

978-3-9810801-7-9/DATE11/©2011 EDAA

Cycle-Count-Accurate Processor Modeling for Fast
and Accurate System-Level Simulation

Chen-Kang Lo, Li-Chun Chen, Meng-Huan Wu, and Ren-Song Tsay

Department of Computer Science
National Tsing-Hua University, Hsinchu, Taiwan

{cklo, lcchen, mhwu, rstsay}@cs.nthu.edu.tw

Abstract—Ideally, system-level simulation should provide a
high simulation speed with sufficient timing details for both
functional verification and performance evaluation. However,
existing cycle-accurate (CA) and cycle-approximate (CX) pro-
cessor models either incur low simulation speeds due to exces-
sive timing details or low accuracy due to simplified timing
models. To achieve high simulation speeds while maintaining
timing accuracy of the system simulation, we propose a first
cycle-count-accurate (CCA) processor modeling approach
which pre-abstracts internal pipeline and cache into models
with accurate cycle count information and guarantees accu-
rate timing and functional behaviors on processor interface.
The experimental results show that the CCA model performs
50 times faster than the corresponding CA model while pro-
viding the same execution cycle count information as the tar-
get RTL model.

I. INTRODUCTION
As both system-on-a-chip (SoC) design complexity and

time-to-market pressure increase relentlessly, system-level
simulation emerges as a crucial design approach for non-
recurring engineering (NRE) cost saving and design cycle
reduction. With system components, such as processors and
busses, modeled at a proper abstraction level, system simu-
lation enables early architecture performance analysis and
functionality verification before real hardware implementa-
tion.

To construct a proper system platform for simulation,
models for system components of various abstraction levels
are proposed for simulation accuracy and performance
trade-off. For example, cycle-accurate (CA) models are
proposed to eliminate detailed pins and wires to improve
simulation performance while preserving cycle timing ac-
curacy. CA models are suitable for tasks, such as micro-
architecture verification. The verification of correctness
involves detailed states, such as values of register contents
at every cycle. In practice, the simulation speeds of CA
models are slow because of the enormous number of simu-
lated states and are not satisfactory for system-level simula-
tion.

To further increase simulation performance while sacri-
ficing timing accuracy, cycle-approximate (CX) models
apply simple fixed, approximated delays to represent tim-
ing behaviors. CX models achieve significant simulation
performance speedup and are useful for architecture per-

formance estimation at early design stages. Nevertheless,
the approximated timing is inadequate for system simula-
tion such as HW/SW co-simulation or multi-processor si-
mulation. In such simulations, maintaining correct temporal
execution order of concurrently executed system compo-
nents relies on precise timing information [5, 10]. Without
precise timing information, both performance evaluation
and functionality verification cannot be accurate. For ex-
ample, timing-related bugs, such as FIFO overflow in
HW/SW interface, would not be faithfully reproduced as
reported in [9].

A new modeling approach, i.e., cycle-count-accurate
(CCA) approach, has received great attention lately, offer-
ing considerable simulation performance speedup com-
pared to CA models (e.g., one order faster) by eliminating
unnecessary timing details while keeping only needed sys-
tem timing information [11, 12]. Compared to CX, CCA
technique preserves accurate cycle count information of
execution behaviors, and the preserved accuracy is ade-
quate for system simulation.

Ideally, a CCA system simulation platform, with all
components in CCA models, can perform quickly and ac-
curately. Nevertheless, if certain components have no CCA
models, then designers must mix CA or CX models with
CCA models for system simulation. Consequently, either
the simulation performance will be slowed down due to the
slow CA models or the results will be inaccurate due to the
inaccurate CX models. Unfortunately, there are no known
CCA processor models to the best of our knowledge, al-
though CA and CX techniques have been widely applied in
processor modeling [2-4, 6-8].

In order to complete a fast and accurate CCA system si-
mulation platform, we propose a CCA processor modeling
technique in this paper. The idea is essentially based on the
observation that, if the timing and functional behaviors of
every access (such as bus access) on a component interface
are correct, the effects from the component to the simulated
system behaviors will remain correct. In other words, unne-
cessary internal component details can be eliminated to
achieve better simulation performance while maintaining
accurate system behaviors, as long as the interface beha-
viors are correct.

