
Counterexample-Guided SMT-Driven
Optimal Buffer Sizing

Bryan A. Brady1 Daniel Holcomb1 Sanjit A. Seshia
UC Berkeley, EECS Department

{bbrady,holcomb,sseshia}@eecs.berkeley.edu

Abstract—The quality of network-on-chip (NoC) designs depends
crucially on the size of buffers in NoC components. While buffers
impose a significant area and power overhead, they are essential for
ensuring high throughput and low latency. In this paper, we present
a new approach for minimizing the cumulative buffer size in on-
chip networks, so as to meet throughput and latency requirements,
given high-level specifications on traffic behavior. Our approach
uses model checking based on satisfiability modulo theories (SMT)
solvers, within an overall counterexample-guided synthesis loop.
We demonstrate the effectiveness of our technique on NoC designs
involving arbitration, credit logic, and virtual channels.

I. INTRODUCTION

Network-on-chip (NoC) is a promising paradigm for commu-
nication within large system-on-a-chip (SoC) designs. An NoC
architecture consists of a network of interconnected nodes, where
each node can be a processor core or a specialized IP block.
Inter-node communication is performed by the transmission of
data packets through routers, which typically have a number of
buffers. In this paper, we address a key problem in the design
and implementation of NoCs — the minimization of buffer size
needed to guarantee a particular quality of service.

Buffers play a critical role in NoC design: increasing the sizes
of the buffers can significantly reduce the average latency of
packets and hence increase the overall throughput. However,
even with scalable communication architectures where routers
only exchange data with their neighbors (e.g., [1]), the size of
each input-channel buffer has a serious impact on the overall
area and power of a NoC router design. For example, Hu and
Marculescu [2] indicate that changing the buffer size at each input
channel from 2 words to 3 words will increase the overall area
by 30% for a 4×4 network. The buffer sizing problem is further
complicated by the heterogeneity of traffic patterns in NoCs. For
example, one needs to allocate more buffers in a more heavily
loaded channel. Hence, we need a way to judiciously allocate
buffer capacity for each channel to match the traffic patterns
characterizing various applications.

In this paper, we propose a formal technique for minimizing the
cumulative buffer size while meeting design and performance
constraints with respect to specified traffic patterns. Our approach
has the following key characteristics. First, we describe an NoC
design formally using components drawn from a small set of
primitives, similar to the recent XMAS approach [3]. Second,
we employ term-level modeling [4], [5] to symbolically represent
queue sizes and model traffic patterns. Term-level modeling is
a technique for representing designs in suitable fragments of
first-order logic, which can then be analyzed using satisfiability
modulo theories (SMT) solvers [6]. In our model, the traffic
injected into the network is non-deterministic but obeys bounds
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on average rate and burst size. The destination addresses are
described using uninterpreted functions. Given this formal model,
the third characteristic of our approach is the use of SMT-based
model checking to find the minimal buffer sizes that guarantee
some throughput and latency for specific traffic patterns. The
approach is based on counterexample-guided synthesis, where we
repeatedly invoke an SMT-based model checker both for syn-
thesizing buffer sizes and for checking whether the synthesized
buffer sizes guarantee the performance property for specified
traffic patterns. Buffer sizings found with our approach guarantee
performance for all specified traffic patterns, without having to
explicitly enumerate each one.

In summary, we make the following novel contributions in this
paper.

1. We propose a new SMT-based model checking technique,
based on counterexample-guided synthesis, for minimizing the
cumulative buffer size in an NoC design.

2. We show how a formal term-level approach can be effective
for modeling general NoC designs as well as traffic patterns.

3. We demonstrate the effectiveness of our technique on NoC
designs involving arbitration, credit logic, and virtual channels.

Our paper is organized as follows. We review related literature
in Section II. Section III describes our formal model for NoC
designs and defines the buffer minimization problem. We describe
our SMT-based approach in Section IV. Experimental results are
presented in Section V and we conclude in Section VI.

II. RELATED WORK

The problem of buffer minimization has been widely studied
in the digital signal processing (DSP) community. Synchronous
dataflow (SDF) models [7] in particular are used to reason about
the minimum buffer size required for a feasible schedule to
exist in order for the model to be deadlock-free and to conform
to timing constraints [8]. In general, this buffer minimization
problem is NP-complete [9].

Various techniques have been applied to address the NP-
completeness. Poplavko et al. [10] use an SDF model of an NoC
to perform timing analysis and for rate-optimal buffer sizing.
Geilen et al [11] use model checking to determine whether there
exists a buffer sizing smaller than some bound that admits a
deadlock-free schedule; the minimal sizing is found using iterated
calls to the model checker. Stuijk et al. [8] present a dynamic
programming algorithm that generates a set of candidate buffer
sizings that is guaranteed to contain all Pareto-optimal points
in the buffer-size versus throughput space; the Pareto-optimal
points among the set are then found by self-timed simulation.
Wiggers et al [12] approximate minimal buffer sizing for a given
throughput using a network-flow formulation, but the closeness
of approximation is not bounded.



SDF can model only a limited class of NoCs. Assumptions of
periodic sources and data-independent routing make SDFs well-
suited to modeling multimedia NoCs, but not for general-purpose
chip multiprocessor (CMP) NoCs. In a CMP, the injected traffic
at each node can vary in burst size, have irregular periods, and
choose destinations non-uniformly over time. Additionally, due
to the lack of support for conditionals, SDFs are not expressive
enough to model NoC designs with detailed routing and arbitrary
logic.

Thus, analysis of general-purpose CMPs is typicaly based on sim-
ulation or probablistic reasoning. Using network analysis, injected
traffic with bounded burstiness leads to bounds on required buffer
sizes [13]. Stochastic automata networks (SAN) [14] have also
been used to model network traffic in SoCs [15]. While SANs
allow for efficient reasoning about average case results, they are
not suitable for worst-case analysis. Addressing limitations in the
probabilistic analysis of stochastic models, adversarial queuing
theory has been proposed [16]. If traffic injection is modeled as
a Poisson distribution, queuing theory provides a closed form
solution to find the buffers most likely to be full [2]. For the same
total buffer budget, increasing the size of these oft-used buffers
has a better impact on latency than uniformly upsizing [2].

Our approach attempts to find some middle ground between
limitations of SDF and the lack of guarantees from simulation-
based approach. In particular, the following features differentiate
our work from the rest:

• We reason about NoC models at the micro-architectural level.
This means that instead of characterizing the network with
routing probability at each node, we model the routing logic
of each router exactly, with sufficient details of its control flow.
This level of abstraction is similar to the Boolean Data Flow
(BDF) model, while buffer minimization is more commonly
investigated for the less expressive SDF model.

• We present the first SMT-based approach for determining
the minimum buffer capacity for a NoC that satisfies the
performance properties.

The counterexample-guided approach has been used before, for
computing abstract models [17] and for program synthesis [18].
Our paper is the first to adapt this methodology for synthesizing
buffer sizes in NoC designs.

III. FORMAL MODEL AND PROBLEM DEFINITION

A. Formal Definitions

A micro-architectural model of an NoC N is a tuple
〈I,O,B, C, Init〉 where

• I is a finite set of input signals or sources;
• O is a finite set of output signals or sinks;
• B is a finite set of first-in first-out (FIFO) buffers;
• C is a finite set of arbitrary logic components, and
• Init is a set of initial states.

