
978-3-9810801-7-9/DATE11/©2011 EDAA 
 

  Multi-Objective Tabu Search Based Topology Generation Technique For 
Application-Specific Network-on-Chip Architectures 

 
 
 

Anita Tino and Gul N. Khan 
Department of Electrical and Computer Engineering  

Ryerson University, Toronto, Canada  
 
 
 
 

Abstract – This paper presents a power and performance multi-
objective Tabu Search based technique for designing application-
specific Network-on-Chip architectures. The topology generation 
approach uses an automated technique to incorporate floorplan 
information and attain accurate values for wirelength and area. 
The method also takes dynamic effects such as contention into 
account, allowing performance constraints to be incorporated 
during topology synthesis. A new method for contention analysis is 
presented in this work which makes use of power and performance 
objectives using a Layered Queuing Network (LQN) contention 
model. The contention model is able to analyze rendezvous 
interactions between NoC components and alleviate potential 
bottleneck points within the system. Several experiments are 
conducted on various SoC benchmark applications and compared 
to previous works. 
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I.  INTRODUCTION  
The Network-on-Chip (NoC) concept has emerged as a result of 
the limitations posed by future bus-based systems found in 
Multiprocessor System-on-Chip (MPSoC) architectures. As 
forthcoming MPSoC designs continue to grow in size and 
complexity, hundreds of memory and processing elements are 
expected to communicate at a gigascale speed, consuming low 
power and minimal on-chip area. NoC systems consist of cores and 
on-chip routers to execute packet-switched communication. Cores 
access the network by means of network interfaces, and have their 
packets forwarded to their destination through a multi-hop routing 
path [1]. NoCs replace the busses in MPSoC systems with routers 
and links, where packets communicate simultaneously between the 
cores, improving overall system performance. Furthermore, the 
power consumption in the MPSoC is reduced by using shorter 
links as opposed to long shared busses. The NoC approach has thus 
shown improvements in issues such as performance, power and 
area on a chip [2].  As a result, NoC research and design have 
gained significant attention in both industry and academia. 
     Previous works in NoC design have dealt with generating 
topologies with minimal power dissipation and/or maximum 
performance. However, when taking actual SoC applications into 
consideration, focusing strictly on power could imply that the 
performance constraints in a system will not be met. Similarly, 
concentrating solely on maximizing system performance can lead 
to an unwarranted amount of power dissipation. Therefore, a 
tradeoff between power and performance is needed to design NoC 
topologies. Regular topologies such as mesh, torus, butterfly fat 
tree etc., result in poor performance due to increases in power 
usage and hardware area overhead. MPSoCs often comprise of 
different system requirements given an application. Therefore 
scalability is not as significant as power, performance, and area 
factors that a system must maintain. It has become evident through 
research that application-specific NoC architectures are superior in 
comparison to regular topologies in terms of power consumption 

and NoC resources [3].  As a result, irregular NoC topologies have 
become the preferred solution when minimizing area and power 
consumption on a chip. 
     This paper presents a multi-objective approach to topology 
design, employing a Tabu Search (TS) based technique to meet the 
power and performance requirements of an application. The 
proposed NoC synthesis method takes into account constraints 
such as network latencies, power consumption, and dynamic 
effects to generate application-specific topologies which cater to 
system requirements. A new contention analysis method is also 
presented in this work which uses a Layered Queuing Network 
(LQN) model to observe rendezvous interactions among the NoC 
components and identify possible contention points. The analyzer 
aims to relieve contention in an optimal manner by temporarily 
inserting virtual channels (VCs) to evaluate performance 
improvements and additional power consumption incurred by the 
network prior to actual VC insertion. By using this technique, VC 
resources are inserted carefully to provide the system with low 
resource costs, low power consumption, and high performance.  

