
A Cost-effective Substantial-impact-filter Based
Method to Tolerate Voltage Emergencies

Songjun PAN†‡, Yu HU†, Xing HU†‡, and Xiaowei LI†∗
†Key Laboratory of Computer System and Architecture,

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, P.R. China, 100190
‡Graduate University of Chinese Academy of Sciences, Beijing, P.R. China, 100049

{pansongjun, huyu, huxing, lxw}@ict.ac.cn

Abstract—Supply voltage fluctuation caused by inductive noises
has become a critical problem in microprocessor design. A voltage
emergency occurs when supply voltage variation exceeds the ac-
ceptable voltage margin, jeopardizing the microprocessor reliability.
Existing techniques assume all voltage emergencies would definitely
lead to incorrect program execution and prudently activate rollbacks
or flushes to recover, and consequently incur high performance
overhead. We observe that not all voltage emergencies result in
external visible errors, which can be exploited to avoid unnecessary
protection. In this paper, we propose a substantial-impact-filter
based method to tolerate voltage emergencies, including three key
techniques: 1) Analyze the architecture-level masking of voltage
emergencies during program execution; 2) Propose a metric inter-
mittent vulnerability factor for intermittent timing faults (IV Fitf) to
quantitatively estimate the vulnerability of microprocessor structures
(load/store queue and register file) to voltage emergencies; 3)
Propose a substantial-impact-filter based method to handle voltage
emergencies. Experimental results demonstrate our approach gains
back nearly 57% of the performance loss compared with the once-
occur-then-rollback approach.

I. INTRODUCTION

Advances of integrated circuit technology enable smaller
feature size and lower voltage threshold for performance im-
provement and energy reduction, which, however, result in
tighter noise margin [1]. In general, power-constrained designs
are more sensitive to inductive noise (L*di/dt) due to low
supply voltage and large current swing. Inductive noises, which
mean current variation in a small time scale, will incur supply
voltage fluctuations due to parasitic inductance and none-
zero impedance of power delivery subsystem (PDS). When
the supply voltage variation is beyond the allowed voltage
threshold, a voltage emergency occurs and usually leads to
timing violations by slowing logic circuits. The reliability issue
caused by voltage emergencies has become a big challenge for
microprocessor design.

To address the reliability issue, microprocessor designers
have to set a conservative timing margin considering the worst
case to ensure system reliability. However, conservative timing
margin would result in significant performance degradation.
A recent study shows that the POWER6 microprocessor has

∗To whom correspondence should be addressed.
This work was supported in part by National Natural Science Founda-

tion of China (NSFC) under grant No. (61076018, 60633060, 60803031,
60831160526, and 60921002), in part by National Basic Research Program
of China (973) under grant No. 2011CB302503.

about 200mV drop at the supply voltage of 1.1V, causing
nearly 20% frequency reduction [2]. In order to provide a
constant supply voltage, designers try to add a hierarchy of
decoupling capacitors and voltage regulators to reduce the
impedance of PDS. This method maintains a steady supply
voltage over a wide range of frequencies but at the cost of
high area overhead and severe leakage power dissipation. For
example, the decoupling capacitors occupy about 20% of the
die area in Alpha 21264 microprocessors [3].

Recently, several sensor-based methods have been proposed
at architecture level to deal with voltage emergencies [4], [5],
[6]. These methods are based on voltage or current sensors
to detect the upcoming voltage margin violations. Prior work
also shows that voltage emergencies are closely related to
microarchitecture events (such as L2 cache misses and TLB
misses) and program control flow instructions [7], [8]. A
variety of microarchitecture events along with control flow
instructions that lead to voltage emergencies are recorded as
signatures to predict the reoccurrence of voltage emergencies
[9]. If a possible voltage emergency is detected or predicted,
pipeline throttling is activated to prevent its occurrence. Once
a voltage emergency eventually occurs, a rollback is invoked
to recover microprocessor states from a pre-stored checkpoint.
The instantly reacting checkpoint/rollback approach assumes
that every voltage emergency would definitely manifest itself
in external visible outputs and finally affects system reliability;
hence this approach can protect systems from all voltage emer-
gencies but at a heavy performance cost due to high frequency
of rollbacks. We observe that not all voltage emergencies lead
to erroneous program outputs. A rollback will be triggered only
when voltage emergencies actually corrupt architecture states,
and those voltage emergencies having no impact on program
execution will not be handled to reduce performance overhead.