Essentially, the proposed CCA processor model pre-
serves accurate cycle count information between any two

consecutive external interface accesses through pre-
abstracted processor pipeline and cache timing information
using static analysis.

Based on the proposed approach, a CCA model for a real
OpenRISC 1200 processor is generated, and the experimen-
tal results show that the model performs 50 times faster
than the corresponding CA model while providing the same
execution cycle count information as the target RTL model.

The rest of this paper is organized as follows. After re-
viewing related work in section 2, the concept of CCA pro-
cessor model is introduced in section 3. Then, sections 4
and 5 present the proposed processor modeling methodolo-
gy based on the CCA concept. Finally, section 6 shows a
case study with experimental results, and section 7 gives a
brief conclusion.

II. RELATED WORK
To provide accurate timing information for performance

evaluation and functionality verification, the CA processor
modeling technique is widely adopted [6-8]. For instance,
Guerra et al. [6] propose integration of CA processor mod-
els and hardware models for HW/SW co-verification.

Although it is straightforward to use CA processor mod-
els for accurate simulation, excessive modeling details slow
down simulation performance significantly. In contrast, the
proposed CCA processor models maintain just enough in-
ternal details to achieve considerable simulation speedup
while preserving accurate system behaviors.

For fast SW performance evaluation, CX processor mod-
els [2-4] adopt statistical delays to represent the timings of
program segments, such as functions or basic blocks.
Usually, given a target processor architecture, a statistically
estimated fixed delay is annotated to each program segment.
During simulation, the estimated execution time of the pro-
gram is calculated by summing up the annotated delays
along the execution path.

As a result, CX processor models achieve very high si-
mulation speeds and serve the needs of software perfor-
mance estimation at early design stages well. Nevertheless,
the approximated timing of CX models can result in inac-
curate system simulation results. That is why the CCA pro-
cessor models are proposed to ensure correct simulation
results while maintaining simulation efficiency.

In general, the CCA modeling idea is to speed up simula-
tion by leveraging the limited observability of a system
component and eliminating unnecessary internal timing
details that do not affect the accuracy of the overall system
simulation. The idea has been successfully applied to mod-
eling hardware components such as buses and memories
[11, 12] but not on processors yet.

For example, Sudeep et al. [11] describe a method for
constructing an AMBA bus model that is cycle count accu-
rate at the transaction boundaries (CCATB), and Lo et al.
[12] apply the CCA concept to memory read/write transac-
tion modeling. These two approaches maintain accurate
timing at the beginning and the end of each bus/memory

transaction and eliminate unnecessary intra-transaction
states without compromise of system timing accuracy.

In contrast, the contribution of this paper is to extend the
CCA concept to processor modeling. The proposed CCA
processor model takes the time points of issuing external
accesses as the (processor) transaction boundaries and cor-
rectly maintains these time points for accurate interface
access executions. Accordingly, the timing correctness of
the overall system is guaranteed through the accurate inter-
face access behaviors.

Next, we will go into details and explain how a CCA
processor model can be actually constructed.

III. CYCLE COUNT ACCURATE PROCESSOR MODELING
The key idea of the CCA modeling technique is to leve-

rage limited observability of component internal states and
speed up simulation by eliminating unnecessary internal
modeling details without affecting overall system simula-
tion accuracy. In the following, we first discuss the obser-
vability property of processor models and then propose a
CCA processor model.

For a processor component, only the behaviors on its in-
terface are directly observable to the system (or specifically,
to the rest of the system). In other words, a system cannot
directly observe and interact with a processor except
through the interface.

For the purposes of illustration, we examine a typical
processor model in Fig. 1(a). We demonstrate a case where
an instruction inside the pipeline requests writing data to
the HW component. To accomplish the request, the data
transferred has to pass through the cache and triggers a bus
transfer action on the bus interface (BIF). A sample timing
diagram of the bus transfer is shown in Fig. 1(b) for refer-
ence. In the transfer process, none of the processor internal
behaviors, such as those of the pipeline and cache, can di-
rectly affect that of the HW component except through the

Figure 1: (a) An exemplified system; (b) A sample timing diagram on
the bus interface; (c) The execution behavior of a CA processor model;
(d) The execution behavior of a more abstract processor model.

