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Abstract—Ideally, system-level simulation should provide a 
high simulation speed with sufficient timing details for both 
functional verification and performance evaluation. However, 
existing cycle-accurate (CA) and cycle-approximate (CX) pro-
cessor models either incur low simulation speeds due to exces-
sive timing details or low accuracy due to simplified timing 
models. To achieve high simulation speeds while maintaining 
timing accuracy of the system simulation, we propose a first 
cycle-count-accurate (CCA) processor modeling approach 
which pre-abstracts internal pipeline and cache into models 
with accurate cycle count information and guarantees accu-
rate timing and functional behaviors on processor interface. 
The experimental results show that the CCA model performs 
50 times faster than the corresponding CA model while pro-
viding the same execution cycle count information as the tar-
get RTL model. 

I. INTRODUCTION 
As both system-on-a-chip (SoC) design complexity and 

time-to-market pressure increase relentlessly, system-level 
simulation emerges as a crucial design approach for non-
recurring engineering (NRE) cost saving and design cycle 
reduction. With system components, such as processors and 
busses, modeled at a proper abstraction level, system simu-
lation enables early architecture performance analysis and 
functionality verification before real hardware implementa-
tion. 

To construct a proper system platform for simulation, 
models for system components of various abstraction levels 
are proposed for simulation accuracy and performance 
trade-off. For example, cycle-accurate (CA) models are 
proposed to eliminate detailed pins and wires to improve 
simulation performance while preserving cycle timing ac-
curacy. CA models are suitable for tasks, such as micro-
architecture verification. The verification of correctness 
involves detailed states, such as values of register contents 
at every cycle. In practice, the simulation speeds of CA 
models are slow because of the enormous number of simu-
lated states and are not satisfactory for system-level simula-
tion. 

To further increase simulation performance while sacri-
ficing timing accuracy, cycle-approximate (CX) models 
apply simple fixed, approximated delays to represent tim-
ing behaviors. CX models achieve significant simulation 
performance speedup and are useful for architecture per-

formance estimation at early design stages. Nevertheless, 
the approximated timing is inadequate for system simula-
tion such as HW/SW co-simulation or multi-processor si-
mulation. In such simulations, maintaining correct temporal 
execution order of concurrently executed system compo-
nents relies on precise timing information [5, 10]. Without 
precise timing information, both performance evaluation 
and functionality verification cannot be accurate. For ex-
ample, timing-related bugs, such as FIFO overflow in 
HW/SW interface, would not be faithfully reproduced as 
reported in [9]. 

A new modeling approach, i.e., cycle-count-accurate 
(CCA) approach, has received great attention lately, offer-
ing considerable  simulation performance speedup com-
pared to CA models (e.g., one order faster) by eliminating 
unnecessary timing details while keeping only needed sys-
tem timing information [11, 12]. Compared to CX, CCA 
technique preserves accurate cycle count information of 
execution behaviors, and the preserved accuracy is ade-
quate for system simulation. 

Ideally, a CCA system simulation platform, with all 
components in CCA models, can perform quickly and ac-
curately. Nevertheless, if certain components have no CCA 
models, then designers must mix CA or CX models with 
CCA models for system simulation. Consequently, either 
the simulation performance will be slowed down due to the 
slow CA models or the results will be inaccurate due to the 
inaccurate CX models. Unfortunately, there are no known 
CCA processor models to the best of our knowledge, al-
though CA and CX techniques have been widely applied in 
processor modeling [2-4, 6-8]. 

In order to complete a fast and accurate CCA system si-
mulation platform, we propose a CCA processor modeling 
technique in this paper. The idea is essentially based on the 
observation that, if the timing and functional behaviors of 
every access (such as bus access) on a component interface 
are correct, the effects from the component to the simulated 
system behaviors will remain correct. In other words, unne-
cessary internal component details can be eliminated to 
achieve better simulation performance while maintaining 
accurate system behaviors, as long as the interface beha-
viors are correct. 

Essentially, the proposed CCA processor model pre-
serves accurate cycle count information between any two 



 

 

consecutive external interface accesses through pre-
abstracted processor pipeline and cache timing information 
using static analysis. 

