
Guaranteed Service Virtual Channel Allocation in
NoCs for Run-Time Task Scheduling

Markus Winter and Gerhard P. Fettweis
Technische Universität Dresden, Vodafone Chair for Mobile Communications Systems

Email: winter@ifn.et.tu-dresden.de

Abstract—Quality-of-Service becomes a vital requirement in
MPSoCs with NoCs. In order to serve them NoCs provide
guarantees for latency, jitter and bandwidth by virtual channels.
But the allocation of these guaranteed service channels is still
an important question. In this paper we present and evaluate
different realizations of a central hardware unit which allocates
at run-time guaranteed service virtual channels providing QoS
in packet-switched NoCs. We evaluate their performance in
terms of allocation success, compare it to distributed channel
setup techniques for different NoC sizes and traffic scenarios
and analyze the required hardware area consumption. We find
centralized channel allocation to be very suitable for our run-time
task scheduling programming model.

Index Terms—Network-on-Chip, virtual channel, guaranteed
service, channel allocation, Quality-of-Service.

I. INTRODUCTION

Packet-switched Networks-on-Chip (NoCs) are considered
as promising solution to the interconnection problem in Multi-
Processor Systems-on-Chip (MPSoC) [1], [3]. Examples like
QNoC [2], AEthereal [4] or Nostrum [13] even support
Quality-of-Service (QoS) mechanisms, i.e. assertions about
throughput, latency and jitter of data transfers. They are an
upcoming necessity for the real-time requirements imposed
by processing deadlines of e.g. multimedia and wireless com-
munication applications [4]. The major challenge today is
how the application can utilize the provided QoS techniques.
How can we find free QoS resources in the NoC and how
can we efficiently allocate guaranteed service (GS) channels?
The distribution of application entities (jobs, threads or tasks)
onto processing elements (PE) must be completed by the
establishment of communication channels between the PEs,
memories and peripherals in order to achieve system-wide
guarantees for real-time applications.

Approaches [6] and [7] try to solve this combined MP-
SoC programming problem at NoC design and application
compile time. However, the data dependent control flow of
some applications like H.264 and the possibility of several
applications running in parallel on an MPSoC do not allow
for efficient static schemes associated with task mapping and
channel allocation at compile time. Run-time algorithms in
opposite decide about task scheduling and communication
channel establishment depending on the current situation in
the MPSoC and can exploit the MPSoC inherent parallelism
and data locality much better. A central authority schedules
jobs and allocates communication resources [5], [9], [11], [14],

[15]. The algorithms for solving the scheduling and graph
problem typically require a significant amount of computation
resources and time. That is why these allocation models work
on thread or job level and reassignment of the workload to
computational resources is done in the range of milliseconds
and seconds. A different and much faster task based approach
for scheduling is described in [10]. In this approach, the
utilization of a dedicated hardware unit allows for scheduling
of tasks onto PEs within about 100 clock cycles while taking
real-time constraints of tasks into account, too.

Since real-time constraints have to be considered not only at
task scheduling but also at inter-task communication and data
transfers, we must extend the approach of [10] to NoCs. Based
on this idea, we proposed the concept of centralized NoC
management and introduced a dedicated hardware unit called
’NoCManager’ which searches and allocates GS routes in the
NoC between two arbitrary modules on request [16]. The
path search and allocation time depends linearly on the length
of the found path introducing uncertainties concerning the
allocation time. In this paper we present an architecture which
overcomes this limitation. In addition to this we compare the
area and the allocation performance of the two NoCManager
architectures with GS route allocation via distributed methods
for different 2D-mesh NoC sizes and traffic scenarios. This
will provide us for the very first time a complete overview on
the advantages and disadvantages of the different GS channel
allocation approaches.

Section 2 briefly explains the task scheduling concept.
Section 3 describes the NoC architecture and section 4 the
different GS channel allocation units. Section 5 presents sim-
ulation results and section 6 hardware area numbers. Finally,
section 7 concludes the paper.