(a)

PS1 PS2 PS3 Cache BIF
Processor
Interior BIF

PS (Pipeline
Stages)

Cache

Observable
Behavior

BIF (Bus
Interface)

Cycle

Cycle

(b)

(c) (d)

Space Space
1
2

3

4

5

6

1
2

3

4

5

6

2 3 4 5 6

Cycle

bus access on the interface. In other words, the interface
behavior (i.e., the bus access with the data transferred in
this example) determines the effects from a component to
the system.

The fact of limited observability implies that, if two pro-
cessor models have the same interface behaviors, they have
equivalent effects on the system. Naturally, the more effi-
cient model should be used for system simulation. This
motivates us to find a more abstract and efficient processor
model than CA models.

For illustration, Fig. 1(c) and 1(d) respectively show a
CA and a more abstract processor models. Although they
have different internal execution details, both models dis-
play the same bus access behaviors as shown in Fig. 1(b).
Each column shows the behavior of a concurrent process,
such as a pipeline stage (PS), and each arrow denotes a
state evaluation of a process at the numbered clock cycle
time. The CA model in Fig. 1(c) captures all the concurrent
behaviors of the processor by updating every process state
at every clock cycle; in contrast, a more abstract model in
Fig. 1(d) gives same effects to the system by providing
equivalent bus access behaviors.

This leads us to create a CCA processor model that pro-
vides exact timing in terms of cycle count on every external
interface access point with simplified internal models. By
eliminating unnecessary details using CCA processor mod-
els, the whole system simulation can both preserve perfect
timing accuracy and gain significant simulation perfor-
mance improvement.

To generate such a CCA processor model, we observe
that all external accesses are initiated from the processor
pipeline, and then pass through the caches to the processor
interface. Hence, the proposed CCA processor model is
constructed with an abstract pipeline subsystem model
(PSM), which issues access events at correct time points,
and a cache subsystem model (CSM), which simulates the
caches with the access events and triggers external interface
accesses accurately.

The details of PSM and CSM are elaborated in sections 4
and 5, respectively.

IV. PIPELINE SUBSYSTEM MODELING (PSM)
To eliminate unnecessary simulation details of the PSM,

we statically analyze all possible pipeline execution beha-
viors (PEBs) of each basic block of a given program. Then
at simulation, the actual time points of issuing access
events (to the CSM) are calculated based on the pre-
analyzed PEBs. The static timing analysis is discussed in
section IV.A while dynamic effects such as cache miss
penalty are in section IV.B.

A. Static Timing Analysis
1) Pipeline Execution Behavior (PEB) Analysis:

Ideally, with an abstract pipeline model capturing target
pipeline architecture, the pipeline execution of any given
fixed sequence of instructions can be statically determined

[16]. Nevertheless, a complete program cannot be statically
analyzed because it contains branches determinable only at
runtime.

Hence, the static analysis pre-analyzes each basic block
of the program since it contains no branches. For example,
a control flow graph (CFG) in Fig. 2(b) is first constructed
after analyzing a program in Fig. 2(a). Then, if we assume a
target processor with a 4-stage pipeline, the PEB of basic
block C can be analyzed as shown in Fig. 2(c). The sche-
duling result of pipeline executions is recorded on a table
where its columns represent the pipeline stages and its rows
represent cycle times. In this example, a Bubble (i.e., NOP)
is inserted in the final pipeline execution to resolve the data
hazard between instruction 7 and 8.

Actually, a basic block may have several possible PEBs
because its execution could be affected by the executions of
its precedent basic blocks. For example, further assuming
the processor is equipped with a branch predictor, there
would be two possible PEBs for basic block C, as the one
previously analyzed in Fig. 2(c) and a new one in Fig. 2(d).
Fig. 2(c) is the case when the branch prediction fails and
the pipeline is flushed and hence basic block C is executed
alone. On the other hand, if the branch prediction succeeds,
the basic block C is executed immediately following the
basic block A, as shown in Fig. 2(d). The resolution of the
data hazard introduced by instructions 4 and 5 across basic
blocks induces an additional delay and produces a different
PEB for basic block C.