Based on the proposed approach, a CCA model for a real 
OpenRISC 1200 processor is generated, and the experimen-
tal results show that the model performs 50 times faster 
than the corresponding CA model while providing the same 
execution cycle count information as the target RTL model. 

The rest of this paper is organized as follows. After re-
viewing related work in section 2, the concept of CCA pro-
cessor model is introduced in section 3. Then, sections 4 
and 5 present the proposed processor modeling methodolo-
gy based on the CCA concept. Finally, section 6 shows a 
case study with experimental results, and section 7 gives a 
brief conclusion. 

II. RELATED WORK 
To provide accurate timing information for performance 

evaluation and functionality verification, the CA processor 
modeling technique is widely adopted [6-8]. For instance, 
Guerra et al. [6] propose integration of CA processor mod-
els and hardware models for HW/SW co-verification. 

Although it is straightforward to use CA processor mod-
els for accurate simulation, excessive modeling details slow 
down simulation performance significantly. In contrast, the 
proposed CCA processor models maintain just enough in-
ternal details to achieve considerable simulation speedup 
while preserving accurate system behaviors. 

For fast SW performance evaluation, CX processor mod-
els [2-4] adopt statistical delays to represent the timings of 
program segments, such as functions or basic blocks. 
Usually, given a target processor architecture, a statistically 
estimated fixed delay is annotated to each program segment. 
During simulation, the estimated execution time of the pro-
gram is calculated by summing up the annotated delays 
along the execution path. 

As a result, CX processor models achieve very high si-
mulation speeds and serve the needs of software perfor-
mance estimation at early design stages well. Nevertheless, 
the approximated timing of CX models can result in inac-
curate system simulation results. That is why the CCA pro-
cessor models are proposed to ensure correct simulation 
results while maintaining simulation efficiency. 

In general, the CCA modeling idea is to speed up simula-
tion by leveraging the limited observability of a system 
component and eliminating unnecessary internal timing 
details that do not affect the accuracy of the overall system 
simulation. The idea has been successfully applied to mod-
eling hardware components such as buses and memories 
[11, 12] but not on processors yet. 

For example, Sudeep et al. [11] describe a method for 
constructing an AMBA bus model that is cycle count accu-
rate at the transaction boundaries (CCATB), and Lo et al. 
[12] apply the CCA concept to memory read/write transac-
tion modeling. These two approaches maintain accurate 
timing at the beginning and the end of each bus/memory 

transaction and eliminate unnecessary intra-transaction 
states without compromise of system timing accuracy. 

In contrast, the contribution of this paper is to extend the 
CCA concept to processor modeling. The proposed CCA 
processor model takes the time points of issuing external 
accesses as the (processor) transaction boundaries and cor-
rectly maintains these time points for accurate interface 
access executions. Accordingly, the timing correctness of 
the overall system is guaranteed through the accurate inter-
face access behaviors.  

Next, we will go into details and explain how a CCA 
processor model can be actually constructed. 

III. CYCLE COUNT ACCURATE PROCESSOR MODELING 
The key idea of the CCA modeling technique is to leve-

rage limited observability of component internal states and 
speed up simulation by eliminating unnecessary internal 
modeling details without affecting overall system simula-
tion accuracy. In the following, we first discuss the obser-
vability property of processor models and then propose a 
CCA processor model. 

For a processor component, only the behaviors on its in-
terface are directly observable to the system (or specifically, 
to the rest of the system). In other words, a system cannot 
directly observe and interact with a processor except 
through the interface. 

For the purposes of illustration, we examine a typical 
processor model in Fig. 1(a). We demonstrate a case where 
an instruction inside the pipeline requests writing data to 
the HW component. To accomplish the request, the data 
transferred has to pass through the cache and triggers a bus 
transfer action on the bus interface (BIF). A sample timing 
diagram of the bus transfer is shown in Fig. 1(b) for refer-
ence. In the transfer process, none of the processor internal 
behaviors, such as those of the pipeline and cache, can di-
rectly affect that of the HW component except through the 

Figure 1: (a) An exemplified system; (b) A sample timing diagram on
the bus interface; (c) The execution behavior of a CA processor model;
(d) The execution behavior of a more abstract processor model. 
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bus access on the interface. In other words, the interface 
behavior (i.e., the bus access with the data transferred in 
this example) determines the effects from a component to 
the system.  