A traffic pattern, Pi, is associated with each input (source) i ∈
I, and controls what packets are injected into the network and
when. Over a fixed number of cycles N , Pi is a sequence of pairs
〈pi1, pi2, . . . , piN 〉 where pij = (bij , bvij). Source i attempts to
send a packet into the network for all cycles j such that bij is

true. The data value that source i injects on cycle j is bvij (when
bij = false the value of bvij is irrelevant). The traffic patterns
are generated by an environment, and in some cases contain non-
deterministic assignments.

Each output (sink) o ∈ O also has an associated traffic pat-
tern Po. Po is a sequence of pairs 〈po1, po2, . . . , poN 〉 where
poj = (boj , bvoj). Sink o attempts to consume a packet on all
cycles j such that boj is true. Sink traffic patterns differ from
those of sources in that only the bij variables are generated by
the environment, and the assignment to these variables is purely
deterministic. The bvij variables at the sink are passed in the
opposite direction, from the network to the environment.

Following the XMAS-style design paradigm [3], each buffer
bi ∈ B is parametrized by a size si, which is the number of
entries that can be stored in it. The components c ∈ C are
modeled using XMAS primitives whenever possible and arbitrary
sequential circuits (finite-state machines) when these are more
precise. It is important to note that our component set C is
not limited to just XMAS components. We leverage the XMAS
approach mainly because in many cases it provides an elegant
and intuitive netlist-style description of NoC designs.

Due to lack of space, we provide here only brief descriptions
of the subset of XMAS components that we use. The interested
reader is referred to [3]. It is important to note that the com-
ponents we describe here are slightly modified versions of the
components described in [3].

1. Queue: parametrized by its size k;
2. Source: an interface between the environment and network, a

source generates and attempts to send packets as prescribed by
its traffic pattern;

3. Sink: an interface between the environment and network, a
sink attempts to consume packets as prescribed by its traffic
pattern;

4. Fork: consumes i and produces a = i and b = i;
5. Join: consumes a and b and produces o = b;
6. Switch: parameterized by state variable s, consumes i and

produces i on a or b depending on the value of s; and,
7. Merge: accepts input packets a and b, consumes one of them,

produces o.
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Fig. 5. A key showing the symbols for the various primitives used to model microarchitectural blocks. Section II describes these components in detail. The
italicized letters (k, f , e, g, h and s) indicate parameters. Whenever we use these primitives in a diagram we need to specify values for these parameters.
Often, to avoid clutter we do not show these values explicitly trusting that they are clear from the context. In contrast, the gray letters (i, o, a, and b) in this
figure only indicate port names and are only shown to help you understand the formal definitions in Section II. Observe that for some components such as
the fork, we place the parameter close to the “corresponding” port in the diagram.

o.irdy := oracle or pre(o.irdy and not o.trdy)
o.data := e

where pre is the standard synchronous operator that returns
the value of its (boolean) argument in the previous cycle
and the value 0 in the very first cycle [1]; and oracle is an
unconstrained primary input that is used to model the non-
determinism of the source in the synchronous model. (Each
source has its own oracle.) We define o.irdy in this specific
manner to keep it persistent regardless of the oracle behavior:
i.e. once a source makes a value available on the channel, it
preserves that value until a transfer.

Dually, a sink is a component which non-deterministically
consumes a packet. It has one input port i and is characterized
by the following equation:

i.trdy := oracle or pre(i.trdy and not i.irdy)

For model checking liveness properties, it is necessary to
put fairness constraints on the oracles of sinks to rule out those
traces where the oracle stays constant zero. In Linear Temporal
Logic (LTL) this would be (GF oracle).3 Also, occasionally
it may be necessary to put a similar fairness constraint on a
source (e.g. see Section III-B). We call such sources fair.

Sometimes it is convenient to have sources and sinks that
are always ready i.e. o.irdy = 1 (for a source) and i.trdy = 1
(for a sink). We call these eager. However, even for non-eager
sources and sinks, it is natural to associate rates to control how
often they attempt to inject or consume packets. Furthermore,
these rates translate trivially into probabilities that the oracle
associated with a source or a sink is 1 in any given cycle.
This permits one to automatically generate a random test-
bench to drive the oracles in simulation. We have found it
very convenient to generate such random test-benches when
generating Verilog from our models. They help with quick
sanity checks and enable quick performance validation. (Rates
are not used for model checking.)

Finally, one can imagine more complex sources that emit
arbitrary values from a given set. However, for the rest of this
paper it will suffice to consider only previously defined simple
sources which emit constant values.

D. Synchronization

A fork is a primitive with one input port i : α and two
outputs ports a : β and b : γ parameterized by two functions
f : α → β and g : α → γ. Intuitively, a fork takes an input
packet and creates a packet at each output. It coordinates the
input and outputs so that a transfer only takes place when

3G stands for “globally” (i.e. always) and F for “in future” (i.e. eventually).

the input is ready to send and both the outputs are ready to
receive. Formally,

a.irdy := i.irdy and b.trdy a.data := f (i.data)
b.irdy := i.irdy and a.trdy b.data := g(i.data)
i.trdy := a.trdy and b.trdy

A join is the dual of a fork. It has two input ports a : α
and b : β and one output port o : γ. It is parameterized by a
single function h : α × β → γ. Intuitively, a join takes two
input packets (one at each input) and produces a single output
packet. It coordinates the inputs and output so that a transfer
only takes place when the inputs are ready to send and the
output is ready to receive. Formally,

a.trdy := o.trdy and b.irdy
b.trdy := o.trdy and a.irdy
o.irdy := a.irdy and b.irdy o.data := h(a.data, b.data)

Note the duality of the join equations with the fork equations
for the irdy and trdy signals.

E. Switching

A switch is a primitive to route packets in the network.
It consists of one input port i and two output ports a and
b, all of type α. It is parameterized by a switching function
s : α → Bool. Informally, the switch applies s to a packet x
at its input, and if s(x) is true, it routes the packet to port a,
and otherwise it routes it to port b. Formally,

a.irdy := i.irdy and s(i.data) a.data := i.data
b.irdy := i.irdy and not s(i.data) b.data := i.data
i.trdy := (a.irdy and a.trdy) or (b.irdy and b.trdy)

F. Arbitration

Arbitration is modeled by a merge primitive that selects
one packet among multiple competing packets. A merge has
multiple input ports and one output port. Requests for a shared
resource are modeled by sending packets to a merge, and a
grant is modeled by the selected packet.

For simplicity we present here a complete definition of a
two-input merge that has two input ports a : α and b : α and
one output o : α.

o.irdy := a.irdy or b.irdy
o.data := a.data if u and a.irdy

b.data if not u and b.irdy
a.trdy := u and o.trdy
b.trdy := not u and o.trdy

where u is a local Boolean state variable to ensure fairness.
We could choose a specific fairness algorithm such as
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o.irdy := oracle or pre(o.irdy and not o.trdy)
o.data := e

where pre is the standard synchronous operator that returns
the value of its (boolean) argument in the previous cycle
and the value 0 in the very first cycle [1]; and oracle is an
unconstrained primary input that is used to model the non-
determinism of the source in the synchronous model. (Each
source has its own oracle.) We define o.irdy in this specific
manner to keep it persistent regardless of the oracle behavior:
i.e. once a source makes a value available on the channel, it
preserves that value until a transfer.