II. TASK BASED PROGRAMMING MODEL

Demand for concurrent execution of several applications
on the MPSoC calls for run-time instead of compile-time
resource scheduling and allocation. We employ the concept
of [10] who proposes an MPSoC programming model with
dynamic resource allocation via run-time task scheduling. The
application represents a system thread while a task in the sense
of this programming model is an atomic computational kernel
which can be scheduled and executed on a processing element
(DSP, ASIC, ASIP) as soon as its input data is available. A
task typically takes some hundreds to few thousand clock

978-3-9810801-7-9/DATE11/ c©2011 EDAA

MPSoC

Host
Processor

Core
Manager

Task
Queue

RouterRouter

 Router

NoC
Manager

Router

Router

DSP,ASIP,...

DSP,ASIP,... DSP,ASIP,...DSP,ASIP,...

SDRAM (Global Memory)

Ta
sk

 lo
ad

(p

rg
+d

at
a)

Ta
sk

 fi
rin

g

Established GS route

Fig. 1. Schematic Block Diagram of the MPSoC platform. The dotted lines
indicate the direct connections between the NoCManager and the routers (red:
examplary allocation of these routers by the NoCManager at the moment).

cycles for computation. A RISC host processor executes
the operating system and the control code of one or more
applications. Within the operating system tasks are instantiated
sequentially as parts forming an application. This instantiation
is translated into a task description which fills a queue in the
CoreManager. The CoreManager is a dedicated hardware unit
which schedules tasks onto the available processing elements
at run-time while considering the data dependencies between
different tasks. It also issues the required data transfers to and
from the PE for task input and output data. [10] supports real-
time applications by considering deadlines for task execution
and allowing cancellation of lower priority tasks. Thus, in an
overloaded system tasks will have to be aborted before they
even started in order to fulfill the assertions for other tasks
and complete applications.

However, considering only the scheduling of tasks is not
sufficient for real-time applications since not only the applica-
tion execution must be in time but also the data transferred
across the NoC. Thereby, QoS assertions by GS channels
must be allocated within few tens of clock cycles or less. The
centralized allocation of communication resources at run-time
described in [5], [9], [11], [14], [15] takes too long for this.
In order to overcome this limitation we propose the central
channel allocation unit, called NoCManager, which is able
to allocate the GS channels in the required timing range. As
soon as the CoreManager has scheduled a task onto a PE, it
instructs the NoCManager to find a GS route in the NoC. If
the route search was successful, the NoCManager allocates the
found route via dedicated control wires to the routers where
the appropriate registers are set, Fig. 1. If no free route could
be found the NoCManager informs the CoreManager about
this failure and the CoreManager has to abort the real-time
task because of a heavily loaded system.

III. NETWORK-ON-CHIP ARCHITECTURE

Our NoC is formed of routers and network interfaces (NI)
connected to each other by bidirectional links. Every port of a
router and an NI consists of an output and an input part. A flit
(flow control digit) is transmitted in one clock cycle across
a link and consists of a header and a payload. The header
contains the target NI address, a burst mode identifier and

NoCManagerGraph Problem

Deactivate
Links and ports in routers

deal l oc ated: ac tiv ate edg es

R eserv e
l inks and
ports in
routers

Pat h S earc h
+

B ac k t rac k i n g Port @R ou t er
res erv at i on

I n f orm
GS

req u es t er Dedicated control
wires to/from routers

From/To
CoreManager

L i n k F ree/
A loc at ed

R eq u es t
i n t erf ac e

GS req u es t
q u eu e

Fig. 2. Block diagram of the NoCManager.

a flit type identifier. The type identifier differentiates between
the two traffic classes (explained in the following), setup, Ack,
NAck and tear-down flits.