II. PREVIOUS WORK 
A number of researchers have utilized optimization methods to 
design NoC topologies. Ahonen et al [4] apply a simulated 
annealing (SA) method to optimize NoC synthesis using the 
objectives of power and latency with the aid of its OIDIPUS 
design automation tool. The cores in the overall topology are 
partitioned into two major parts to form two connected ring 
topologies, where swaps between the partitions are made until a 
stopping criterion is met. The method can only invoke one 
objective at a time, and when optimizing for power only considers 
wirelength while disregarding other factors such as router 
consumption. The overall technique displays that SA and system 
partitioning degrade the optimized level of achievable block 
placement within a topology. By aiming to lower the cost of the 
partition, the method increases the traffic within the resulting 
partitions and limits the boundaries of possible solutions in the 
search space.  
      The work employed by Beraha et al [5] searches for a way to 
optimize both power and performance, also using a SA 
optimization technique. The general method aims at attaining a 
factor trade-off by generating a topology with minimal power 
consumption which meets the required latency demands of the 
application. The SA randomly assigns the initial mesh topology, 
where swaps are made in a random fashion between two cores to 
generate another mesh topology with a lower cost. Contention 
analysis is taken care of subsequent to designing the on-chip 
network. Therefore, the method does not account for the dynamic 
effects such as contention when analyzing throughput and latency. 
As a result, the minimum performance requirements may not end 
up meeting the constraints needed by the application. Furthermore, 
the generator does not maintain accurate values for the power 
dissipation of the system using a floorplanner or power models, but 
simply relies on the cost function which employs router area and 
bandwidth of links to account for NoC power. 



     Ascia et al [6] use power and performance as objectives in order 
to optimize mesh based NoC architectures using a state-machine 
and NoC simulator to evaluate mapping alternatives. The 
exploration engine evaluates core mapping schemes using a 
Genetic Algorithm (GA) to determine the next move until the 
stopping criteria is met. The final GA outputs two Pareto curve 
solutions of high performance and low energy mappings. Although 
the work by Ascia et al aims at designing NoCs with the objectives 
of power and performance in mind, the experimental outcomes 
represent a performance or power mapping. Therefore, the work 
does not combine both objectives when aiming to create an on-chip 
network, but instead provides the user with a mono-objective 
topology. In terms of power optimization, the work does not assess 
the effect of link power consumption within the on-chip network. 
 
 

                GENERAL TABU SEARCH ALGORITHM 
1. 
2. 
3. 
4. 
 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
 
 
14. 
15. 

Generate initial solution s = N(s) 
Evaluate current solution conditions 
TL(s) = {}  //initial empty Tabu List 
WHILE stopping criteria NOT met  
DO 
     Identify s' = neighbourhoodSet() 
     Move to the temporary solution s' 
     Evaluate s' solution 
     OptimalityCheck(s', AL(s), TL(s)) 
     IF optimal solution  
            Place solution as last optimal TL(s) entry 
            Update current solution, N(s) = s’ 
            IF Constraints satisfied  
                  EXIT 
            END 
      ELSE  
            Place as a non-optimal TL(s) entry 
            Refer to AL(s) to revert back to last optimal solution 
      END 
END 

Figure 1: General Tabu Search Algorithm 
 

      Leary et al [7] implement a 3-level GA to represent topology 
mappings as a set of binary and integer arrays. The algorithm 
employs genetic operator techniques, a fitness function, and a 
floorplanner to create an application-specific architecture until a 
stopping criterion is met. A Pareto curve technique is implemented 
based on the factors of power consumption, or the amount of 
routers used in the topology. The designer is given the choice of 
selecting the best solution of the two mappings. The GA technique 
in this work randomly generates solutions. However, given that 
information of communication and system requirements are a 
priori, there is no logic in generating random solutions. In addition 
to these facts, due to the random nature of the GA, the topology 
generation scheme invoked in this work can lead to longer wires 
and cause invalid solutions within the algorithm. As a result, the 
GA method can lead to high execution times and not guarantee a 
global optimal solution. Furthermore, making use of the number of 
routers as a factor within the GA technique does not directly 
address the performance of an on-chip network.  