Dually, a sink is a component which non-deterministically
consumes a packet. It has one input port i and is characterized
by the following equation:

i.trdy := oracle or pre(i.trdy and not i.irdy)

For model checking liveness properties, it is necessary to
put fairness constraints on the oracles of sinks to rule out those
traces where the oracle stays constant zero. In Linear Temporal
Logic (LTL) this would be (GF oracle).3 Also, occasionally
it may be necessary to put a similar fairness constraint on a
source (e.g. see Section III-B). We call such sources fair.

Sometimes it is convenient to have sources and sinks that
are always ready i.e. o.irdy = 1 (for a source) and i.trdy = 1
(for a sink). We call these eager. However, even for non-eager
sources and sinks, it is natural to associate rates to control how
often they attempt to inject or consume packets. Furthermore,
these rates translate trivially into probabilities that the oracle
associated with a source or a sink is 1 in any given cycle.
This permits one to automatically generate a random test-
bench to drive the oracles in simulation. We have found it
very convenient to generate such random test-benches when
generating Verilog from our models. They help with quick
sanity checks and enable quick performance validation. (Rates
are not used for model checking.)

Finally, one can imagine more complex sources that emit
arbitrary values from a given set. However, for the rest of this
paper it will suffice to consider only previously defined simple
sources which emit constant values.

D. Synchronization

A fork is a primitive with one input port i : α and two
outputs ports a : β and b : γ parameterized by two functions
f : α → β and g : α → γ. Intuitively, a fork takes an input
packet and creates a packet at each output. It coordinates the
input and outputs so that a transfer only takes place when
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the input is ready to send and both the outputs are ready to
receive. Formally,

a.irdy := i.irdy and b.trdy a.data := f (i.data)
b.irdy := i.irdy and a.trdy b.data := g(i.data)
i.trdy := a.trdy and b.trdy

A join is the dual of a fork. It has two input ports a : α
and b : β and one output port o : γ. It is parameterized by a
single function h : α × β → γ. Intuitively, a join takes two
input packets (one at each input) and produces a single output
packet. It coordinates the inputs and output so that a transfer
only takes place when the inputs are ready to send and the
output is ready to receive. Formally,

a.trdy := o.trdy and b.irdy
b.trdy := o.trdy and a.irdy
o.irdy := a.irdy and b.irdy o.data := h(a.data, b.data)

Note the duality of the join equations with the fork equations
for the irdy and trdy signals.

E. Switching

A switch is a primitive to route packets in the network.
It consists of one input port i and two output ports a and
b, all of type α. It is parameterized by a switching function
s : α → Bool. Informally, the switch applies s to a packet x
at its input, and if s(x) is true, it routes the packet to port a,
and otherwise it routes it to port b. Formally,

a.irdy := i.irdy and s(i.data) a.data := i.data
b.irdy := i.irdy and not s(i.data) b.data := i.data
i.trdy := (a.irdy and a.trdy) or (b.irdy and b.trdy)

F. Arbitration

Arbitration is modeled by a merge primitive that selects
one packet among multiple competing packets. A merge has
multiple input ports and one output port. Requests for a shared
resource are modeled by sending packets to a merge, and a
grant is modeled by the selected packet.

For simplicity we present here a complete definition of a
two-input merge that has two input ports a : α and b : α and
one output o : α.

o.irdy := a.irdy or b.irdy
o.data := a.data if u and a.irdy

b.data if not u and b.irdy
a.trdy := u and o.trdy
b.trdy := not u and o.trdy

where u is a local Boolean state variable to ensure fairness.
We could choose a specific fairness algorithm such as
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o.irdy := oracle or pre(o.irdy and not o.trdy)
o.data := e

where pre is the standard synchronous operator that returns
the value of its (boolean) argument in the previous cycle
and the value 0 in the very first cycle [1]; and oracle is an
unconstrained primary input that is used to model the non-
determinism of the source in the synchronous model. (Each
source has its own oracle.) We define o.irdy in this specific
manner to keep it persistent regardless of the oracle behavior:
i.e. once a source makes a value available on the channel, it
preserves that value until a transfer.

Dually, a sink is a component which non-deterministically
consumes a packet. It has one input port i and is characterized
by the following equation:

i.trdy := oracle or pre(i.trdy and not i.irdy)

For model checking liveness properties, it is necessary to
put fairness constraints on the oracles of sinks to rule out those
traces where the oracle stays constant zero. In Linear Temporal
Logic (LTL) this would be (GF oracle).3 Also, occasionally
it may be necessary to put a similar fairness constraint on a
source (e.g. see Section III-B). We call such sources fair.

Sometimes it is convenient to have sources and sinks that
are always ready i.e. o.irdy = 1 (for a source) and i.trdy = 1
(for a sink). We call these eager. However, even for non-eager
sources and sinks, it is natural to associate rates to control how
often they attempt to inject or consume packets. Furthermore,
these rates translate trivially into probabilities that the oracle
associated with a source or a sink is 1 in any given cycle.
This permits one to automatically generate a random test-
bench to drive the oracles in simulation. We have found it
very convenient to generate such random test-benches when
generating Verilog from our models. They help with quick
sanity checks and enable quick performance validation. (Rates
are not used for model checking.)

Finally, one can imagine more complex sources that emit
arbitrary values from a given set. However, for the rest of this
paper it will suffice to consider only previously defined simple
sources which emit constant values.

D. Synchronization

A fork is a primitive with one input port i : α and two
outputs ports a : β and b : γ parameterized by two functions
f : α → β and g : α → γ. Intuitively, a fork takes an input
packet and creates a packet at each output. It coordinates the
input and outputs so that a transfer only takes place when
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the input is ready to send and both the outputs are ready to
receive. Formally,

a.irdy := i.irdy and b.trdy a.data := f (i.data)
b.irdy := i.irdy and a.trdy b.data := g(i.data)
i.trdy := a.trdy and b.trdy

A join is the dual of a fork. It has two input ports a : α
and b : β and one output port o : γ. It is parameterized by a
single function h : α × β → γ. Intuitively, a join takes two
input packets (one at each input) and produces a single output
packet. It coordinates the inputs and output so that a transfer
only takes place when the inputs are ready to send and the
output is ready to receive. Formally,

a.trdy := o.trdy and b.irdy
b.trdy := o.trdy and a.irdy
o.irdy := a.irdy and b.irdy o.data := h(a.data, b.data)

Note the duality of the join equations with the fork equations
for the irdy and trdy signals.

E. Switching

A switch is a primitive to route packets in the network.
It consists of one input port i and two output ports a and
b, all of type α. It is parameterized by a switching function
s : α → Bool. Informally, the switch applies s to a packet x
at its input, and if s(x) is true, it routes the packet to port a,
and otherwise it routes it to port b. Formally,

a.irdy := i.irdy and s(i.data) a.data := i.data
b.irdy := i.irdy and not s(i.data) b.data := i.data
i.trdy := (a.irdy and a.trdy) or (b.irdy and b.trdy)

F. Arbitration

Arbitration is modeled by a merge primitive that selects
one packet among multiple competing packets. A merge has
multiple input ports and one output port. Requests for a shared
resource are modeled by sending packets to a merge, and a
grant is modeled by the selected packet.