To analyze the impact of voltage emergencies on program
execution, we first establish an intermittent timing fault model
for voltage emergency induced timing violations, and then
propose an estimation metric intermittent vulnerability factor
for intermittent timing fault (IV Fitf). IV Fitf reflects the
architecture-level masking effect of different microprocessor
structures to voltage emergencies. We compute IV Fitf for
two structures load/store queue (LSQ) and register file (REG).
With the guide of IV Fitf , we further propose a substantial-
impact-filter based method to tolerate voltage emergencies. To

978-3-9810801-7-9/DATE11/ c⃝2011 EDAA

the authors’ knowledge, this is the first attempt to tolerate
voltage emergencies by exploiting the inherent architecture-
level masking effect. Our experimental results show that the
averaged IV Fitf for LSQ and REG across a subset of SPEC
CPU2000 benchmarks are 14.8% and 31.7%, respectively.
Besides, our substantial-impact-filter based method can sig-
nificantly improve system reliability while gains back nearly
57% of performance loss compared with the once-occur-then-
rollback approach.

The main contributions of this paper are:
• We observe that not all voltage emergencies affect pro-

gram execution. In fact, only a small number of voltage
emergencies eventually corrupt architecture states. We an-
alyze the root causes that make some voltage emergencies
to be masked during program execution.

• After recognizing the architecture-level masking of voltage
emergencies, we build an intermittent timing fault model
for voltage emergency induced timing violations, and
then propose a metric IV Fitf along with its computation
method to quantify the vulnerability of different micropro-
cessor structures to voltage emergencies.

• In order to gain back performance loss due to unnecessary
protection, we propose a substantial-impact-filter based
method to invoke rollbacks only when voltage emergen-
cies lead to wrong architecture states.

The organization of the remaining part of this paper is
as follows. Section II introduces our key observation that
motivates this work. Section III presents the intermittent timing
fault model and the IV Fitf computing method for different
microprocessor structures. Section IV shows our substantial-
impact-filter based method. Our experimental methodology is
described in Section V, followed by our experimental results in
Section VI. Finally we conclude the paper in Section VII.

II. MOTIVATION

Voltage emergencies usually affect operation speed of tran-
sistors and thus cause long propagation delay. If the delay
exceeds the allowed timing margin, a timing violation oc-
curs and will affect program execution. Structures in timing-
insensitive zone, such as L1/L2 caches, are protected by ECC
or parity code and will not be affected by voltage emergencies.
Structures in critical paths of microprocessors, however, will
be more sensitive to voltage emergencies. Fig. 1 illustrates an
example of supply voltage variation in LSQ and the related
delay when executing bzip2 for a short interval. During this
interval, voltage emergencies occur six times and all are caused
by L2 cache misses. A L2 cache miss results in a long period
of pipeline hibernation, and then a sudden increase in activity
occurs when the L2 cache miss returns. We further compute
the incurred delay with alpha-power model [21]. As can be
seen, voltage emergencies lead to significant timing violations.
For all these timing violations, we need to analyze which one
will affect program execution. The upper part of Fig. 1 shows
the impact of timing violations. Logic value ’1’ indicates a
timing violation affects program execution while logic value
’0’ indicates no impact. Among these timing violations shown

200 400 600 800
0

1

200 400 600 800

0.92

0.96

1.00

1.04

0.92

0.96

1.00

1.04
TV

1
TV

2

No impact

Adverse impact

Voltage emergency

Timing violation

Voltage
threshold

Delay
threshold

 R
el

at
iv

e
de

la
y

V
ol

ta
ge

Cycles

 Delay
 Voltage

Fig. 1. The impact of voltage emergencies on program execution.

in Fig. 1, only two timing violations (TV1 and TV2) corrupt the
value in LSQ and others have no impact on program execution.
Several reasons can help to explain for this phenomenon: first,
a timing violation not propagating to LSQ or not changing
architecture correct execution (ACE) bits [10] will be masked;
second, the affected value is proven to be a dead value.

Our analysis of voltage emergencies on SPEC CPU2000
benchmarks enables us to make the following key observation:
only a few voltage emergencies, to be specific, about 32%,
will affect program execution. The key observation motivates
us to analyze which voltage emergencies affecting program
execution, and further improve system reliability with less
overhead. Based on the analysis, we propose a metric IV Fitf

to characterize the masking effect of voltage emergencies and
present a scheme to tolerate voltage emergencies.

III. VOLTAGE EMERGENCY ANALYSIS

In this section, we first build a fault model for voltage
emergency induced timing violations, and then present an
algorithm for IV Fitf computing.