III. TABU SEARCH AND NOC TOPOLOGY DESIGN 
The TS topology generator assesses all NoC characteristics given 
in the system core graph. Each step in the NoC generation method 
analyzes system performance and observes changes in the 
frequency of operation and power, while optimizing for other 
constraints within the NoC topology arrangement. The Parquet 
floorplanner [8] and Orion 2.0 power models [9] are integrated in 
order to assess various power consumption factors. The topology is 
run through the system-level floorplanner to assess the wirelengths 
and area at significant stages of the solution. In cases where the 
objectives and constraints do not meet the criteria, the TS method 
aims at discovering a new best solution that will satisfy the 

objectives. When the system requirements have been met, 
contention analysis is performed. The on-chip network is modeled 
as a LQN to analyze possible contention points within the system. 
The potential bottlenecks are identified through contention analysis 
using the Layered Queuing Network Solver (LQNS) tool and 
relieved using virtual channel (VC) insertion.  
 

A. Tabu Search Based Optimization 
Tabu search is a meta-heuristic algorithm that employs an 
aggressive search procedure. The procedure progresses iteratively 
from one solution to another by moving in a neighbourhood space 
with the assistance of adaptive memory [10]. TS reaches a better 
solution by considering the influence of a move within the 
neighbourhood and incorporating factors of search history and the 
problem context [11].  The TS method escapes the trap of local 
optimality by using its ability to retrieve prior optimal and non-
optimal solutions from memory. By keeping track of solutions 
within the search, it is possible to locate the global optimal solution 
with less computational effort and time as compared to other 
optimization methods. 

     As seen in Figure 1, the algorithm commences with an initial 
feasible solution N(s) and explores other possible neighbourhood 
space solutions in neighbourhoodSet(). TS inquires with its short 
term memory lists in order to prevent the reversal of recent moves 
as performed in OptimalityCheck(s', AL(s), TL(s)). The function 
ensures that the new temporary solution s' coincides with the 
Aspiration List AL(s) and Tabu list TL(s) to find a new local or 
global optimal solution. In order to escape a local minimum, AL(s) 
refers to TL(s) to understand whether the current solution is 
inferior to a previous solution. If the latter is true, the algorithm 
reverts back to the state it was previously in and places the current 
solution into the TL(s) to escape a local minimum. The algorithm 
continues until the stopping criteria are met. 
         The memory structures within the TS method play a 
fundamental role in strategizing for optimal solutions and provide 
a quality solution by supporting multiple objectives during the 
search. Memory in the TS method relies on the four principles of 
recency, frequency, quality and influence [10]. The TS method 
makes use of explicit and attributive memory types to guide the 
search in finding a solution which employs the four principles.  
 
 

Explicit Short Term Memory: Explicit memory directs the search 
towards an influential and quality-based solution, keeping record 
of past solutions within the TS to avoid cyclic behavior. Explicit 
memory services are provided by the Aspiration List, AL(s), and 
Tabu List, TL(s). The TL(s) is responsible for keeping track of the 
non-optimal solutions to prevent the algorithm from revisiting 
previous solutions. During each TS iteration, the algorithm checks 
the TL(s) entries to verify that solution s’ is an optimal solution, 
and that its current evaluated criteria does not match other non-
optimal entries. The Aspiration criterion is satisfied if a move 
yields a solution better than the best obtained so far. The AL(s) is 
therefore responsible for overriding restricted TL(s) entries if the 
outcome of the move under consideration is sufficiently desirable 
[10].  The final type of explicit memory is known as the Candidate 
List CL(s). CL(s) is responsible for generating a list of possible 
moves within the neighbourhood. More advanced TS methods use 
candidate list strategies to help narrow the examination of 
solutions in order to achieve a high quality solution within a 
shorter period of time and a reasonable amount of effort.  
     

Attributive Long Term Memory: Attributive memory acts as long 
term memory known as Frequency-Recency based memory (FR-
Memory). This memory is made use of during neighbourhood 
exploration for a new possible solution. FR-Memory encourages 
the search to explore different regions within the neighbourhood 
and allow for the diversification amongst the different feasible 



solutions. FR-Memory keeps track of the frequency of moves 
within each area of the neighbourhood, and the recency of the 
vertices which have been previously moved.  