For simplicity we present here a complete definition of a
two-input merge that has two input ports a : α and b : α and
one output o : α.

o.irdy := a.irdy or b.irdy
o.data := a.data if u and a.irdy

b.data if not u and b.irdy
a.trdy := u and o.trdy
b.trdy := not u and o.trdy

where u is a local Boolean state variable to ensure fairness.
We could choose a specific fairness algorithm such as
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o.irdy := oracle or pre(o.irdy and not o.trdy)
o.data := e

where pre is the standard synchronous operator that returns
the value of its (boolean) argument in the previous cycle
and the value 0 in the very first cycle [1]; and oracle is an
unconstrained primary input that is used to model the non-
determinism of the source in the synchronous model. (Each
source has its own oracle.) We define o.irdy in this specific
manner to keep it persistent regardless of the oracle behavior:
i.e. once a source makes a value available on the channel, it
preserves that value until a transfer.

Dually, a sink is a component which non-deterministically
consumes a packet. It has one input port i and is characterized
by the following equation:

i.trdy := oracle or pre(i.trdy and not i.irdy)

For model checking liveness properties, it is necessary to
put fairness constraints on the oracles of sinks to rule out those
traces where the oracle stays constant zero. In Linear Temporal
Logic (LTL) this would be (GF oracle).3 Also, occasionally
it may be necessary to put a similar fairness constraint on a
source (e.g. see Section III-B). We call such sources fair.

Sometimes it is convenient to have sources and sinks that
are always ready i.e. o.irdy = 1 (for a source) and i.trdy = 1
(for a sink). We call these eager. However, even for non-eager
sources and sinks, it is natural to associate rates to control how
often they attempt to inject or consume packets. Furthermore,
these rates translate trivially into probabilities that the oracle
associated with a source or a sink is 1 in any given cycle.
This permits one to automatically generate a random test-
bench to drive the oracles in simulation. We have found it
very convenient to generate such random test-benches when
generating Verilog from our models. They help with quick
sanity checks and enable quick performance validation. (Rates
are not used for model checking.)

Finally, one can imagine more complex sources that emit
arbitrary values from a given set. However, for the rest of this
paper it will suffice to consider only previously defined simple
sources which emit constant values.

D. Synchronization

A fork is a primitive with one input port i : α and two
outputs ports a : β and b : γ parameterized by two functions
f : α → β and g : α → γ. Intuitively, a fork takes an input
packet and creates a packet at each output. It coordinates the
input and outputs so that a transfer only takes place when

3G stands for “globally” (i.e. always) and F for “in future” (i.e. eventually).

the input is ready to send and both the outputs are ready to
receive. Formally,

a.irdy := i.irdy and b.trdy a.data := f (i.data)
b.irdy := i.irdy and a.trdy b.data := g(i.data)
i.trdy := a.trdy and b.trdy

A join is the dual of a fork. It has two input ports a : α
and b : β and one output port o : γ. It is parameterized by a
single function h : α × β → γ. Intuitively, a join takes two
input packets (one at each input) and produces a single output
packet. It coordinates the inputs and output so that a transfer
only takes place when the inputs are ready to send and the
output is ready to receive. Formally,

a.trdy := o.trdy and b.irdy
b.trdy := o.trdy and a.irdy
o.irdy := a.irdy and b.irdy o.data := h(a.data, b.data)

Note the duality of the join equations with the fork equations
for the irdy and trdy signals.

E. Switching

A switch is a primitive to route packets in the network.
It consists of one input port i and two output ports a and
b, all of type α. It is parameterized by a switching function
s : α → Bool. Informally, the switch applies s to a packet x
at its input, and if s(x) is true, it routes the packet to port a,
and otherwise it routes it to port b. Formally,

a.irdy := i.irdy and s(i.data) a.data := i.data
b.irdy := i.irdy and not s(i.data) b.data := i.data
i.trdy := (a.irdy and a.trdy) or (b.irdy and b.trdy)

F. Arbitration

Arbitration is modeled by a merge primitive that selects
one packet among multiple competing packets. A merge has
multiple input ports and one output port. Requests for a shared
resource are modeled by sending packets to a merge, and a
grant is modeled by the selected packet.

For simplicity we present here a complete definition of a
two-input merge that has two input ports a : α and b : α and
one output o : α.

o.irdy := a.irdy or b.irdy
o.data := a.data if u and a.irdy

b.data if not u and b.irdy
a.trdy := u and o.trdy
b.trdy := not u and o.trdy

where u is a local Boolean state variable to ensure fairness.
We could choose a specific fairness algorithm such as
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o.irdy := oracle or pre(o.irdy and not o.trdy)
o.data := e

where pre is the standard synchronous operator that returns
the value of its (boolean) argument in the previous cycle
and the value 0 in the very first cycle [1]; and oracle is an
unconstrained primary input that is used to model the non-
determinism of the source in the synchronous model. (Each
source has its own oracle.) We define o.irdy in this specific
manner to keep it persistent regardless of the oracle behavior:
i.e. once a source makes a value available on the channel, it
preserves that value until a transfer.

Dually, a sink is a component which non-deterministically
consumes a packet. It has one input port i and is characterized
by the following equation:

i.trdy := oracle or pre(i.trdy and not i.irdy)

For model checking liveness properties, it is necessary to
put fairness constraints on the oracles of sinks to rule out those
traces where the oracle stays constant zero. In Linear Temporal
Logic (LTL) this would be (GF oracle).3 Also, occasionally
it may be necessary to put a similar fairness constraint on a
source (e.g. see Section III-B). We call such sources fair.

Sometimes it is convenient to have sources and sinks that
are always ready i.e. o.irdy = 1 (for a source) and i.trdy = 1
(for a sink). We call these eager. However, even for non-eager
sources and sinks, it is natural to associate rates to control how
often they attempt to inject or consume packets. Furthermore,
these rates translate trivially into probabilities that the oracle
associated with a source or a sink is 1 in any given cycle.
This permits one to automatically generate a random test-
bench to drive the oracles in simulation. We have found it
very convenient to generate such random test-benches when
generating Verilog from our models. They help with quick
sanity checks and enable quick performance validation. (Rates
are not used for model checking.)

Finally, one can imagine more complex sources that emit
arbitrary values from a given set. However, for the rest of this
paper it will suffice to consider only previously defined simple
sources which emit constant values.

D. Synchronization

A fork is a primitive with one input port i : α and two
outputs ports a : β and b : γ parameterized by two functions
f : α → β and g : α → γ. Intuitively, a fork takes an input
packet and creates a packet at each output. It coordinates the
input and outputs so that a transfer only takes place when

3G stands for “globally” (i.e. always) and F for “in future” (i.e. eventually).

the input is ready to send and both the outputs are ready to
receive. Formally,

a.irdy := i.irdy and b.trdy a.data := f (i.data)
b.irdy := i.irdy and a.trdy b.data := g(i.data)
i.trdy := a.trdy and b.trdy

A join is the dual of a fork. It has two input ports a : α
and b : β and one output port o : γ. It is parameterized by a
single function h : α × β → γ. Intuitively, a join takes two
input packets (one at each input) and produces a single output
packet. It coordinates the inputs and output so that a transfer
only takes place when the inputs are ready to send and the
output is ready to receive. Formally,

a.trdy := o.trdy and b.irdy
b.trdy := o.trdy and a.irdy
o.irdy := a.irdy and b.irdy o.data := h(a.data, b.data)

Note the duality of the join equations with the fork equations
for the irdy and trdy signals.