A. Intermittent Timing Fault Model

Voltage emergencies occur abruptly and last for a period of
time. They usually lead to timing violations and these timing
violations will not disappear until the supply voltage returns to
steady-state voltage. Intermittent hardware faults also appear
frequently and irregularly for a short while, commonly due to
process, voltage, and temperature variations [11]. Intermittent
faults can be categorized into three fault models: intermittent
stuck-at fault model, intermittent open and short fault model,
and intermittent timing fault model [12]. Intermittent timing
faults affect data propagation and have similar effect like timing
violations. Therefore, it is reasonable to use intermittent timing
fault model to represent voltage emergency induced timing
violations. An intermittent fault has three key parameters: burst
length, active time, and inactive time. These three parameters
determine the characteristics of an intermittent fault and can
be changed for different fault mechanisms. We have proposed
a metric IVF to estimate the vulnerability of microprocessor
structures to intermittent stuck-at faults [12]. The IVF is
computed through analyzing ACE bits and un-ACE bits in
different structures. ACE bits are those if been changed will

affect the final program output while un-ACE bits are those if
been changed have no adverse impact on program execution.

To characterize the architecture-level masking effect of volt-
age emergencies, we further propose a metric IV Fitf to
compute the vulnerability of different microprocessor structures
to intermittent timing faults. IV Fitf represents the percentage
of voltage emergencies that will result in wrong program
outputs. As voltage emergencies are closely related to the
PDS and executing programs, we obtain the information of
voltage emergencies through executing different SPEC2000
benchmarks, and then set burst length, active time, and inactive
time for different intermittent timing faults. Burst length is
the time between the first voltage emergency and the last
voltage emergency in an specific interval. Active time is the
duration time of a voltage emergency. Inactive time is the dead
period between two activations within the same burst length.
We compute IV Fitf for two microprocessor structures LSQ
and REG, as they have relatively higher inductive noise rate
and are more vulnerable to voltage emergencies in modern
microprocessors [13].

B. IV Fitf Computation

Before present the algorithm to compute IV Fitf , we need
to know when an intermittent timing fault will affect program
execution. To determine the impact of an intermittent timing
fault, two steps are needed: first, analyze whether the fault is
captured by a storage cell; second, check whether ACE bits in
the storage cell have been changed. Only when an intermittent
timing fault propagates to storage cells and changes ACE bits,
it will affect the final program output. Otherwise, the fault will
not manifest itself in external output and is said to be masked.
We use an example to further explain for this. Fig. 2 illustrates
a timing violation leads to capture a wrong data to a storage
cell. In this figure, Dcorrect represents the correct data, and
Dwrong represents the data affected by an intermittent timing
fault. If there is no timing violation, the propagation delay
for Dcorrect and Dwrong will be the same. If an intermittent
timing fault occurs, the data propagation in Dwrong will be
affected. As can be seen, an intermittent timing fault occurs at
Cycle 2 and lasts for several cycles until ending at Cycle N.
Due to the timing violation, Dwrong propagates much slower
than Dcorrect, which leads to excessive delay during program
execution. Due to the accumulative delay, a wrong data will
be captured at Cycle N-1, which means the intermittent timing
fault has propagated to a storage cell.

We need to further analyze whether ACE bits in that cell
have been changed by the fault. If ACE bits are upset, the fault
will affect the external visible output. Otherwise, it is said to
be masked at architecture level. There are mainly two scenarios
that an intermittent timing fault will be masked during program
execution: first, the data in a storage structure is proved to be
a dead value; second, the captured data only changes un-ACE
bits. If an intermittent timing fault is in either of these two
scenarios, it will not affect program execution. Which scenario
occurs is determined by analyzing ACE bits and un-ACE bits
in different structures. For example, if the result of a dead
instruction [14] is changed by an intermittent timing fault, even

Cycle 2 Cycle N-1 Cycle N

VE-induced

timing violation appears

Timing violation

disappears

Clock

Dwrong

Error

Dcorrect ...

...Cycle 1

...

...

...

Fig. 2. A timing violation results in writing a wrong data to a storage cell.

if an incorrect data has been written to REG, the fault will not
affect program execution.

As LSQ is used to buffer and maintain all in-flight memory
instructions in program order, we analyze ACE bits in it by
monitoring instructions when these instructions go through all
stages of the pipeline. Meanwhile, REG is used to store and
provide operation data for in-flight instructions, we analyze
ACE bits in it based on its related operations, such as read,
write and evict [12]. Only those faults propagating to storage
cells and changing ACE bits contribute to IV Fitf computing.
Based on the above analysis, the equation to compute IV Fitf

for a structure can be expressed as:

IV Fitf =
Pnum − (Ndead +Nun−ACE)

NUMtotal
(1)

where NUMtotal represents the total number of intermittent
timing faults during executing a program; Pnum represents
the number of intermittent timing faults propagating to the
structure; Ndead represents the number of faults only affecting
dead values; Nun−ACE represents the number of faults only
changing un-ACE bits. If Ndead and Nun−ACE are set to
zero, it is the upper bound of IV Fitf . With this equation, we
can compute IV Fitf for different structures. Though we only
consider two structures in this work, without loss of generality,
our method can be easily extended to other storage structures,
such as issue queue and reorder buffer.