Similar to [4] there are two kinds of flits: Best Effort (BE)
and Guaranteed Service (GS) which form the different traffic
types. BE uses deterministic xy-routing and input queuing in
the routers. A stall/go protocol realizes flow control at BE
traffic between the routers. Round robin arbitration between
all input ports is used in case two BE flits want to get access
to the same output port in the same clock cycle. A BE flit
requires 2 cycles per hop (1 cycle for link traversal into FIFO,
1 cycle for routing and putting out onto link).

GS on the other hand employs the reservation of a virtual
channel between two communicating modules. In the routers
along the channel the corresponding input and output ports
are reserved for GS flits of this channel. As soon as a GS flit
arrives at an allocated input port the corresponding output port
forwards it. The BE routing is bypassed and forwarding of BE
flits to this output port from any input port is stalled. If at an
outport a channel is reserved but in a cycle no GS flit wants to
be forwarded, the free port will be used for BE flits. Due to the
fact that every router in the NoC works the same way, a GS
route is constituted between two modules. Note, in opposite
to [4] we currently do not support several GS channels per
link and port by time multiplexing. We know about wasting
communication resources and will extend our principles in
future to handle more GS channels along a physical route.

IV. CENTRAL CHANNEL ALLOCATION ARCHITECTURES

There are two types of NoCManagers we want to discuss
and compare in this paper. Both have to search and allocate
free GS routes between two modules. So, they have to solve a
shortest path problem on the NoC graph making path search
and backtracking the heart of the channel allocation unit.
Each of the two NoCManager types realizes them in different
ways, explained in the subsections a) and b). The rest of the
NoCManager block diagram is the same for both, Fig. 2.

Since the topology and size of the NoC is known at design
time the graph containing the links as edges and the routers
as nodes can be realized in hardware in conjunction with a
hardware based search algorithm. For this, the graph search
requires knowledge about the actual allocation state of the
links in the NoC (edges in the graph). This state is stored
in the ’link free flipflop’ for every link existing in the NoC.
An AND gate connects the flipflop with the edge in the NoC

graph representation (see also Fig. 3c) and d)). When an NoC
link is allocated, the flipflop of the corresponding edge is set
to ’0’ excluding it from next route search.

Allocation of the routers is done during or directly after path
backtracking. Direct connections between the NoCManager
and the routers (Fig. 1) allow allocation in few clock cycles
without the risk of setup flits being stalled in the NoC speeding
up channel allocation significantly. Two wires per port in
a router are necessary. One wire indicates that the port is
allocated, the other wire goes the way back and indicates to the
NoCManager when it is freed again. When data transmission
via GS channel is complete one module transmits a tear-down
GS flit. As it travels along the GS route it frees the allocated
ports in the routers. This deallocation is forwarded by the
direct wire connection to the NoCManager which resets the
according ’link free flipflop’ of that link to ’1’. This link can
now be used during next route search again.

The NoCManager is completed by a small queue where
incoming requests can be buffered and a unit organizing the
response to the GS route requester.

A. Sequential HAGAR NoCManager
The NoCManager was initially presented in [16] with a

detailed discussion of the architecture but without analysis on
the performance of allocation success. The graph realization of
the NoC, path search and backtracking are realized by a HArd-
ware Graph ARray (HAGAR) proposed by [8], [12]. Nodes
(routers) are represented by simple, unconnected, horizontal
and vertical wires. If an edge (a link) between two nodes (A)
and (B) exists, an AND-OR-gate will connect the horizontal
wire of node (A) with the vertical wire of node (B).

When the NoCManager wants to find a route between two
modules it activates the horizontal wire which represents the
router connected to one of the two GS requested modules (the
GS master). Via the AND-OR-gates all nodes reachable in
one hop are activated and detected on the vertical wires. The
reached nodes remember the node which activated them for
the first time. In the next clock cycle all nodes which were
activated on the vertical wires are set to logic ’1’ on their
horizontal wires. They activate other nodes on the vertical
wires again. This goes on until the intended end node is
reached. At the end, the path is backtracked stepwise by
sorting out the predecessors starting at the end node.