B. NoC Design Flow 
1) Input Model  
It is assumed that the target application selected by the user has 
been mapped to processing cores, and that the corresponding 
communication volume requirements between the cores have been 
determined statically. The application can be specified as a 
directed graph G(V,E), where: 

→ Each vertex vi ∈ V represents a core within the graph.  
→ The communication between vertex i and j represent a 

directed edge (vi, vj), expressed as ei,j ∈  E.   
→ The weight found on an edge ei,j denoted by b(ei,j) 

characterizes the bandwidth.  
→ A destination vertex (core) dx, where dx ∈  V may have 1 

to many sources cores sx. 
→ The source vertex sx ∈ V, and ∀x ∈ 1...N. 
→ N represents the number of cores in the core graph. 

The core graph is a model based on the cores and their 
communication, with details about the source and destinations used 
within the system. 
    Switch and link power models are used in the generator and are 
based on 65nm technology established on Orion 2.0 values. The 
floorplanner performs wirelength minimization, compaction on the 
final solution to minimize the area within the design, in addition to 
detecting timing violation within the system. Characteristics such 
as average arbitration delay, packetization and de-packetization 
delays, maximum number of ports, flits per packet, and maximum 
operating frequency can also be specified. Although the TS 
technique is successful in finding optimal solutions, its downfall 
occurs in memory allocation. Given a problem space with a 
predetermined amount of cores and edges, the user can specify the 
required amount of TL(s) entries needed for a successful optimal 
solution to be reached. 
 

 

2) Tabu Search Based Topology Generator 
 

Initial Tabu Search Solution: Given the constraints specified by 
the user, the topology generator creates an initial NoC topology, 
referred to as N(s, f, P). Each vertex Vi in the core graph is 
assigned to a Network Interface (NI). The initial NoC topology 
generation is referred to as the crossbar approach, where all the 
NIs/vertex cores are connected to one central router [12]. An initial 
NoC frequency is determined based on all the connections within 
the on-chip network. The iterations within the TS method divide 
the initial large crossbar router, where preference is given to 
grouping frequently communicating cores within the same routers. 
Router connections are based on the communication requirements 
between source cores sx, and their respective destination cores dx. 
 
 

Problem Formulation:  Let N(s, f, P) represent the current feasible 
NoC topology solution s consuming power P at a frequency f, and 
N(s) express a new possible solution s’ within the neighbourhood 
set. We define a TS based TL(s) that contains non-optimal 
solutions, and AL(s) that is responsible for consulting the Tabu list 
to ensure that s’ is optimal and more desirable than the previous 
encountered solutions. Thus in order for the new solution N(s) = s’ 
to be an optimal solution 𝜑 (s), and a possible current feasible 
solution N(s, f, P), the following must be satisfied: 
 

                           𝜑(𝑠) = {𝑁(𝑠) ∩ 𝑇𝐿(𝑠)} =  ∅                   (1) 
 

If the 𝜑(𝑠) condition in (1) holds true, N(s) is disjoint with the 
Tabu list set and is an optimal entry with respect to TL(s). N(s) is 
then consulted AL(s) to verify that it is an element which is optimal 

 

Figure 2: Tabu Search Topology Generation Algorithm 
 

 

with respect to the previous encountered solutions. This can be 
expressed as:  

                               𝑁(𝑠) ∈ {𝜑(𝑠) ∪ 𝐴𝐿(𝑠)}                        (2) 
 