For efficient PSM simulation, all possible PEBs of every
basic block are pre-analyzed. Given a program’s CFG, the
static analysis finds all strings of precedent blocks (or
upward combinations of consecutive precedent blocks) that
may induce different PEBs. In fact, the number of PEBs is
bounded by the target pipeline length. This is due to the
fact that if a precedent block is too far away from the
currently analyzed block so that the instructions of the two
blocks cannot be executed simultaneously in the pipeline,
then it will not contribute to creating a new PEB.

As an example, we assume that basic block D in Fig. 2(b)

4: …
5: sub r4, r2, r3;
6: sub r5, r6, r7;
7: add r1, r2, r3; // r1=r2+r3
8: sw r4, r1; // [r4] = r1
9: …

BBc

(b)
(c) (d)

(a)

Figure 2: (a) A program segment; (b) A CFG of the program; (c) The
PEB of basic block C alone; (d) The PEB of basic block C following
basic block A.

Data
Dependency

BBC

BBA

BBC

Time

IF ID EX WB

IF ID EX WB

is a block being analyzed. Tracing back the strings of
precedent blocks through the left path of block D, we find
that the combination {D, B, A} may induce a differnet PEB
from the one induced by {D, B}, because block B only has
two instructions, less than the pipeline length (i.e., 4), and
block D could be executed with blocks B and A in the
pipeline at the same time. Nevertheless, the combination
{D, C, A} must produce the same PEB as {D, C}, since
block C has four instructions, equal to or more than the
pipeline length, and hence block A is too far from D
through the right path to have both executed
simultanneously.

In summary, for each basic block to find all possible
PEBs, the static analysis traverses backwardly (e.g., using
depth-first search) to find precedent block strings and com-
pute the corresponding PEBs. It stops traversing deeper
when the total number of the instructions on the string
found is equal to or greater than the pipeline length.

2) Access Timing Analysis for each PEB: For
efficient PSM simulation, we further statically analyze the
(cache/IO) access timing behavior of each PEB by
identifying both instruction and data access events at their
corresponding execution time points.

For instruction access events, we check each instruction
at the IF stage in PEB, because it basically indicates an
instruction cache (I-cache) access occurred at that time
point. However, only instruction accesses which may po-
tentially cause cache misses should be identified as access
events for simulation, since only they could cause external
accesses and affect interface behaviors. For the PEB in Fig
3(a) as an example, the instructions 6 to 8, which access the
same cache block as the instruction 5, are not identified as
access events. The reason is that only the first access of
consecutive accesses to a same cache block could potential-
ly cause a miss and restore the cache block and consequent-
ly the following accesses always hit.

Similarly, for data access events, we check the time
points when memory load/store or I/O instructions are
scheduled in their execution stages. For example, we as-
sume that instruction 5 is a load instruction and hence iden-
tify a data access event when it is at the execution (EX)
stage.

Finally, we complete the analysis for the PEB in Fig.
3(a), where a total of two instruction and one data access
events are identified at their corresponding access time
points (i.e., 0, 3, and 5). Since the start time of the analyzed
PEB execution is unknown at static time, we denote these
time points using the time offsets from the beginning clock
cycle of the PEB.

B. Dynamic Timing Calculation
During simulation, the PSM issues the access events

based on the pre-analyzed PEBs. For a currently executed
basic block, a PEB is first selected according to runtime
information such as branch prediction result or last ex-
ecuted basic block ID. Then the actual access time is calcu-

lated by summing up the statically analyzed time offsets of
the access events in the selected PEB and the actual execu-
tion start time of this basic block, which is known after
simulating the last executed block. Furthermore, access
time points are adjusted according to whether the issued
access events cause cache miss.