The fact of limited observability implies that, if two pro-
cessor models have the same interface behaviors, they have 
equivalent effects on the system. Naturally, the more effi-
cient model should be used for system simulation. This 
motivates us to find a more abstract and efficient processor 
model than CA models. 

For illustration, Fig. 1(c) and 1(d) respectively show a 
CA and a more abstract processor models. Although they 
have different internal execution details, both models dis-
play the same bus access behaviors as shown in Fig. 1(b). 
Each column shows the behavior of a concurrent process, 
such as a pipeline stage (PS), and each arrow denotes a 
state evaluation of a process at the numbered clock cycle 
time. The CA model in Fig. 1(c) captures all the concurrent 
behaviors of the processor by updating every process state 
at every clock cycle; in contrast, a more abstract model in 
Fig. 1(d) gives same effects to the system by providing 
equivalent bus access behaviors. 

This leads us to create a CCA processor model that pro-
vides exact timing in terms of cycle count on every external 
interface access point with simplified internal models. By 
eliminating unnecessary details using CCA processor mod-
els, the whole system simulation can both preserve perfect 
timing accuracy and gain significant simulation perfor-
mance improvement. 

To generate such a CCA processor model, we observe 
that all external accesses are initiated from the processor 
pipeline, and then pass through the caches to the processor 
interface. Hence, the proposed CCA processor model is 
constructed with an abstract pipeline subsystem model 
(PSM), which issues access events at correct time points, 
and a cache subsystem model (CSM), which simulates the 
caches with the access events and triggers external interface 
accesses accurately. 

The details of PSM and CSM are elaborated in sections 4 
and 5, respectively. 

IV. PIPELINE SUBSYSTEM MODELING (PSM) 
To eliminate unnecessary simulation details of the PSM, 

we statically analyze all possible pipeline execution beha-
viors (PEBs) of each basic block of a given program. Then 
at simulation, the actual time points of issuing access 
events (to the CSM) are calculated based on the pre-
analyzed PEBs. The static timing analysis is discussed in 
section IV.A while dynamic effects such as cache miss 
penalty are in section IV.B. 

A. Static Timing Analysis 
1) Pipeline Execution Behavior (PEB) Analysis: 

Ideally, with an abstract pipeline model capturing target 
pipeline architecture, the pipeline execution of any given 
fixed sequence of instructions can be statically determined 

[16]. Nevertheless, a complete program cannot be statically 
analyzed because it contains branches determinable only at 
runtime. 

Hence, the static analysis pre-analyzes each basic block 
of the program since it contains no branches. For example, 
a control flow graph (CFG) in Fig. 2(b) is first constructed 
after analyzing a program in Fig. 2(a). Then, if we assume a 
target processor with a 4-stage pipeline, the PEB of basic 
block C can be analyzed as shown in Fig. 2(c). The sche-
duling result of pipeline executions is recorded on a table 
where its columns represent the pipeline stages and its rows 
represent cycle times. In this example, a Bubble (i.e., NOP) 
is inserted in the final pipeline execution to resolve the data 
hazard between instruction 7 and 8. 

Actually, a basic block may have several possible PEBs 
because its execution could be affected by the executions of 
its precedent basic blocks. For example, further assuming 
the processor is equipped with a branch predictor, there 
would be two possible PEBs for basic block C, as the one 
previously analyzed in Fig. 2(c) and a new one in Fig. 2(d). 
Fig. 2(c) is the case when the branch prediction fails and 
the pipeline is flushed and hence basic block C is executed 
alone. On the other hand, if the branch prediction succeeds, 
the basic block C is executed immediately following the 
basic block A, as shown in Fig. 2(d). The resolution of the 
data hazard introduced by instructions 4 and 5 across basic 
blocks induces an additional delay and produces a different 
PEB for basic block C. 

