., “AEthereal Network-on-Chip:
Concepts, Architectures, and Implementations,” IEEE Design and Test of
Computers, pp. 414-421, 2005.

[3] Murali, S., Meloni, P., Angiolini, F., Atienza, D., Carta, S., Benini, L., De
Micheli, G., Raffo, L., "Designing Application Specific Network on Chips with
Floorplan Information," ICCAD, pp. 355-362, 2006.

[4] Ahonen, T., Siquenza-Tortosa, D., Bin, H., Nurmi, J., “Topology Optimization
for Application-Specific Networks-on-Chip,” Proc. SLIP, pp. 53 – 60, 2004.

[5] Beraha, R., Walter, I., Cidon, I., Kolodny, A., “Leveraging Application-Level
Requirements in the Design of a NoC for a 4G SoC – a Case Study,” Proc.
DATE, pp. 1408 – 1413, 2010.

[6] Ascia, G., Catania, V., Palesi, M., “Multi-Objective Mapping for Mesh-Based
Networks-on-Chip Architectures,” Proc. 2nd IEEE IFIP, pp. 182-187, 2004.

[7] Leary, G., Chatha, K., Srinivasan, Mehta, K., “Design of Network-on-Chip
Architectures with a Genetic Algorithm-Based Technique,” IEEE Trans. VLSI
Systems, vol 17, no. 5, pp. 674-687, 2009.

[8] Adya, S. N., Markov, I. L., “Fixed Outline Floorplanning: Enabling Hierarchical
Design,” IEEE Trans. Very Large Scale Integr (VLSI) Syst., vol. 11, no. 6, pp.
1120-1135, 2003.

[9] Samadi, K., Kahng, A., Li, B., Peh, L., "ORION 2.0: A Fast and Accurate NoC
Power and Area Model for Early-Stage Design Space Exploration," GSRC
Annual Symposium, September 2008.

[10] Glover, F., M. Laguna, "Tabu Search," Kluwer, Norwell, MA. 1997.
[11] Xu J., Chiu S., Glover F., “Optimizing a Ring-Based Private Line

Telecommunication Network Using Tabu Search,” Management Science, Vol.
45, No. 3, pp. 330-345, 1998.

[12] Dimitriu, V., and Khan G. N., "Throughput-Oriented NoC Topology
Generation and Analysis for High Performance SoCs," IEEE Trans. VLSI Sys.,
vol. 17, no. 10, pp. 1433-1446, 2009.

[13] Woodside, C., Nelson, J., Petriu, D., Majumdar, S., “The Stochastic
Rendezvous Network Model for Performance of Synchronous Client-Server
Like Distributed Software,” IEEE Trans. On Computers, vol. 44, pp. 20-34,
January 1995.

[14] Hu, J., Marculescu, R., “Energy-Aware Mapping for Tile-Based NoC
Architectures Under Performance Constraints,” Proc. ASPDAC, pp. 233-239,
2003.

[15] Bertozzi, D., “NoC Synthesis Flow for Customized Domain Specific Multi-
Processor Systems-on-Chip,” IEEE Trans. Parallel Distributed Syst., vol. 16,
no. 2, pp. 113-129, 2005.

[16] Pasricha, S., Dutt, N., Bozorgzadeh, E., Ben-Romdhane, M., “FABSYN:
Floorplan-aware Bus Architecture Synthesis,” IEEE Trans. VLSI Sys., vol. 14,
no. 3, pp. 241-253, 2006.

[17] Alho, M., Nurmi, J., “Implementation of Interface IP for Proteo Network-on-
Chip,” International Workshop Design Diagnostic for Electronic Circuit
Systems, 2003.

[18] Srinivasan, K., Chatha, K., Konjevod, G., “An Automated Technique for
Topology and Route Generation of Application Specific On-Chip
Interconnection Networks,” Proc. IEEE/ACM ICCAD, pp. 231-237, 2005.

[19] Chatha, K. S., Srinivasan, K., and Konjevod, G., "Automated Techniques for
Synthesis of Application-Specific Network-on-Chip Architectures," IEEE
Trans. CAD of Integrated Circuits and Systems, Vol. 27., No. 8, pp. 1425-1438,
2008.