If expression (2) holds true, the old solution s can be updated to the 
new solution s', and frequency f can be changed to reflect the new 
frequency f'. The TS based NoC design algorithm of Figure 2 
iterates through feasible solutions, each time identifying a new 
possible topology configuration N(s). The method rearranges the 
topology to the new solution in order to assess the factors within 
the system. Latency, NoC frequency of operation, and router port 
constraints for the possible new NoC topology solution are 
evaluated during each iteration in ‘Check Constraints’ to verify 
whether the stopping criteria have been met. The power is also 
determined for each new solution, where the NoC design method 
ensures that the power consumption has not significantly increased 
from the last N(s, f, P) move. If the operating frequency exceeds 
the maximum possible frequency, or the power is significantly 
increased within the current possible solution being evaluated, 
AL(s) is referred to and the last optimal solution is restored. The 
undesired solution is placed into TL(s) and the algorithm attempts 
to obtain another neighbourhood solution.  
     Frequency is determined by evaluating the bandwidth and 
datawidth values, but also considering factors related to a pipelined 
wormhole network. In order for a flit to traverse through a 
network, latencies must be considered as it can greatly affect the 
frequency of operation between communicating cores. As a result, 
the user must specify the intended arbitration delay within a router, 
flits per packet, and the intended packing and unpacking delays of 
the NIs. As discussed by Dimitriu and Khan [12], the transfer 
latency in a pipelined wormhole network can be expressed as: 

             Dlat  =  Dpk + (N�l −  1 ) + �Darb 
n

i=0

 + Ddpk               (3) 

     Here, Dlat represents the latency of a packet consisting of Nfl 
flits, traversing to its destination with n hops. Dpk and Ddpk 
represent the packetization and de-packetization delays within the 
network interfaces respectively. Finally Darb represents the 
arbitration delay within each switch throughout the n hops incurred 
in the network. These latency values are then converted into time 
units and incorporated to assess the frequency of operation. 
 
 

Neighbourhood Selection Structure: The initial topological 
solution in this work implements a crossbar and can be considered 
to be a poor solution as a large router consumes a considerable 
amount of power. Furthermore, contention within this central 
router is also at the highest since all connected cores contend for 
the same crossbar. Finding a new solution within the 
neighbourhood of possible solutions is therefore greatly desired. 
The CL(s) and the candidate list strategy employed in this work, 
known as the Successive Filter Strategy (SFS), assist the TS in  



 
Figure 3: Successive Filter Strategy Example 

 

finding a new solution N(s) within the neighbourhood. A high 
quality solution in this work results in a low power, high 
performance topological arrangement which does not exceed the 
maximum frequency of operation. Hence, the SFS initially aims at 
first filtering the cores with low transaction rates since their moves 
have less effect on the frequency and performance of the topology 
as compared to the highly utilized cores. Power consumption is 
also decreased in comparison to the initial crossbar approach, as 
the large central router is divided into smaller components.  
    The head of the CL(s) is the core chosen by the SFS based on 
either the initial low transactional cores, or the neighbourhood 
cores being kept track of by the FR-Memory. Given the initial head 
candidate list condition, low transactional cores are chosen by 
employing the following expression: 

𝑀𝑖𝑛𝑇𝑟𝑎𝑛𝑠 =  𝑚𝑖𝑛𝑛 �𝑉𝑛 ��𝑁𝑡𝑟(𝑠𝑥) +  �𝑁𝑡𝑟(𝑑𝑥) ��          (4) 

Given a vertex/core n, N is the total number of vertices/cores in the 
core graph, where n = {1,2,…,N}. Ntr is the number of source, sx, 
and/or destination, dx, transactions that the vertex Vn is expected to 
incur. X is the total amount of sources or destinations for the 
respective core n, where x = {1,2,…,X}. Vn(f) represents vertex n 
and its expected total number of transactions f. 
      The candidate list is formed initially based on the minimum 
ceiling function of the vertex which exemplifies the lowest amount 
of transactions with other cores. In addition to this, the candidate 
list and SFS also verify with the FR memory whether the core has 
been previously selected, which allow for other low transactional 
cores to also take the head candidate position. The SFS then filters 
through the cores which communicate with the head of the 
candidate list. Subset arrangements of these cores are formed in 
different combinations, where the topology generator selects the 
subsets and configures the topology such that the cores are 
positioned according to the SFS combinations. The subset core 
combinations are then evaluated for solution quality. Let: 
→ π Є Π, where Π is a set of positions in the search space. 
→ π(j) represent core j attaining the head candidate position. 
→ Ω(s) denote the set of possible moves that core j can have, 

when core j has occupied the position π(j). 
→ m signify all possible combination of moves formed by the 

SFS. 
→ Ω(s) be divided into subsets Ω(1,s), Ω(2,s), ... Ω(m,s), where 

Ω(1,s) denotes the 1st subset move in the possible set of total 
moves generated by the topology generator etc. 