Finding a route in this sequential HAGAR takes as many
cycles as the found route has hops. Path backtracking requires
as many cycles, too. In an 8x8 mesh a typical route from the
upper left to the lower right corner is about 14 hops, thus, route
search and backtracking require 28 clock cycles. Taking into
account a few more cycles for setup request receive, router
allocation and send of answer we end up at about 35 cycles
for allocation of a route from the upper left to the lower
right corner in an 8x8 mesh NoC. Though this is quite short,
the indeterminism in the allocation duration is undesirable.
Additionally, at large NoCs with high and very dynamic load
(i.e. many GS routes with short life time) sequential HAGAR
NoCManager shows performance degradation. The reason for

d) Unrolled Hardware Graph Array (HAGAR)

AND
-OR

Chosen Nodes Path

Node (0,0)

Forward Path Propagation Search

AND
-OR

Node (1,0)

AND
-OR

Node (0,1)

AND
-OR

Node (1,1)

AND
-OR

AND
-OR

AND
-OR

AND
-OR

AND
-OR

AND
-OR

AND
-OR

AND
-OR

Path
Backtracking

clock

Intended Target O
n?

OR

C

R

A

B

Q

Q

=AND-
OR C

R

A

B

Q

Q

FlipFlop
Link
free
(0,1)
(0,0)

&
0 0

0

AND&
00

0

AND

(0,0)

(1,0)

(0,1)

(1,1)

Router (0)

Router (2)

Router (1)

a) NoC

Router (2)

(0,0)

(0,1) (1,1)

(1,0)

b) NoC Graph

c) AND-OR-gate
Node (0,0) allocated

Node (0,0)
Node (1,0)

Node (0,1)

FlipFlop
Link
free
(1,0)
(0,0)

Fig. 3. a) the 2x2 2D-mesh example NoC; b) the resulting NoC graph; c)
detailed structure of an example AND-OR-gate incorporating the ’link free’
flipflop storing the actual allocation state of a specific link in the system;
d) schematic structure of the serialized/combinatorial graph matrix for the
example NoC

this is the direct rejection of incoming requests with a NAck
(route could not be setup) although there might be free routes
because it has already requests to handle and the request queue
is full. Shortening the search time can improve the allocation
success significantly what is one scope of this paper.

B. Combinatorial HAGAR NoCManager
The sequential HAGAR architecture achieves clock fre-

quencies of more than 1 GHz in UMC 130nm technology
since there are only very few AND-OR-gates connected in a
row forming the critical path. We expect MPSoC systems for
signal processing in 130nm to run only at about 200-300MHz.
This reveals much laxity and optimization potential. We can
lengthen the critical path and in return save clock cycles by
loop unrolling. Instead of reusing the hardware representation
of the NoC graph in every cycle for every path step we can
connect several of these graphs in series as combinatorial
logic in a trellis structure, Fig. 3d). Similar to the sequential
HAGAR we have the two different phases of path search and
path backtracking except that each of them consumes now 1
clock cycle independent of the path length.

We begin at the start node of the intended GS route by
setting it to logic ’1’. The signal travels along the connected
wires to the first stage of AND-OR-gates. The AND-OR-gates
in Fig. 3c) incorporate every link arriving at this node by
AND-connecting the ’link free’ flipflop to the wire coming

from the neighbor (predecessor) node. So, already allocated
links with a ’link free’ flipflop set to logic ’0’ are not
considered and not selected by the path search. It passes the
first AND-OR-gate stage and activates its reachable neighbor
nodes. They, in turn activate their neighbors in the next stage
of AND-OR-gates. Each node at each stage stores by which of
the activation wires at its AND-OR-gate input it was activated.
If the node was already active in the previous stage, it will
store itself as the node it was activated by. So, we can make
sure to select exactly that path in the NoC which is the shortest
between the GS source and target module.