For instance, suppose that the branch prediction succeeds
and basic block C is executed after basic block A during
simulation. Through this, the PEB in Fig 2(d), whose
access events are analyzed in Fig. 3(a), is selected. The
actual access event time points are calculated by adding the
pre-analyzed time offsets with the execution start time of
this basic block (assume to be x for discussion) as shown in
Fig. 3(b). Furthermore, assume the second access event of
the PEB causes a cache miss during simulation and the
pipeline is temporarily frozen for a three-cycle delay; ac-
cordingly, the third access is adjusted with an additional
delay of three cycles (e.g., 5→8). The cache simulation will
be discussed in section 5.

C. Discussions
The processor pipeline model we adopted here is as-

sumed to be of in-order execution style. With this assump-
tion, the cache delay can be easily incorporated during si-
mulation without affecting the statically analyzed PEBs,
because the in-order execution processor pipeline is frozen
during cache miss [1]. In practice, despite this in-order as-
sumption, this PSM is still extensively applicable since
most embedded processors such as ARM 7 and ARM 9 are
all of in-order execution style.

The time complexity of the static analysis is cn or O(n)
where n is the number of basic blocks of the program ana-
lyzed and the constant c is the number of PEBs to be ana-
lyzed for each basic block. In practice, the constant c is
typically small. With the fact that the average basic block
size is about four to six [14], if we take as an example
ARM 9, whose pipeline length is five, the corresponding c
is about two or three. For this case, only instructions of
about two consecutive basic blocks can be executed simul-

Figure 3: (a) An example of static analysis of access events in a PEB; (b)
An example for dynamic timing calculation.

(a)
(b)

Instruction
Access Event

Data
Access Event Time

Offset
Simulated

Time

Adjust

A Cache Line

I-Cache

taneously in the pipeline.

V. CACHE SUBSYSTEM MODEL (CSM)
For accurate CCA processor modeling, a CSM should re-

turn correct access delay time to the access events issued
from a PSM and trigger external accesses accurately on the
processor interface. Therefore, the idea is to implement a
model for each hierarchical cache in CSM such that it can
return correct access delay values depending on hit/miss
results. In addition, if a higher level cache is missed, the
access request is passed on to the next cache hierarchy at
correct timing. As a result, if all the cache hierarchies in a
CSM behave correctly, access delays to the CSM can be
calculated properly and all external accesses will be ex-
ecuted at accurate time points.

To model the timing behavior of each cache hierarchy,
we adopt the CCA memory modeling method in [12]. Giv-
en a CA cache timing model, the method generates a cor-
responding computation tree, in which each path describes
the timing of possible cache access behavior (such as miss
and hit).

For illustration, Fig. 4(a) shows a processor with two
hierarchical caches, L1 and L2. For clarity of discussion,
we show only the clocked finite state machine (CFSM)
which describes the cycle-by-cycle state transition behavior
of the L1 cache. Upon an access request, L1’s CFSM will
perform hit/miss evaluation. Next, if the requested data is
hit, the cache will return the requested data and stay in state
s0; if not, the state will progress through s1 to s2 and start a
handshaking process to request access with the next hie-
rarchy until the assertion of signal data_ok, which notifies
the completion of cache block restoring.

Then, the CFSM is converted into a compressed compu-
tation tree as in Fig. 4(b). The two paths of the computation
tree correspond to the two types of the cache timing beha-
viors, i.e., hit and miss, for this particular case. The left
path of the computation tree describes the hit case, which

needs only one cycle for completion. The right path de-
scribes the miss case, which needs two cycles before and
one cycle after an additional handshake with the next hie-
rarchy.

Finally, the CCA cache model is implemented by a pro-
cedure call as in Fig. 4(c). Different paths in the computa-
tion tree are represented by different control flow branches.
Access requests to the next hierarchy are implemented as
function invocation to trigger actions in the next hierarchy.

Fig. 4(d) illustrates the CSM simulation behavior. Once
the PSM requests an access to the CSM, the access is
passed onto the L1 cache. Assume that the access causes a
miss and consequently the L1 cache triggers an access to
the next cache hierarchy after a two-cycle delay. Subse-
quently, if L2 also misses, it will trigger external memory
access accurately according to its pre-analyzed timing. On
the other hand, if the access is a hit in either L1 or L2, the
procedure will return immediately with an accurate delay
value.