E. Switching

A switch is a primitive to route packets in the network.
It consists of one input port i and two output ports a and
b, all of type α. It is parameterized by a switching function
s : α → Bool. Informally, the switch applies s to a packet x
at its input, and if s(x) is true, it routes the packet to port a,
and otherwise it routes it to port b. Formally,

a.irdy := i.irdy and s(i.data) a.data := i.data
b.irdy := i.irdy and not s(i.data) b.data := i.data
i.trdy := (a.irdy and a.trdy) or (b.irdy and b.trdy)

F. Arbitration

Arbitration is modeled by a merge primitive that selects
one packet among multiple competing packets. A merge has
multiple input ports and one output port. Requests for a shared
resource are modeled by sending packets to a merge, and a
grant is modeled by the selected packet.

For simplicity we present here a complete definition of a
two-input merge that has two input ports a : α and b : α and
one output o : α.

o.irdy := a.irdy or b.irdy
o.data := a.data if u and a.irdy

b.data if not u and b.irdy
a.trdy := u and o.trdy
b.trdy := not u and o.trdy

where u is a local Boolean state variable to ensure fairness.
We could choose a specific fairness algorithm such as
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o.irdy := oracle or pre(o.irdy and not o.trdy)
o.data := e

where pre is the standard synchronous operator that returns
the value of its (boolean) argument in the previous cycle
and the value 0 in the very first cycle [1]; and oracle is an
unconstrained primary input that is used to model the non-
determinism of the source in the synchronous model. (Each
source has its own oracle.) We define o.irdy in this specific
manner to keep it persistent regardless of the oracle behavior:
i.e. once a source makes a value available on the channel, it
preserves that value until a transfer.

Dually, a sink is a component which non-deterministically
consumes a packet. It has one input port i and is characterized
by the following equation:

i.trdy := oracle or pre(i.trdy and not i.irdy)

For model checking liveness properties, it is necessary to
put fairness constraints on the oracles of sinks to rule out those
traces where the oracle stays constant zero. In Linear Temporal
Logic (LTL) this would be (GF oracle).3 Also, occasionally
it may be necessary to put a similar fairness constraint on a
source (e.g. see Section III-B). We call such sources fair.

Sometimes it is convenient to have sources and sinks that
are always ready i.e. o.irdy = 1 (for a source) and i.trdy = 1
(for a sink). We call these eager. However, even for non-eager
sources and sinks, it is natural to associate rates to control how
often they attempt to inject or consume packets. Furthermore,
these rates translate trivially into probabilities that the oracle
associated with a source or a sink is 1 in any given cycle.
This permits one to automatically generate a random test-
bench to drive the oracles in simulation. We have found it
very convenient to generate such random test-benches when
generating Verilog from our models. They help with quick
sanity checks and enable quick performance validation. (Rates
are not used for model checking.)

Finally, one can imagine more complex sources that emit
arbitrary values from a given set. However, for the rest of this
paper it will suffice to consider only previously defined simple
sources which emit constant values.

D. Synchronization

A fork is a primitive with one input port i : α and two
outputs ports a : β and b : γ parameterized by two functions
f : α → β and g : α → γ. Intuitively, a fork takes an input
packet and creates a packet at each output. It coordinates the
input and outputs so that a transfer only takes place when

3G stands for “globally” (i.e. always) and F for “in future” (i.e. eventually).

the input is ready to send and both the outputs are ready to
receive. Formally,

a.irdy := i.irdy and b.trdy a.data := f (i.data)
b.irdy := i.irdy and a.trdy b.data := g(i.data)
i.trdy := a.trdy and b.trdy

A join is the dual of a fork. It has two input ports a : α
and b : β and one output port o : γ. It is parameterized by a
single function h : α × β → γ. Intuitively, a join takes two
input packets (one at each input) and produces a single output
packet. It coordinates the inputs and output so that a transfer
only takes place when the inputs are ready to send and the
output is ready to receive. Formally,

a.trdy := o.trdy and b.irdy
b.trdy := o.trdy and a.irdy
o.irdy := a.irdy and b.irdy o.data := h(a.data, b.data)

Note the duality of the join equations with the fork equations
for the irdy and trdy signals.

E. Switching

A switch is a primitive to route packets in the network.
It consists of one input port i and two output ports a and
b, all of type α. It is parameterized by a switching function
s : α → Bool. Informally, the switch applies s to a packet x
at its input, and if s(x) is true, it routes the packet to port a,
and otherwise it routes it to port b. Formally,

a.irdy := i.irdy and s(i.data) a.data := i.data
b.irdy := i.irdy and not s(i.data) b.data := i.data
i.trdy := (a.irdy and a.trdy) or (b.irdy and b.trdy)

F. Arbitration

Arbitration is modeled by a merge primitive that selects
one packet among multiple competing packets. A merge has
multiple input ports and one output port. Requests for a shared
resource are modeled by sending packets to a merge, and a
grant is modeled by the selected packet.

For simplicity we present here a complete definition of a
two-input merge that has two input ports a : α and b : α and
one output o : α.

o.irdy := a.irdy or b.irdy
o.data := a.data if u and a.irdy

b.data if not u and b.irdy
a.trdy := u and o.trdy
b.trdy := not u and o.trdy

where u is a local Boolean state variable to ensure fairness.
We could choose a specific fairness algorithm such as
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o.irdy := oracle or pre(o.irdy and not o.trdy)
o.data := e

where pre is the standard synchronous operator that returns
the value of its (boolean) argument in the previous cycle
and the value 0 in the very first cycle [1]; and oracle is an
unconstrained primary input that is used to model the non-
determinism of the source in the synchronous model. (Each
source has its own oracle.) We define o.irdy in this specific
manner to keep it persistent regardless of the oracle behavior:
i.e. once a source makes a value available on the channel, it
preserves that value until a transfer.

Dually, a sink is a component which non-deterministically
consumes a packet. It has one input port i and is characterized
by the following equation:

i.trdy := oracle or pre(i.trdy and not i.irdy)

For model checking liveness properties, it is necessary to
put fairness constraints on the oracles of sinks to rule out those
traces where the oracle stays constant zero. In Linear Temporal
Logic (LTL) this would be (GF oracle).3 Also, occasionally
it may be necessary to put a similar fairness constraint on a
source (e.g. see Section III-B). We call such sources fair.

Sometimes it is convenient to have sources and sinks that
are always ready i.e. o.irdy = 1 (for a source) and i.trdy = 1
(for a sink). We call these eager. However, even for non-eager
sources and sinks, it is natural to associate rates to control how
often they attempt to inject or consume packets. Furthermore,
these rates translate trivially into probabilities that the oracle
associated with a source or a sink is 1 in any given cycle.
This permits one to automatically generate a random test-
bench to drive the oracles in simulation. We have found it
very convenient to generate such random test-benches when
generating Verilog from our models. They help with quick
sanity checks and enable quick performance validation. (Rates
are not used for model checking.)

Finally, one can imagine more complex sources that emit
arbitrary values from a given set. However, for the rest of this
paper it will suffice to consider only previously defined simple
sources which emit constant values.