 

An example of the SFS applied to a 16 core application is given in 
Figure 3. The head of the candidate list is core 11. Core 11 
performs transactions with cores 9, 13 and 16. When finding a new 
N(s), core 11 has occupied the position π(11) in the possible set   
of moves Ω(s). The SFS then generates a set of m possible  

 

 
 

Figure 4: Possible Subset Configurations of Successive Filter Strategy 
     

combination of moves given core 11, analyzing cores 9, 13 and 16 
and their respective transactions with other cores as well. The 
resulting topological arrangements are then evaluated for quality 
given the factors of operational frequency, power, and port 
constraints.  Two possible subset combinations Ω(1,s) and Ω(2,s) 
for the SFS example is shown in Figure 4. 
 

IV. CONTENTION ANALYSIS 
 
 

LQN and Performance: LQN was developed as an extension to 
the concept of queuing networks using a layered structure 
approach [13]. Employing LQNs can determine factors of system 
performance. A system can have multiple functionalities, where 
each function is carried out by a subcomponent. A subcomponent 
can also perform various tasks. Contrary to queuing networks, 
LQN is modeled as subcomponents, which are interconnected to 
simulate the functionality of the entire system. These 
subcomponents are then divided into layered tasks which 
communicate amongst each other. The role of an LQN is to model 
the wait-and-reply rendezvous interactions that the multiple task 
layers can experience. An LQN task can also consist of multiple 
entries that characterize its different operations.  
     An example of an LQN representing a real benchmark is shown 
in Figure 5. The LQN of Figure 5 is an example of a 
subcomponent of the MPEG-4 Decoder, where each element is 
clearly labeled. The first layer in this example consists of three 
tasks, where each of these tasks contain a thinking time Z. These 
tasks are referred to as reference tasks (represented by a square) 
which await other tasks to complete. Task 4 and 5 are non-
reference tasks (represented by parallelograms), where the number 
in brackets within the task characterizes the execution time to 
perform its functionality. Task 4 contains two entries, E1 and E2, 
which perform different functions. The values on the arcs represent 
the number of transactions that a task i makes to a task j. 
     Contention can occur in a network when a task is heavily 
utilized, in turn creating bottleneck points and limiting the 
throughput of a system. Utilization can therefore be defined as the 
fraction of time when the task is busy or blocked by a rendezvous 
[13]. As an example, the heavy utilization of Task 4, E2, in Figure 
5 is noted. By dividing the network into subcomponents and 
observing rendezvous, it is possible to pinpoint and relieve various 
contention points to achieve higher throughput and increase system 
performance. In the proposed methodology for contention analysis, 
the NoC network is divided into subcomponents/sub-networks, 
where the router-to-router connections and respective 
interconnected cores are modeled as LQNs to pinpoint potential 
bottlenecks during the topology synthesis stage. LQNS is used to 
evaluate factors of utilization and throughput in the topology.   
 



Table 1: LQN/Contention Model Conversion 
LQN Element Contention Model Element 
Reference Task Source Core 

Non-Reference Task Router/ Destination Core 
Thinking Time (Z) Packetization Delay 

Execution Time of Task Reference Task Packetization Delay 
Non-Reference Task De-packetization Delay 

Router Arbitration Delays 
Number of Transactions Number of packets sent from component i to j 

 

 
Figure 5: LQN Subcomponent for MPEG-4 Decoder   

 

LQN/Contention Model: The LQN model conversion is presented 
in Table 1, where each LQN element models an element in the 
contention analysis method. Each source core in the NoC is 
considered as a reference task which awaits a response from the 
lower layers. The lower layers are considered to be the router’s 
ports and/or destination cores. The source core and its respective 
NI have a packetization delay, and are modeled as the reference 
task’s thinking time Z. Each router port task is modeled as a non-
reference task with two entries representing the router operations 
of receiving (Rx) and transmitting (Tx) data. The execution time 
within the router entries represent the arbitration delay.  
 