Finally, a CCA processor model can be generated using
the PSM and CSM. The following case study demonstrates
the application of the proposed CCA model on an industri-
al-strength OpenRISC 1200 platform.

VI. A CASE STUDY

A. OR1200 CCA Processor Modeling
We chose an OpenRISC 1200 (OR1200) processor for

testing our proposed approach because OR1200 is an open-
source platform with all design details available. Hence, the
generated models can be verified relatively easily.

OR1200 is a 5-stage 32-bit RISC processor in Harvard
architecture. The processor is claimed to have been taped
out in typical 0.18 um 6LM process, and it can provide
over 150 Dhrystone or 2.1 MIPS performance at 150 MHz.
The performance is reported to be comparable to competi-
tors such as ARM9 processor [13].

The target architecture of OR1200 platform is shown in
Fig. 5. To demonstrate the simulation performance gain of
the CCA models, we use the fast compiled instruction-set
simulation (ISS) technique from [15] for functional simula-
tion.

B. Experimental Results
The experimental results are listed in Tab. I and most test

cases are from OpenRISC official testbenches. Additionally,
a 32-frame MPEG-4 QCIF video application is tested on
the platform, where the processor fetches the encoded
frames from the ROM for decoding and transfers the de-

Figure 4: (a) A two-level cache system with a CA L1-cache model; (b)
A CCA L1-cache model; (c) A procedure call implementing the CCA
L1-cache model; (d) The sample simulation behavior.

!data_ok
count=1

return
delay

delay=1;
delay=2;
delay+=call_
next_hier();
delay+=1;

!hit hit

(c)

PSM L1 L2 BIF

delay+=2

delay+=1

(d)
Simulation

Time

External
Access
Delay

(b) (a)

hit
count=1

!hit
count=2

S2

S0

S0
data_ok
count=1

PSM

L1 L2 !data_ok

S0

S1

S2

hit
!hit

data_ok

S0

DCache

Pipeline

ICache
ROM

RAM

LCD

bus
port

PSM CSM

bus
port

Figure 5: The modeled OR1200 platform.

coded frames to the LCD for display.
For accuracy verification, the simulated clock times of

bus accesses from the generated CCA processor model are
checked against that of the target RTL model. Also, each
test-case run on the generated CCA model has the same
execution cycle count as on the RTL model.

Simulation speeds are shown in million cycles per
second (MCPS) for comparison. The proposed model,
Compiled CCA, is on average 50 times faster than the Tra-
ditional CA simulator, an interpretive ISS with a CA timing
model. In comparison, Compiled CA, which uses the com-
piled ISS technique with the CA timing model, is barely
twice the speed of the Traditional CA approach. This shows
that no significant simulation speed-up can be achieved
when only using a fast ISS technique with the CA timing
model, because the CA timing simulation contributes a
great portion of simulation time.

The table also lists the pre-analysis time (Anal. time) of
each test-case. It linearly increases as the number of basic
blocks grows but is still negligible compared to the large
simulation time. For example, the MPEG-4 case takes
seconds for pre-analysis but minutes for simulation.

Finally, to demonstrate the performance evaluation ca-
pability of the CCA processor model, we run the MPEG-4
application with various configurations of different proces-
sor cache sizes. Fig. 6 shows the evaluation results, where
the y-axis shows the execution time of the application on
the platform, and each curved line is a result of a selected
D-cache size along with various I-cache sizes, as indicated
on the x-axis. Based on the results, D-cache sizes larger
than 1KB and I-cache sizes larger than 4KB are not rec-
ommended, since no noticeable improvement is observed.

While the CCA simulation finishes this evaluation process
in 3 hours, the CA simulation for the same process takes
more than 6 days.

VII. CONCLUSION
This paper introduces the concept of CCA processor

modeling and proposes the first CCA processor modeling
technique. The experiments show that the superior simula-
tion speed and accuracy provided by the proposed approach
greatly benefit the system design tasks.

For future work, we are currently investigating how to
apply the CCA processor modeling concept to out-of-order
execution type processors.