This goes on until the end of the trellis where a register
stores which of the nodes could be reached through the NoC.
If the intended GS target was activated a GS route through the
NoC will exist and backtracking is started in the next cycle. By
reading the stored preceding input wire starting at the intended
GS target, the path is backtracked and selected. Each selected
node at each stage updates that it was selected into the ’chosen
node’ register where eventually the complete path from source
to target can be found.

There must be as many stages of AND-OR-gates as the
longest minimal path has hops. At 8x8 mesh there are at least
14 hops. So, the trellis requires at least 14 stages of AND-
OR-gates. There can be realized more than 14 stages allowing
non-minimal paths for the longest distance in the NoC, too (for
shorter distances between GS source and target non-minimal
paths are possible anyway). But our simulations proved, for
2D-mesh topologies additional stages do not improve the
performance. There is enough diversity in the mesh.

Note, though in this paper we restrict to 2D-mesh topologies
at our analysis the HAGAR architecture (sequential and com-
binatorial) can be realized for any kind of topology including
a completely irregular one.

We also researched alternative realizations of combinatorial,
trellis and tree based NoCManagers with exactly one starting
point. But compared to the combinatorial HAGAR it was much
more area hungry without better performance results.

V. SIMULATION RESULTS

In opposite to [16], in this paper we want to provide
performance comparisons between the two NoCManagers and
distributed allocation techniques. At distributed GS channel
allocation, the intended GS master (in Fig. 1 the DSP/ASIP
when it was allocated by the CoreManager) sends a setup flit
into the NoC where the flit itself searches its path through the
NoC and allocates the routers along this path via a forward-
and-allocate-algorithm. We realized xy-routing, flooding and
flooding-minimal-path (flooding but forwarding of setup flits
is only allowed if this shortens the distance to the target).
The request queue of the NoCManager was set to two entries
because more entries did not show significant performance
improvements in our simulations.

For evaluation we considered the following parameters:
• GS Master Percentage: The percentage of modules in

the MPSoC which can be GS master. Set to 20%, 35%
and 50%. They are distributed uniformly random in the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GS route rate

G
S

se
tu

p
su

cc
es

s
ra

te

20% ma, XY
20% ma, flood
20% ma, flood minPath
20% ma, seq. HAGAR
20% ma, comb. HAGAR
50% ma, XY
50% ma, flood
50% ma, flood minPath
50% ma, seq. HAGAR
50% ma, comb. HAGAR

Fig. 4. Comparison of the different GS channel allocation techniques for a
route lifetime of 200 clock cycles at 6x6 mesh and for a GS master percentage
in the system of 20% (black) and 50% (red).

system. All other modules (except CoreManager and
NoCManager) can be GS slaves.

• GS Channel Lifetime: The number of clock cycles after
which a GS route will be torn down by the GS master.
The shorter the lifetime the higher is the dynamism of
GS route allocation and deallocation at a specific route
rate. We simulated 200, 500 and 1000 cycles.

• GS Setup Success Rate: The ratio between established and
desired GS routes. Indicates how many of the requested
GS routes could be established in the NoC.

• GS Route Rate: The portion of clock cycles in which
a GS master wants an active GS route. It indicates the
relation of requested GS active to GS not active cycles
at a GS master and the requested GS connection load in
the NoC. It is computed per GS master as:
GS route rate = #(GS routes wanted) · (GS lifetime)

#(simulation cycles)

In our simulations we used 4x4, 6x6, 8x8, 12x12 and
16x16 2D-mesh-grid based NoC. We simulated 50.000.000
clock cycles for analysis of the setup success rate resulting
in several ten thousands to millions of GS route setups.
The CoreManager issues a GS setup request to the modules
(distributed GS setup) or the NoCManager (centralized GS
setup) in a POISSON stream meeting the GS route rate
requirements of the GS masters. The first and last 100,000
simulation cycles were not considered in order to prevent
transient effects. Due to lack of space we will only show the
results for a small NoC (6x6 mesh) and those for a large NoC
(16x16 mesh). But the principal insights are also true for the
NoC sizes between.