For efficient PSM simulation, all possible PEBs of every 
basic block are pre-analyzed. Given a program’s CFG, the 
static analysis finds all strings of precedent blocks (or 
upward combinations of consecutive precedent blocks) that 
may induce different PEBs. In fact, the number of PEBs is 
bounded by the target pipeline length. This is due to the 
fact that if a precedent block is too far away from the 
currently analyzed block so that the instructions of the two 
blocks cannot be executed simultaneously in the pipeline, 
then it will not contribute to creating a new PEB. 

As an example, we assume that basic block D in Fig. 2(b) 

4:        …
5: sub r4, r2, r3;  
6: sub r5, r6, r7; 
7: add r1, r2, r3; // r1=r2+r3 
8: sw r4, r1; // [r4] = r1 
9:        …

BBc

(b) 
(c) (d) 

(a) 

Figure 2: (a) A program segment; (b) A CFG of the program; (c) The
PEB of basic block C alone; (d) The PEB of basic block C following
basic block A. 
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is a block being analyzed. Tracing back the strings of 
precedent blocks through the left path of block D, we find 
that the combination {D, B, A} may induce a differnet PEB 
from the one induced by {D, B}, because block B only has 
two instructions, less than the pipeline length (i.e., 4), and 
block D could be executed with blocks B and A in the 
pipeline at the same time. Nevertheless, the combination 
{D, C, A} must produce the same PEB as {D, C}, since 
block C has four instructions, equal to or more than the 
pipeline length, and hence block A is too far from D 
through the right path to have both executed 
simultanneously. 

In summary, for each basic block to find all possible 
PEBs, the static analysis traverses backwardly (e.g., using 
depth-first search) to find precedent block strings and com-
pute the corresponding PEBs. It stops traversing deeper 
when the total number of the instructions on the string 
found is equal to or greater than the pipeline length. 

2) Access Timing Analysis for each PEB: For 
efficient PSM simulation, we further statically analyze the 
(cache/IO) access timing behavior of each PEB by 
identifying both instruction and data access events at their 
corresponding execution time points. 

For instruction access events, we check each instruction 
at the IF stage in PEB, because it basically indicates an 
instruction cache (I-cache) access occurred at that time 
point. However, only instruction accesses which may po-
tentially cause cache misses should be identified as access 
events for simulation, since only they could cause external 
accesses and affect interface behaviors. For the PEB in Fig 
3(a) as an example, the instructions 6 to 8, which access the 
same cache block as the instruction 5, are not identified as 
access events. The reason is that only the first access of 
consecutive accesses to a same cache block could potential-
ly cause a miss and restore the cache block and consequent-
ly the following accesses always hit. 

Similarly, for data access events, we check the time 
points when memory load/store or I/O instructions are 
scheduled in their execution stages. For example, we as-
sume that instruction 5 is a load instruction and hence iden-
tify a data access event when it is at the execution (EX) 
stage. 

Finally, we complete the analysis for the PEB in Fig. 
3(a), where a total of two instruction and one data access 
events are identified at their corresponding access time 
points (i.e., 0, 3, and 5). Since the start time of the analyzed 
PEB execution is unknown at static time, we denote these 
time points using the time offsets from the beginning clock 
cycle of the PEB. 

B. Dynamic Timing Calculation 
During simulation, the PSM issues the access events 

based on the pre-analyzed PEBs. For a currently executed 
basic block, a PEB is first selected according to runtime 
information such as branch prediction result or last ex-
ecuted basic block ID. Then the actual access time is calcu-

lated by summing up the statically analyzed time offsets of 
the access events in the selected PEB and the actual execu-
tion start time of this basic block, which is known after 
simulating the last executed block. Furthermore, access 
time points are adjusted according to whether the issued 
access events cause cache miss. 

For instance, suppose that the branch prediction succeeds 
and basic block C is executed after basic block A during 
simulation. Through this, the PEB in Fig 2(d), whose 
access events are analyzed in Fig. 3(a), is selected. The 
actual access event time points are calculated by adding the 
pre-analyzed time offsets with the execution start time of 
this basic block (assume to be x for discussion) as shown in 
Fig. 3(b). Furthermore, assume the second access event of 
the PEB causes a cache miss during simulation and the 
pipeline is temporarily frozen for a three-cycle delay; ac-
cordingly, the third access is adjusted with an additional 
delay of three cycles (e.g., 5→8). The cache simulation will 
be discussed in section 5. 