REFERENCE
[1] D. Patterson and J. Hennessy, Computer Organization and Design:

The Hardware/Software Interface, 3rd ed., 2004.
[2] Y. Hwang, S. Abdi, and D. Gajski, “Cycle-approximate retargetable

performance estimation at the Transaction Level,” in Proc. of the
conf. on Design Automation and Test in Europe, pp. 3-8, 2008.

[3] J. Schnerr, O. Bringmann, A.Viehl, and W. Rosenstiel, " High-
performance timing simulation of embedded software," in Proc. of
the Design Automation Conf., pp. 290-295, 2008.

[4] K. Lin, C. Lo, and R. Tsay, "Source-level timing annotation for fast
and accurate TLM computation model generation," in Proc. of the
Asia and South Pacific Design Automation Conf.,, pp.235-240, 2010.

[5] M. Wu, C. Fu, P. Wang, and R. Tsay, “An Effective Synchronization
Approach for Fast and Accurate Multi-core Instruction-set Simula-
tion,” in Proc. of the Conf. on Embedded Software, pp. 197-204,
2009.

[6] L. Guerra, J. Fitzner, D. Talukdar, C. Schläger, B. Tabbara, and
V. Zivojnovic, "Cycle and phase accurate dsp modeling and integra-
tion for hw/sw co-verification," in Proc. of the Design Automation
Conf., pp. 964-969, 1999.

[7] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr, "Lisa-machine
description language for cycle-accurate models of programmable dsp
architectures," in Proc. of the Design Automation Conf., pp. 933-938,
1999.

[8] M. Reshadi, and N. Dutt, “Generic Pipelined Processor Modeling
and High Performance Cycle-Accurate Simulator Generation,” in
Proc. of the conf. on Design Automation and Test in Europe, pp.
786-791, 2005.

[9] M. W. Youssef, S. Yoo, A. Sasongko, Y. Paviot, and A. A. Jerraya,
"Debugging hw/sw interface for mpsoc: Video encoder system de-
sign case study," in Proc. of the Design Automation Conf., pp. 908-
913, 2004.

[10] S. Yoo, and K. Choi, “Optimistic distributed timed cosimulation
based on thread simulation model,” in Proc. of the Workshop on
Hardware/Software Codesign, pp. 71-75, 1998.

[11] S. Pasricha, N. Dutt, and M. Ben-Romdhane, "Extending the Trans-
action Level Modeling Approach for Fast Communication Architec-
ture Exploration," in Proc. of the Design Automation Conf., pp. 113-
118, 2004.

[12] Y. Lo, M. Li, and R. Tsay, “Cycle count accurate memory modeling
in system level design,” in Proc. of the conf. on Hardware/Software
Codesign and System Synthesis, pp. 287-294, 2009.

[13] OpenRISC, available on:
http://www.opencores.org/openrisc,overview

[14] J. Huang and D. Lilja, “Exploiting Basic Block Value Locality with
Block Reuse,” in Proc. of the Symp. on High Performance Computer
Architecture, pp. 106-115, 1999.

[15] M. Burtscher and I. Ganusov, “Automatic Synthesis of High-Speed
Processor Simulators,” in Proc. of the Symp. on Microarchitecture,
pp. 55-66. 2004.

[16] S. Lim, et al. “An Accurate Worst Case Timing Analysis for RISC
Processors,” IEEE Trans. Softw. Eng, Vol. 21, Issue 7, pp. 593-604,
1995.

Table I: Experimental Results

Test-
case

of
BB

Anal.
Time

(s)

Trad.
CA

speed
(mcps)

Comp.
CA

speed
(mcps)

CCA
speed
(mcps)

Speed
-up

fib 130 0.12 1.33 2.69 68.31 51X
mul 140 0.13 1.42 2.67 53.72 38X

cbasic 202 0.25 1.55 2.66 62.56 40X
dhry 236 0.33 1.94 2.88 117.12 60X

mpeg4 1370 2.60 1.93 2.87 114.51 59X

Figure 6: Performance evaluation for an MPEG application on OR1200
with different cache sizes.

I-Cache Size (Byte)

Si
m

ul
at

ed
 T

im
e

(B
ill

io
n

C
yc

le
s)

D-Cache
Size (Byte)