Fig. 4 and Fig. 5 show the allocation success of GS route
requests for pretty short GS channels with a lifetime of only
200 clock cycles in the small and the large NoC, respectively.
We also varied the number of masters in the SoC. At 6x6
mesh there are 7 (20%) and 17 (50%) of the 36 modules in
the SoC master, at 16x16 there are 51 (20%) and 127 (50%)
masters, respectively. At the 6x6 NoC the NoCManager based
allocation techniques achieve the best allocation performance.
They can realize 5% to 10% more allocation success than

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GS route rate

G
S

se
tu

p
su

cc
es

s
ra

te

 20% ma, XY
20% ma, flood
20% ma, flood minPath
20% ma, seq. HAGAR
20% ma, comb. HAGAR
50% ma, XY
50% ma, flood
50% ma, flood minPath
50% ma, seq. HAGAR
50% ma, comb. HAGAR

Fig. 5. Comparison of the different GS channel allocation techniques for
a route lifetime of 200 clock cycles at 16x16 mesh and for a GS master
percentage in the system of 20% (black) and 50% (red).

the distributed methods - at low and high load. We also find,
the combinatorial NoCManager does not perform better than
the sequential one. It cannot make use of its low allocation
latency advantage and cannot turn it into better allocation
success. At this small NoC, there are simply to few requests
to the NoCManager and the search of a route via sequential
NoCManager does not take so many clock cycles due to
shorter paths. Therefore, only few requests arriving at the
NoCManager must be rejected immediately because of a
full request queue although there might be a free path for
this route request. The distributed techniques lack of global
knowledge of the allocation state in the NoC and cannot
utilize possible free routes. Though, the flooding algorithm
has this knowledge it obstructs itself. If two different routes
shall be setup at the same time the setup flits can block each
other making both setup tries to fail although there are free
routes. Though, the combinatorial HAGAR achieves no better
allocation success than the sequential one, the determinism of
the GS route allocation latency can still be a big advantage
for the CoreManager.

At the 16x16 NoC, Fig. 5, there is a significant difference
between the sequential and combinatorial NoCManager. At
such a large NoC with many masters and long possible paths
the combinatorial NoCManager can impressively utilize its
advantage. It achieves up to 16% more allocation success
than the sequential NoCManager which has to reject incoming
requests in a high number because of an already full request
queue due to long path search and allocation times per request.
The shorter search latency of the combinatorial NoCManager
enhances the number of requests it can handle significantly
providing the required throughput at large NoCs with heavy
load. The flooding algorithm performs even worse since its
setup flits have to travel through the whole 16x16 NoC. Only
at an extremely loaded and dynamic system (50% master,
short GS routes of 200 clock cycles and high route rates) xy-
based channel allocation and minimal path flooding can realize
allocation successes of 2-3% more than the combinatorial
NoCManager. But even at such an improbable operation state,
the advantage of the distributed methods is minimal.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GS route rate

G
S

se
tu

p
su

cc
es

s
ra

te

 200, XY
200, flood
200, flood minPath
200, seq. HAGAR
200, comb. HAGAR
1000, XY
1000, flood
1000, flood minPath
1000, seq. HAGAR
1000, comb. HAGAR

Fig. 6. Comparison of the different GS channel allocation techniques for a
route lifetime of 200 (black) and 1000 (red) clock cycles at 16x16 mesh and
for a GS master percentage in the system of 20%.

0 50 100 150 200 2500

200

400

600

800

N = #Modules = #Routers

kN
AN

D
ga

te
s

seq. NoCM − all
seq. NoCM − link states
seq. NoCM − graphMatrix
seq. NoCM − backtrace
comb. NoCM − all
comb. NoCM − link states
comb. NoCM − trellis

Fig. 7. Area consumption of the two different NoCManagers and there main
parts (in kNAND gates).