VC Insertion Technique: The contention analyzer is given a finite 
amount of VC resources imposed on by the user, and aims at 
equally distributing the VCs according to the hot spots within the 
system. The generator models the NoC topology subcomponents 
using the LQN/contention model. Throughput and utilization 
factors are noted, and the bottleneck points are verified. Thereafter, 
temporary VCs are inserted at the bottleneck points to model the 
task once again and evaluate the improvement in performance and 
extra power dissipation. The following criteria must be satisfied in 
order for the temporary VC insertion to take permanent effect: 
→ The performance improvement is greater than the extra power 

dissipation that the on-chip network will experience. 
→ There are enough VC resources for the insertion to take place. 
→ The new frequency of operation will not exceed the maximum 

allowable frequency. 
If all criteria are satisfied, the system permits the temporary VC to 
be inserted into the system at the designated spot to relieve 
contention. The algorithm inserts multiple VCs if all criteria are 
satisfied and there are enough resources. Given the scenario that all 
the contention points have not been analyzed, or one of the criteria 
has not been satisfied, the analyzer proceeds to search for and 
relieve other potential bottleneck points within the topology.   
 

V. COMPLEXITY ANALYSIS 
Given a solution space of N cores, determining a move within the 
TS given the constraints imposed by the SFS yields N(N-1)/2 
moves, expressed as O(N2). The swaps needed to place the cores in 
the new topological arrangement results in a complexity of O(1), 
where O(N) time is needed to evaluate the N cores. Given k total 
iterations within the search, and an average TL(s) search time of i, 
the overall complexity of the proposed method can be expressed as 
O(k(N2+N+ i)), further simplified as O(N2 + N), assuming k and i 
as negligible. 

VI. EXPERIMENTAL RESULTS 
The TS topology generator is applied to five different multimedia 
and networking benchmark applications: Video Object Plane 
Decoder (VOPD – 12 cores), Multi-Window Display (MWD – 15 
cores), Network Communication System (NCS – 15 cores), MPEG-
4 Decoder (12 cores), and the Set Top Box (25 cores). We refer 
readers to the work of various researchers for the application core 
graphs [12,14,15,16]. The topology generator implementation for 
the proposed method was tested using a computer with a 1.66 GHz 
atom processor and 1 GB of RAM, running a Linux operating 
system. Network Interfaces are taken into account within the core 
area, where each NI is estimated to be approximately 0.2 mm2 [17]. 
The routers are modeled as individual components within the 
floorplanner. Power is calculated with virtual channel consumption 
being considered, where router port buffers are sized for 4 flits. 
Topologies in this work were generated using a restriction of 6 
ports per router and a maximum operating frequency of 1 GHz. 
 
 

Table 2: Topology Technique and Area Comparisons 
Application Method Topology Area (mm2) 

MPEG4 
Decoder 

Tabu 
1 
2 

App Specific 
App Specific 1 [12] 
App Specific 2 [12] 

4.13 
11.89 
4.43 

VOPD Tabu 
1 
2 

App Specific 
App Specific [18] 
App Specific [3] 

2.55 
3.11 
1.93 

Set Top Box Tabu 
1 
2 

App Specific 
App Specific[7] 

App Specific[19] 

6.41 
6.19 
6.35 

NCS Tabu 
1 
2 

App Specific 
ANOC [7] 

App Specific [7] 

4.58 
No Solution 
No Solution 

MWD Tabu 
1 
2 

App Specific 
App Specific 1 [12] 
App Specific 2 [12] 

4.42 
9.00 

10.87 
 
 