D. Synchronization

A fork is a primitive with one input port i : α and two
outputs ports a : β and b : γ parameterized by two functions
f : α → β and g : α → γ. Intuitively, a fork takes an input
packet and creates a packet at each output. It coordinates the
input and outputs so that a transfer only takes place when

3G stands for “globally” (i.e. always) and F for “in future” (i.e. eventually).

the input is ready to send and both the outputs are ready to
receive. Formally,

a.irdy := i.irdy and b.trdy a.data := f (i.data)
b.irdy := i.irdy and a.trdy b.data := g(i.data)
i.trdy := a.trdy and b.trdy

A join is the dual of a fork. It has two input ports a : α
and b : β and one output port o : γ. It is parameterized by a
single function h : α × β → γ. Intuitively, a join takes two
input packets (one at each input) and produces a single output
packet. It coordinates the inputs and output so that a transfer
only takes place when the inputs are ready to send and the
output is ready to receive. Formally,

a.trdy := o.trdy and b.irdy
b.trdy := o.trdy and a.irdy
o.irdy := a.irdy and b.irdy o.data := h(a.data, b.data)

Note the duality of the join equations with the fork equations
for the irdy and trdy signals.

E. Switching

A switch is a primitive to route packets in the network.
It consists of one input port i and two output ports a and
b, all of type α. It is parameterized by a switching function
s : α → Bool. Informally, the switch applies s to a packet x
at its input, and if s(x) is true, it routes the packet to port a,
and otherwise it routes it to port b. Formally,

a.irdy := i.irdy and s(i.data) a.data := i.data
b.irdy := i.irdy and not s(i.data) b.data := i.data
i.trdy := (a.irdy and a.trdy) or (b.irdy and b.trdy)

F. Arbitration

Arbitration is modeled by a merge primitive that selects
one packet among multiple competing packets. A merge has
multiple input ports and one output port. Requests for a shared
resource are modeled by sending packets to a merge, and a
grant is modeled by the selected packet.

For simplicity we present here a complete definition of a
two-input merge that has two input ports a : α and b : α and
one output o : α.

o.irdy := a.irdy or b.irdy
o.data := a.data if u and a.irdy

b.data if not u and b.irdy
a.trdy := u and o.trdy
b.trdy := not u and o.trdy

where u is a local Boolean state variable to ensure fairness.
We could choose a specific fairness algorithm such as

Fig. 1. XMAS primitives. The set of XMAS primitives. Inputs and outputs are
written in gray and the parameters of the primitives are written in black [3].

B. Modeling Network Traffic

Traffic patterns for NoC designs vary widely depending on the
environment in which the NoC is being used. NoC designs used
in multimedia applications usually experience more regular traffic
patterns. On the other hand, traffic patterns for NoC fabrics
within CMP designs are less regular. It is not unreasonable to be
concerned with NoC performance for specific classes of traffic
patterns [19].



Modeling traffic patterns completely non-deterministically can
allow unrealistic scenarios which require larger buffer sizes than
are necessary for realistically constrained classes of traffic. For
example, in an N -cycle execution, the behaviors of a source
controlled by a completely non-deterministic pattern include
pij = (true, x) for all i ∈ I and 0 ≤ j ≤ N . This source
could attempt to send packets on every cycle leading to an overly
pessimistic buffer sizing.

We disallow such pathological worst-case traffic by using reg-
ulators to constrain the behavior of otherwise non-deterministic
sources. A regulator R is defined by two parameters: its rate ρ
and burstiness τ .1 Figure 2 illustrates a source regulator. Source
Srcρ periodically tries to add a packet to the buffer once every
ρ cycles, and succeeds whenever the buffer is not full. SrcND
generates packets according to its traffic pattern, which allows
non-determinism. Whenever source SrcND generates a packet,
the packet is transmitted through the merge primitive if the
regulator buffer is not empty.

Thus, note that the maximum number of packets sent through the
merge in N cycles (after a possible initial burst) is bNρ c. Also,
since only up to τ packets can accumulate in the buffer, τ con-
strains the burstiness of the flow exiting the merge. Specifically,
(i) if τ ≤ ρ, then the maximum burst size is τ + 1; and (ii) if
τ > ρ, then the maximum burst size is τ · ρ

ρ−1 . The latter condition
(when τ > ρ) arises since the worst case occurs when the buffer
is full with τ packets, and while these packets drain, at most τ

ρ
additional packets can be added, and so on, resulting in the sum
of a geometric series.

We refer to a regulator with rate ρ and burstiness τ as a
(ρ, τ)-regulator. Combining SrcND with the regulator ensures
that even a source with a fully non-deterministic traffic pattern
cannot exhibit overly-adversarial behaviors. If the traffic pattern of
SrcND is inherently deterministic, then the regulator need not be
used. One can record traces of source behaviors for use in future
simulations by recording the output of the merge primitive. This
trace is then applied directly to an unregulated source in the later
simulations.

to  
network token 

Fi,j Fi,j Fi,j Fi,j Fi,j Fi,j Fi,j Fi,j 

Network Interface 
buffer 

Src! 

Non-dropping 
Channel τ 

(!,τ)-regulator 

SrcND 

Fig. 2. Traffic regulator Average rate of source is constrained by ρ, and
burstiness by τ

A traffic model Ti for a (regulated) source i is a set of traffic
patterns. Similarly, each sink o has a corresponding set of traffic
patterns To. The overall traffic model T for the NoC is the
collection of traffic models for all sources and sinks in the NoC.
One can represent this formally as the cross product of the sets
corresponding to the traffic models of each source and sink.

1Our model of traffic regulators is similar to that described by Dally and
Towles [19], but it additionally incorporates a non-deterministic source that allows
us to explore “bounded” adversarial traffic patterns in a manner suitable for formal
verification.

C. Modeling FIFOs

Our model of FIFO buffers follows the queue model presented
by Bryant et al. [4], that is based on a combination of the
theory of arrays and linear arithmetic [6]. We present a very brief
description here and refer the interested reader to [4] for details.

A FIFO of finite, but arbitrary length is modeled as a
record Q having components Q .contents , Q .head , and Q .tail .
Q .contents is an unbounded array storing FIFO entries. Q .head
is an integer expression indicating the index of the head of the
queue, i.e., the position of the oldest element in the queue. Q .tail
is an integer expression indicating the index at which to insert
the next element. We require Q .head ≤ Q .tail as an invariant
property.

The FIFO is bounded by imposing constraints on Q .head , and
Q .tail . Given a symbolic size s on a FIFO, we impose the
constraint that entries can only be added (pushed) to the FIFO if
it is not full. To bound a queue to a maximum length of s, our
FIFO model always maintains the invariant Q .tail < Q .head+s.

As we will see in Section IV-A, an SMT solver can be used
to solve for values of buffer sizes s so as to meet performance
properties for a set of traffic patterns.

D. Performance Properties

While we can model any performance property that can be
formulated as a safety property, we focus on latency and non-
dropping.

A latency constraint, φlatency, is parameterized by a maximum
number of cycles x allowed for packet transit. Property φlatency
is true in cycle ni if and only if no buffer slot stores a flit that
was injected into the network before time ni − x and no output
channel contains a flit that was injected into the network before
time ni − x.

A non-dropping constraint enforces that packets are not dropped
on the interface between the environment and network. Property
φnon−drop is true on cycle ni if and only if the network is ready
to accept packets from each source that wants to send a packet on
cycle ni. This property is defined by Chatterjee et al. [20] (they
refer to this as the non-blocking property).

A correct NoC must satisfy the following property φ in all
reachable states :

φ = φlatency ∧ φnon−drop

E. SMT-based Buffer Size Synthesis

Given a formal NoC model N as described in Sections III-A
and III-C, a traffic model T as described in Section III-B, and a
performance property φ as described in Section III-D, the buffer
size synthesis problem is to compute a buffer sizing S such that
the composition of the sized NoC model and the traffic model T
satisfies φ.