C. Discussions 
The processor pipeline model we adopted here is as-

sumed to be of in-order execution style. With this assump-
tion, the cache delay can be easily incorporated during si-
mulation without affecting the statically analyzed PEBs, 
because the in-order execution processor pipeline is frozen 
during cache miss [1]. In practice, despite this in-order as-
sumption, this PSM is still extensively applicable since 
most embedded processors such as ARM 7 and ARM 9 are 
all of in-order execution style. 

The time complexity of the static analysis is cn or O(n) 
where n is the number of basic blocks of the program ana-
lyzed and the constant c is the number of PEBs to be ana-
lyzed for each basic block. In practice, the constant c is 
typically small. With the fact that the average basic block 
size is about four to six [14], if we take as an example 
ARM 9, whose pipeline length is five, the corresponding c 
is about two or three. For this case, only instructions of 
about two consecutive basic blocks can be executed simul-

Figure 3: (a) An example of static analysis of access events in a PEB; (b) 
An example for dynamic timing calculation. 
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taneously in the pipeline. 

V. CACHE SUBSYSTEM MODEL (CSM) 
For accurate CCA processor modeling, a CSM should re-

turn correct access delay time to the access events issued 
from a PSM and trigger external accesses accurately on the 
processor interface. Therefore, the idea is to implement a 
model for each hierarchical cache in CSM such that it can 
return correct access delay values depending on hit/miss 
results. In addition, if a higher level cache is missed, the 
access request is passed on to the next cache hierarchy at 
correct timing. As a result, if all the cache hierarchies in a 
CSM behave correctly, access delays to the CSM can be 
calculated properly and all external accesses will be ex-
ecuted at accurate time points. 

To model the timing behavior of each cache hierarchy, 
we adopt the CCA memory modeling method in [12]. Giv-
en a CA cache timing model, the method generates a cor-
responding computation tree, in which each path describes 
the timing of possible cache access behavior (such as miss 
and hit). 

For illustration, Fig. 4(a) shows a processor with two 
hierarchical caches, L1 and L2. For clarity of discussion, 
we show only the clocked finite state machine (CFSM) 
which describes the cycle-by-cycle state transition behavior 
of the L1 cache. Upon an access request, L1’s CFSM will 
perform hit/miss evaluation. Next, if the requested data is 
hit, the cache will return the requested data and stay in state 
s0; if not, the state will progress through s1 to s2 and start a 
handshaking process to request access with the next hie-
rarchy until the assertion of signal data_ok, which notifies 
the completion of cache block restoring. 

Then, the CFSM is converted into a compressed compu-
tation tree as in Fig. 4(b). The two paths of the computation 
tree correspond to the two types of the cache timing beha-
viors, i.e., hit and miss, for this particular case. The left 
path of the computation tree describes the hit case, which 

needs only one cycle for completion. The right path de-
scribes the miss case, which needs two cycles before and 
one cycle after an additional handshake with the next hie-
rarchy. 

Finally, the CCA cache model is implemented by a pro-
cedure call as in Fig. 4(c). Different paths in the computa-
tion tree are represented by different control flow branches. 
Access requests to the next hierarchy are implemented as 
function invocation to trigger actions in the next hierarchy. 

Fig. 4(d) illustrates the CSM simulation behavior. Once 
the PSM requests an access to the CSM, the access is 
passed onto the L1 cache. Assume that the access causes a 
miss and consequently the L1 cache triggers an access to 
the next cache hierarchy after a two-cycle delay. Subse-
quently, if L2 also misses, it will trigger external memory 
access accurately according to its pre-analyzed timing. On 
the other hand, if the access is a hit in either L1 or L2, the 
procedure will return immediately with an accurate delay 
value. 

Finally, a CCA processor model can be generated using 
the PSM and CSM. The following case study demonstrates 
the application of the proposed CCA model on an industri-
al-strength OpenRISC 1200 platform. 