Fig. 6 shows the results of a highly dynamic system on the
one hand and a bit less dynamic on the other hand. At a GS
route lifetime of 1000 clock cycles there is less often a new
route to be setup than at 200 clock cycles for the same route
rate (5x less). There are less requests to the NoCManager and
the sequential one is sufficient to handle all these incoming
requests even in this large NoC with high route rates.

VI. AREA RESULTS

Both NoCManagers as well as the routers are available
in synthesizable VerilogHDL and can be generated out of
an XML description for different NoC topologies and sizes.
Synopsys Design Compiler synthesized them with FARA-
DAY’s 130 nm UMC library. While the routers as well as
the sequential NoCManager can be realized at 500 MHz
(seq. NoCManager even more than 1 GHz) the combinatorial
NoCManager allows only 200 MHz until an 8x8 mesh and 50
MHz for a 16x16 2D-mesh NoC topology.

The area requirements of the combinatorial HAGAR are
significantly higher than those of the sequential HAGAR. The
sequential version has only one representation of the NoC
graph, the combinatorial has as many graph representations
connected in a chain as the longest path can be. The sequential
HAGAR grows with O(N) where the combinatorial HAGAR
grows with O(N ·

2
√

N) in a 2D-mesh (N = number of mod-
ules), Fig. 7. We also see, the trellis graph of the combinatorial

0 50 100 150 200 2500

2000

4000

6000

N = #Modules = #Routers

kN
AN

D
ga

te
s

BE only
GS setup via XY
GS setup via seq. NoCM
GS setup via comb. NoCM

Fig. 8. Area consumption of the whole NoC including FIFOs and the GS
route allocation mechanism (in kNAND gates).

HAGAR is responsible for this huge growth where the ’link
free’ registers require about the same area at the two NoC-
Manager realizations. We find, too, the linear growth of the
sequential NoCManager as expected. Compared to a micro-
controller which would require hundreds of cycles for route
search, the sequential NoCManager area consumption is quite
acceptable even at a 16x16 mesh consuming 99 kNANDs

and not requiring any SRAM.
In order to compare the centralized NoCManager approach

for GS route allocation with the distributed ones, we have
to compare the area consumption of the complete NoC. Fig.
8 shows the area a pure Best Effort NoC consumes with its
routers including 4 entry input FIFOs for flits of a payload
size of 68 bit (32 bit for data, 32 bit for address, 4 bit
for read/write/cache/... mode). We find also the NoC area
consumption for the simplest distributed channel allocation
method - allocation along the xy-routing - and for the NoC-
Manager based allocation where not only the routers but also
the NoCManagers are incorporated in the area. We find the xy-
routing allocation requires more area than both NoCManager
approaches. This might be a surprise but a little overhead in
every router and port for xy-allocation multiplied with the
large number of routers and ports in the NoC makes up for this
difference. So, the NoCManager approaches for GS channel
allocation achieve not only much better allocation performance
but can save area, too.

VII. CONCLUSION

In this paper we presented the architecture and evaluated for
the very first time the performance and area consumption of
different approaches of centralized and distributed GS channel
allocation in NoCs at run-time. We compared them in terms of
allocation success at different NoC sizes and different traffic
scenarios from heavily loaded and highly dynamic to light
load with less dynamism and took the area consumption into
account, too.

We found three basic reasons for the central NoCManager
approach being superior to the distributed techniques:

• The NoCManager fits very well to the central task
scheduling CoreManager as an additional unit mak-
ing real-time data transfers in NoCs for run-time task
scheduling possible.

• The GS allocation performance of the NoCManager (se-
quential or combinatorial) is nearly always superior to
the distributed techniques.

• The area consumption of an NoCManager NoC is signif-
icantly lower than at a distributed allocation NoC.