A buffer sizing S is defined as a mapping from buffers to sizes
S : B → N, where S(bi) denotes the size of bi, and its cumulative
size is denoted |S| = ∑

bi∈B S(bi). An NoC N with buffer sizing
S is referred to as N [S], and its composition with T is denoted
N [S]‖T . Thus, a correct sizing of an NoC is one that satisfies
N [S]‖T � φ.



For a sized NoC N [S], the problem of determining whether
N [S]‖T � φ can be solved by SMT-based bounded model
checking (BMC). The need for SMT arises from the presence of
symbolic variables in the composite model N [S]‖T , including
non-deterministic choice variables used to model traffic patterns
and abstract terms or uninterpreted functions used to model packet
content. When solving this problem from a fixed initial state,
bounded model checking is sufficient for this problem (as opposed
to unbounded model checking) because the property φ is a safety
property and the latency constraint in φ imposes a finite bound
on the number of cycles to explore from an initial state. When
solving this problem from an arbitrary initial state, BMC can still
be sufficient if k-induction is used with a general initial state.

Building on the above SMT-based verification method, we will
next present our SMT-based method for optimal buffer size
synthesis.

IV. THE CEBUS APPROACH

Our counterexample-guided buffer size synthesis (CEBUS) ap-
proach finds the minimum cumulative buffer sizing S such that
N [S]‖T � φ, and |S| is minimized among all possible solutions.

We do this by iteratively solving two problems:

1. Buffer size synthesis (BSS): For an NoC model N and a set
of traffic patterns P ⊆ T , this step computes a buffer sizing
S that has minimal cumulative size |S| among all solutions to
N [S]‖P � φ.

2. Buffer size verification (BSV): This step tries to find a traffic
pattern p ∈ T that disproves N [S]‖T � φ where S is
computed in the previous BSS step. If such a traffic pattern is
found, it is added to set P and BSS is repeated.

As shown in Fig. 3, the iterations between BSS and BSV
continue until the process terminates upon finding a minimal
buffer sizing that ensures correctness for all traffic pattern, or
else finding a set of patterns for which no sizing can ensure
correctness.

BUFFER SIZE
VERIFICATION

BUFFER SIZE
SYNTHESIS

Find a buffer size
assignment Si ! φN

for P1, . . . Pi

Si

Output Si

None exists (!Si) None exists (!P ′)

Pi+1 = P ′

i← i + 1

Output “No buffer size assignment exists”

Randomly choose P1

i← 1

Find pattern P ′ such
that Si ! φN for P ′

Find a buffer size
assignment Si such that
N‖T ! φ for P1, . . . , Pi

Find a buffer size
assignment Si such that

N‖P ! φ where
P = {P1, P2, . . . , Pi}

Find pattern P ′ ∈ T such
that N [Si]‖T ! φ for P ′

Fig. 3. Optimal buffer size synthesis with CEBUS. Starting with an initial
traffic pattern P1, find a buffer size assignment Si such that N [Si]‖P � φ holds.
Then find a traffic pattern P ′ ∈ T that causes N [Si]‖T 2 φ. Add the traffic
pattern P ′ to the set of all traffic patterns and repeat the process.

A. Buffer Size Synthesis

The goal of buffer size synthesis (BSS) is to find a buffer sizing
S such that |S| is minimum and N [S]‖P � φ for a set of traffic
patterns P ⊆ T . BSS is broken down into two steps, satisfiability

and minimization. We refer to the satisfiability problem as BSS-
SIZE and the minimization problem as BSS.

BSS-SIZE (N ,P ,size) is the problem of determining whether
there exists a sizing S such that N [S]‖P � φ holds true and
|S| ≤ size . More precisely, BSS-SIZE(N , P, size) returns an S
such that N [S]‖P � φ ∧ |S| ≤ size , if one exists; otherwise, it
returns ⊥.

To solve BSS-SIZE, note that we only require a satisfiability
check since P is a finite set of traffic patterns, and we can
construct the SMT formula as the conjunction of BMC unrollings
for the patterns in P .

A solution to BSS-SIZE, if one exists, is a buffer sizing S such
that N [S]‖P � φ, but this S is not necessarily the minimum
solution. In order to find the minimum sizing S such that
N [S]‖P � φ, BSS performs a binary search over size using a
sequence of calls to BSS-SIZE (N ,P ,size). Algorithm 1 shows
pseudo code for BSS. Intermediate variables MinBufSize and
BufSizeLB keep track of the minimum buffer size seen thus
far where φ holds, and the maximum buffer size such that ¬φ,
respectively. This procedure terminates when MinBufSize is the
minimum cumulative buffer size. At this point, MinBufSize =
BufSizeLB + 1, and there does not exist an S smaller than
MinBufSize such that N [S]‖P � φ.

Algorithm 1 Procedure BSS(N , P ): Compute minimum cumu-
lative buffer size for NoC model N and set of traffic patterns
P .

1: MinBufSize = UB {UB is a known upper bound}
2: BufSizeLB = 0
3: while BufSizeLB + 1 6= MinBufSize do
4: size = (MinBufSize − BufSizeLB)/2 + BufSizeLB
5: S = BSS-SIZE(N , P, size)
6: if S 6= ⊥ then
7: MinBufSize = |S|
8: else
9: BufSizeLB = size

10: end if
11: end while

B. Buffer Size Verification

The solution to BSS provides a minimal buffer sizing S such
that N [S]‖p � φ for all traffic patterns p ∈ P , but this sizing
may not ensure correctness for all p ∈ T . Buffer size verification
(BSV) addresses this by trying to find a traffic pattern p ∈ T that
disproves N [S]‖T � φ

BSV (N [S],T ) is the problem of determining whether N [S]‖T 2
φ. As noted earlier, this can be solved as a BMC problem. A
solution (satisfying assignment) to this problem is a traffic pattern
p ∈ T that causes ¬φ.

If BSV has no solution (returns ⊥) then no traffic pattern exists
for sized NoC N [S] that will cause φ to fail. If BSV has a
solution, it produces a traffic pattern for which the sized NoC
is insufficient for meeting the performance property, and a new
sizing will need to be synthesized.



C. Optimal Buffer Sizing

By combining BSS and BSV we are able to tackle the problem
of finding the minimum cumulative buffer size for NoC model N
and traffic patterns p ∈ T . We refer to this procedure as CEBUS.

Let Pinit ⊆ T be the initial set of traffic patterns. CEBUS starts
by calling BSS (N ,P ) with P = Pinit in order to obtain the
minimum buffer sizing S such that N [S]‖P � φ holds. Next,
BSV (N [S],T ) is called to find a traffic pattern p ∈ T such that
N [S]‖T 2 φ. Let the traffic pattern found in BSV (N [S],T )
be Pviolate. Add Pviolate to the set of traffic patterns P and
repeat this process until CEBUS terminates due to one of the
following reasons: 1) BSS (N ,P ) returns ⊥, which means no
buffer size exists for the current set of traffic patterns P; or 2) BSV
(N [S],T ) returns ⊥, meaning that no traffic pattern exists that
causes N [S]‖T 2 φ. Algorithm 2 gives the pseudo code for this
procedure.

Algorithm 2 Procedure CEBUS (N , T ): Compute the optimal
buffer sizing for NoC model N and traffic model T .