VI. A CASE STUDY 

A. OR1200 CCA Processor Modeling 
We chose an OpenRISC 1200 (OR1200) processor for 

testing our proposed approach because OR1200 is an open-
source platform with all design details available. Hence, the 
generated models can be verified relatively easily.  

OR1200 is a 5-stage 32-bit RISC processor in Harvard 
architecture. The processor is claimed to have been taped 
out in typical 0.18 um 6LM process, and it can provide 
over 150 Dhrystone or 2.1 MIPS performance at 150 MHz. 
The performance is reported to be comparable to competi-
tors such as ARM9 processor [13]. 

The target architecture of OR1200 platform is shown in 
Fig. 5. To demonstrate the simulation performance gain of 
the CCA models, we use the fast compiled instruction-set 
simulation (ISS) technique from [15] for functional simula-
tion. 

B. Experimental Results 
The experimental results are listed in Tab. I and most test 

cases are from OpenRISC official testbenches. Additionally, 
a 32-frame MPEG-4 QCIF video application is tested on 
the platform, where the processor fetches the encoded 
frames from the ROM for decoding and transfers the de-

Figure 4: (a) A two-level cache system with a CA L1-cache model; (b)
A CCA L1-cache model; (c) A procedure call implementing the CCA
L1-cache model; (d) The sample simulation behavior. 
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coded frames to the LCD for display.  
For accuracy verification, the simulated clock times of 

bus accesses from the generated CCA processor model are 
checked against that of the target RTL model. Also, each 
test-case run on the generated CCA model has the same 
execution cycle count as on the RTL model. 

Simulation speeds are shown in million cycles per 
second (MCPS) for comparison. The proposed model, 
Compiled CCA, is on average 50 times faster than the Tra-
ditional CA simulator, an interpretive ISS with a CA timing 
model. In comparison, Compiled CA, which uses the com-
piled ISS technique with the CA timing model, is barely 
twice the speed of the Traditional CA approach. This shows 
that no significant simulation speed-up can be achieved 
when only using a fast ISS technique with the CA timing 
model, because the CA timing simulation contributes a 
great portion of simulation time. 

The table also lists the pre-analysis time (Anal. time) of 
each test-case. It linearly increases as the number of basic 
blocks grows but is still negligible compared to the large 
simulation time. For example, the MPEG-4 case takes 
seconds for pre-analysis but minutes for simulation. 

Finally, to demonstrate the performance evaluation ca-
pability of the CCA processor model, we run the MPEG-4 
application with various configurations of different proces-
sor cache sizes. Fig. 6 shows the evaluation results, where 
the y-axis shows the execution time of the application on 
the platform, and each curved line is a result of a selected 
D-cache size along with various I-cache sizes, as indicated 
on the x-axis. Based on the results, D-cache sizes larger 
than 1KB and I-cache sizes larger than 4KB are not rec-
ommended, since no noticeable improvement is observed. 

While the CCA simulation finishes this evaluation process 
in 3 hours, the CA simulation for the same process takes 
more than 6 days. 

VII. CONCLUSION 
This paper introduces the concept of CCA processor 

modeling and proposes the first CCA processor modeling 
technique. The experiments show that the superior simula-
tion speed and accuracy provided by the proposed approach 
greatly benefit the system design tasks. 

For future work, we are currently investigating how to 
apply the CCA processor modeling concept to out-of-order 
execution type processors. 
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Table I: Experimental Results 

Test-
case 

# of 
BB  

Anal. 
Time 

(s) 

Trad. 
CA 

speed 
(mcps) 

Comp. 
CA 

speed 
(mcps) 

CCA 
speed 
(mcps) 

Speed
-up 

fib 130 0.12 1.33 2.69 68.31 51X 
mul 140 0.13 1.42 2.67 53.72 38X 

cbasic 202 0.25 1.55 2.66 62.56 40X 
dhry 236 0.33 1.94 2.88 117.12 60X 

mpeg4 1370 2.60 1.93 2.87 114.51 59X 
  

Figure 6: Performance evaluation for an MPEG application on OR1200
with different cache sizes. 
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