 
 

Figure 7: Power Dissipation Benchmark Comparison 
 

     The benchmarks have been compared to previous NoC 
topology design techniques [3,7,12,18,19]. Due to inconsistencies 
between power libraries used in the various works, the topology 
layouts were redesigned with the 65nm library used in this work to 
accurately compare power dissipation and area values. All 
topologies required less than one minute to be generated and 
analyzed. The NoC area distributions for the techniques are 
presented in Table 2 and take network components such as NIs and 
routers into account. The ANOC and GA technique employed in 
the work of Leary et al [7] was unable to generate solutions for the 
NCS benchmark. Analysis of the results display a reduction of 
2.03x in power dissipation compared to other topology generation 
techniques, with comparable values of on-chip area distribution. 
Figure 7 compares the normalized power consumption of the 
various methods to their respective applied benchmarks. 
     The throughput oriented topology generation technique of 
Dumitriu et al [12] was used to compare performance results. The 
MPEG4 and MWD used in [12], and NCS benchmark which 
required VC insertion were assessed for system performance. The 
NoC routers invoked in both [12] and in this work use round-robin 
arbitration amongst all the ports to prevent the system from 



starvation. Livelock is prevented by incorporating minimum length 
paths from source to destination cores. The topologies were tested 
using an in-house cycle accurate NoC SystemC simulator.     
     The throughput values for the different techniques are presented 
in Figure 8.  The VC insertion technique for the MPEG4 Decoder 
displayed a 17% improvement in throughput due to a 5% increase 
in power, where the NCS networking benchmark demonstrated a 
67% performance improvement as a result of a 13% dissipation 
increase. The comparison of this work to the work of Dumitriu et 
al showed a slight throughput improvement of 0.57x and 0.84x for 
the MPEG4 Decoder and MWD application respectively. This 
signifies that the multi-objective power and performance technique 
presented in this work was capable of reaching and exceeding the 
performance levels that a mono-objective throughput oriented 
topology generator was able to achieve. 
 
 

 
Figure 8: Performance Benchmark Comparison 

 
 

 
 

Figure 9: Power/ Performance Tradeoff for MPEG4 and NCS  
 
 

       An example of the power and performance tradeoffs for the 
MPEG4 and NCS benchmarks applied to the VC insertion 
technique is depicted in Figure 9. VC insertion for a NCS 
subcomponent/sub-network initially shows significant increases in 
throughput as compared to extra power dissipation incurred by the 
system. The tradeoff is substantially high until 3 VCs are inserted. 
The additional performance improvement and power consumption 
levels then intersect, where performance is no longer at an 
advantage. Therefore, 2 VCs were inserted at the designated 
contention point, in addition to considering the effects of frequency 
and available resources. The MPEG4 tradeoff depicted in Figure 9 
illustrates the contention at the SDRAM core sub-network, where 
inserting 1 VC gives a fair trade-off between power and 
performance. The insertion of 2 VCs leads to a higher power 
consumption than performance increase. Hence 1 VC is inserted 
into the system. During topology synthesis, the contention analyzer 
had estimated a 6.6% and 66.67% increase in performance due to a 
5.7% and 21% increase in power consumption for the MPEG4 and 
NCS benchmarks respectively. The contention analyzer was 
therefore able to predict the power and performance values within 
a 96.5% accuracy rate when compared to the actual simulation 
results.  

V. CONCLUSION 
This paper presented an efficient methodology for a multi-
objective power and performance NoC design using an automated 
technique. The work also introduced a LQN/contention model to 
analyze and relieve various contention points within an on-chip 
network during topology generation. Results demonstrated a 2.03x 
reduction in power dissipation in comparison to previous works, 
with performance values which were comparable to a mono-
objective throughput oriented topology generation technique. The 
contention analyzer was able to predict the power and performance 
tradeoff for VC insertion with a 96.5% accuracy rate during 
topology synthesis. The contention analyzer was thus successful in 
increasing performance and eliminating contention points while 
considering power dissipation and system requirements.  
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