1: P = Pinit where Pinit ⊆ T
2: while true do
3: S = BSS(N , P )
4: if S 6= ⊥ then
5: Pviolate = BSV(N [S], T )
6: if Pviolate 6= ⊥ then
7: P = P ∪ Pviolate
8: else
9: @Pviolate ∈ T such that N [S] ∧ ¬φ

10: Return “success, optimal buffer sizing found”
11: end if
12: else
13: @S such that φ for all P ∈ T .
14: Return “failure, no buffer sizing exists”
15: end if
16: end while

V. EXPERIMENTAL RESULTS

We performed two case studies to evaluate our approach. The
first is a small example which uses a credit-based scheme to
control packet flow through a router. The second example sends
traffic through a more realistic chip-multiprocessor (CMP) router.
In each example, we verify the performance properties described
in Section III-D.

Our experiments were performed by creating UCLID [21] models
of the example circuits using the ATLAS [5] system. The UCLID
verifier is then used to perform bounded-model checking within
the CEBUS loop, using its internal SMT solver using the MiniSat
SAT solver as a back end. Experiments were run on a Linux
workstation with 64-bit 3.0 GHz Xeon processors and 2 GB of
RAM.

A. Credit Logic

A common NoC design pattern is the use of credit logic to control
channel usage within a router. Figure 4 shows a simple example
using credit-logic where master router M sends tokens to target
router T . M can send a packet to T when one or more entries

are in the credit FIFO in M . T controls the maximum number of
outstanding tokens by sizing the FIFO in the credit logic. If the
size of this outstanding tokens FIFO is C, then no more than C
packets can be in M and T . A non-pipelined delay of 7 cycles
is added to the channel carrying tokens from T to M .

The setup for the credit logic experiment is as follows. The traffic
model is (ρ, τ) = (5, 4), and the maximum allowed latency is
4 cycles. Both the network interface and ingress queues begin
empty; the token queue in the regulator, and the token queues
for outstanding tokens and available credits are all initially filled
to their maximum respective capacities. The traffic model allows
a burst of up to 4 packets to be sent. Because it takes 7 cycles
for a token to be returned, and the latency bound is 4 cycles,
it is clear that the latency property φlatency will be violated if
each packet must wait for the returned token from the previous
packet (and the non-dropping property φnon−drop precludes any
solutions that would side-step the problem by simply dropping
packets). Table I shows the CEBUS problem sizes and runtimes
for each iteration of the credit logic example. The the size of the
CNF problem for solving BSS increases as a larger set traffic
patterns is considered at each iteration, while the size of the CNF
problem for solving BSV is the same for all iterations.
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Fig. 4. Credit-based NoCs. This example shows how to model credit-logic
commonly used in NoCs. The FIFOs that are being sized are shaded.

B. Single Router

This second buffer sizing case study is a chip-multiprocessor
(CMP) router model based on a design by Peh [22]. This CMP
design is an on-chip communication fabric that can be used to
connect processors, memories, and other IP blocks to one another.
While the original CMP design has 5 input and 5 output ports, we
use a simplified version with 2 input ports and two output ports.
The router’s function is to direct incoming packets to the proper
output port. When head flits are at the front of either ingress
FIFO the router reserves the output channel, grants it to one of
the packets, and updates the priority table. The output channel
remains reserved for a particular packet until that packet’s tail flit
passes through the router signaling to the router than the channel
is available again.

The original CMP router is not an XMAS-style design. So, we
constructed a CMP router where the datapath is made purely out
of XMAS components, and the control logic is made of XMAS
components when convenient. Each of the two inputs and each of
the two outputs comprises a credit logic loop, as shown in Fig. 4.

The experiment setup is as follows. As in the credit logic example,



Buffer-Size Synthesis (BSS) Buffer-Size Verification (BSV)
CNF Size Runtime (sec) CNF Size Runtime (sec)

Benchmark Iteration i |S| Vars Clauses SAT Enc SSim Total Vars Clauses SAT Enc SSim Total

Credit

0 0 - - - - - - 100K 299K 0.29 7.29 0.32 7.90
1 2 2K 8K 0.05 14.72 2.04 16.81 100K 299K 0.52 7.22 0.33 8.07
2 11 36K 109K 0.74 31.84 8.19 40.77 100K 299K 0.48 7.38 0.33 8.19
3 15 68K 206K 1.52 32.84 9.51 43.87 100K 299K 2.14 7.54 0.32 10.00
4 17 153K 459K 4.80 79.01 14.03 97.84 100K 299K 1.68 7.39 0.34 9.41
5 21 240K 720K 9.70 118.18 21.82 149.70 100K 299K 7.57 7.44 0.32 15.33
6 25 303K 908K 11.96 164.16 29.83 205.95 100K 299K 9.14 6.64 1.23 17.01

CMP

0 0 - - - - - - 151K 454K 0.48 16.01 0.86 17.35
1 10 62K 185K 6.38 56.18 5.56 68.12 151K 454K 0.57 15.85 0.82 17.24
2 14 152K 455K 17.99 121.90 12.85 152.74 151K 454K 0.64 15.80 0.88 17.32
3 21 214K 643K 22.03 141.17 19.49 182.69 151K 454K 1.33 15.90 0.86 18.09
4 26 271K 814K 29.78 144.27 22.81 196.86 151K 454K 1.77 15.78 0.81 18.36
5 38 422K 1265K 97.70 270.12 51.41 419.23 151K 454K 4.23 15.80 0.84 20.87

TABLE I
CEBUS experiments On each iteration i, BSS uses a sequence of calls to BSS-SIZE in order to find the minimal sizing S that is correct for all patterns in set Pi,
and BSV finds a counterexample traffic pattern that demonstrates N [S]‖T 2 φ. The remaining column headings are as follows: Benchmark denotes corresponding

benchmark; Iteration is the iteration number for BSS and BSV, respectively; |S|: the minimum cumulative buffer size for the current iteration in BSS and the
candidate buffer size in BSV; Vars and Clauses: represent the number of variables and clauses, respectively, in the corresponding SAT problem(s); SAT is the time
spent in satisfiability solving; Enc is the time taken encoding the word-level input to CNF; SSim is the time taken during symbolic simuation; Total is the overal

time spent in the respective iteration. Note that the problem sizes for BSS are the average problem sizes for all satisfiability calls in the current iteration.
Additionally, the times for BSS are the total time spend in each step over all calls to the verification engine during the current iteration.

all flit buffers are initially empty, and credit and outstanding token
buffers are initially filled. Each path where tokens are returned
has a 7-cycle non-pipelined delay. Unlike the previous example,
the distinction between head flits and tail flits is important for this
example. To accomodate this, the traffic model in this example
is slightly modified from the previous one. Each source now
injects head flits and tail flits, with a tail flit always immediately
following a head flit. The destination addresses of head flits are
generated from uninterpreted functions. In this example, each of
the two sources is a (8,1)-regulated source, and only head flits
consume a token from the regulator’s queue. The latency bound
checked by property φlatency is 12 cycles. Table I shows the
problem sizes and runtimes for the CMP router experiment.

VI. CONCLUSION

We have presented a new approach for minimizing the cumu-
lative buffer size in on-chip networks, so as to meet through-
put and latency requirements, given high-level specifications on
traffic behavior. Our approach uses model checking based on
satisfiability modulo theories (SMT) solvers, within an overall
counterexample-guided synthesis loop. Experimental results on
NoC designs show the promise of the proposed technique.
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