We examined the two extremes of the sequential and
combinatorial HAGAR NoCManager. We found, area of the
sequential NoCManager scales linearly with the NoC size but
its allocation performance scales poorly with NoC size. On
the other hand, the combinatorial NoCManager scales very
well with growing NoC sizes even at highly dynamic traffic
but this is bought with limited scaling possibilities concerning
the area consumption. The combination of the sequential and
the combinatorial NoCManager can provide a suitable trade-
off between area and performance scaling at growing NoC
sizes. E.g., the combinatorial HAGAR can be broken down to
7 AND-OR stages instead of 14 (at 8x8 mesh) by running at
most two times through the graph representation. Area would
be reduced by half and the number of cycles for path search
would be set from 2 to only 4 clock cycles. Additionally, we
expect clustering of large NoCs which can be exploited at the
(completely topology independent) NoCManagers, too.

REFERENCES

[1] L. Benini and G. Micheli. Networks on Chips: A New SoC Paradigm.
Computer, 45(1):70–78, January 2002.

[2] E. Bolotin and et al. QNoC: QoS Architecture and Design Process for
Network-on-Chip. Systems Architecture, 50:105–128, 2004.

[3] W. Dally and B. Towles. Route Packets, Not Wires: On-Chip Intercon-
nection Networks. In Proc. of DAC, pages 84–89, June 2001.

[4] K. Goossens, J. Dielissen, and A. Radulescu. AEthereal Network on
Chip: Concepts, Architectures and Implementations. IEEE Design and
Test of Computers, 22(5):21–31, September-October 2005.

[5] A. Hansson and K. Goossens. Trade-offs in the Configuration of a
Network-on-Chip for Multiple Use-Cases. In Proc. of NOCS, pages
233–242, May 2007.

[6] A. Hansson, K. Goossens, and A. Radulescu. A Unified Approach to
Constrained Mapping and Routing on Network-on-Chip Architectures.
In Proc. of 3rd Int. Conf. on HW/SW Codesign and System Synthesis,
pages 75–80, 2005.

[7] J. Hu and R. Marculescu. Energy-Aware Communication and Task
Scheduling for Network-on-Chip Architectures under Real-Time Con-
straints. In Proc. of DATE, pages 234–239, February 2004.

[8] L. Huelsbergen. A Representation for Dynamic Graphs in Reconfig-
urable Hardware and its Application to Fundamental Graph Algorithms.
In Proc. ACM/SIGDA 8th Int. Symp. on FPGAs, pages 105 – 115, 2000.

[9] N. Kavaldijev and et al. Providing QoS Guarantees in a NoC by
Virtual Channel Reservation. In Proc. of Int. Workshop on Applied and
Reconfigurable Computing (ARC), March 2006.

[10] T. Limberg, B. Ristau, and G. Fettweis. Real-Time Programming Model
for Heterogeneous MPSoCs. In Proc of SAMOS, pages 75–84, July 2008.

[11] T. Marescaux and et al. Dynamic Time-Slot Allocation for QoS Enabled
Networks on Chip. In Proc. of Workshop on Embedded Systems for
Real-Time Multimedia, pages 47–52, September 2005.

[12] O. Mencer, Z. Huang, and L. Huelsbergen. HAGAR: Efficient
Multi-Context Graph Processors. In Proc. 12th Int. Conf. on Field-
Programmable Logic and Applications, pages 915 – 924, 2002.

[13] M. Millberg and et al. Guaranteed Bandwidth using Looped Containers
in Temporally Disjoint Networks within the Nostrum Network on Chip.
In Proc. of DATE, pages 890–895, February 2004.

[14] O. Moreira, J.-D. Mol, and M. Bekooij. Online Resource Management in
a Multiprocessor with a Network-on-Chip. In Proc. of ACM Symposium
on Applied Computing, pages 1557–1564, 2007.

[15] V. Nollet and et al. Centralized Run-Time Resource Managment in a
Network-on-Chip Containing Reconfigurable Hardware Tiles. In Proc.
of DATE, pages 234–239, 2005.

[16] M. Winter and G. Fettweis. A Network-on-Chip Channel Allocator
for Run-Time Task Scheduling in Multi-Processor System-on-Chips. In
Proc. of 11th Euromicro Conference on Digital System Design (DSD),
pages 133–140, September 2008.