IV. SUBSTANTIAL-IMPACT-FILTER BASED METHOD

In the above section, we introduce the algorithm to compute
IV Fitf for LSQ and REG. With the help of IV Fitf , we
can get the masking information of different microprocessor
structures to intermittent timing faults and guide reliability
design. To tolerate voltage emergencies, several methods can
be utilized: first is to activate a protection scheme once a
voltage emergency occurs, namely the once-occur-then-rollback
approach; second is to activate a protection scheme only when
a voltage emergency affects final program execution, namely
the ideal method. For the ideal method, it is necessary to
analyze the number of Ndead and Nun−ACE . As dead values
and un-ACE bits in a structure are mainly determined by the
characteristics of a program, it is not possible to predict them
before program execution. Besides, the time to determine a
dead value or un-ACE bits usually takes about hundreds of

cycles [10], therefore, the performance overhead is unaccept-
able. To reduce the overhead, we set Ndead and Nun−ACE

to zero and propose a substantial-impact-filter based method
to tolerate voltage emergencies when architecture states are
affected. Our design is a tradeoff between the once-occur-
then-rollback approach and the ideal method. Another possible
solution is to reduce the total number of voltage emergencies
(reduce NUMtotal) that occur during program execution. This
solution, however, is orthogonal to our method and has not
been considered in this work. Next we introduce our proposed
method in detail.

A. Structure of Substantial-impact-filter Based Method

The key idea of our substantial-impact-filter based method is
to differentiate these voltage emergencies which have impact on
program execution. Fig. 3 illustrates the block diagram of our
proposed method. In this design, a circuit-level delay sensor
and a substantial-impact-filter node are combined for each
structure we analyzed. The delay sensor is used to detect timing
violations while the substantial-impact-filter node is used to
determine whether a fault affects architecture states. The output
of each filter will be used to trigger a program rollback.

Delay sensors are widely used and serve as canary circuits
[15]. The measured resolution of a delay sensor can easily
reach 5ps at 90nm technology [16], which is enough for us to
detect the induced timing violations in microprocessors. The
key parameter of a delay sensor is the timing threshold. If
the timing threshold is set too pessimistic (tight), many false
voltage emergencies will be detected and lead to unnecessary
rollbacks. If the timing threshold is set too optimistic (loose),
substantial voltage emergencies will be missed. Based on the
alpha-power model [21], we compute the timing threshold
when a voltage emergency is about to occur and set it 2.5%
longer than the normal delay. When a delay exceeds the timing
threshold, a timing violation occurs.

Fig. 4 further shows the concept of a substantial-impact-
filter node. It contains a pair of D flip-flops (a master D
flip-flop and a slave D flip-flop). The number of D flip-flop
pairs is equal to the number of write ports of the structure
under analysis. They are used to deal with the situation when
multiple data are written to a structure at the same time. The
master flip-flop is controlled by normal clk and the slave flip-
flop is controlled by clk delay. clk delay is generated by an
added circuitry and can be tuned for different microprocessors.
The values of flip-flop pairs will be initialized to ZERO by
setting signal reset to TRUE. When a delay sensor detects a
timing violation, signal timing violation will be TRUE. Once
a write signal (e.g. w e1) comes, the enable (abbreviated as
E in Fig. 4) signal of D flip-flop pairs is TRUE and the
substantial-impact-filter node will be triggered. During the
lifetime of an intermittent timing fault, the data captured in the
master D flip-flop and the slave D flip-flop will be compared.
If they are equal, then the intermittent timing fault has not
propagated to the structure. Otherwise, a wrong data has been
captured. The comparison results from different flip-flop pairs
will make an OR operation. If the output of the OR gate is
TRUE, the program will roll back to ensure system correctness.

REG LSQ

ROB

ALU

IL1

DL1

DL2

IQ

Rollback

Controller

 delay sensor filter

r1

timing
violation

rollback

TLB

timing-insensitive zone

r2

Fig. 3. Block diagram of the substantial-impact-filter based method.

clk_delay

data_in1

rollbackr1

r2

filter1

...clk

tuning bits

master DFF

^

slave DFF
^

clk

data_out
w_e1

w_en

w_e2

reset

D

D

E

E

.

.

.

.

.

.data_in2

data_inn

structure
 under analysis

^

timing
violation

Fig. 4. Schematic diagram of the substantial-impact-filter.

Meanwhile, the values in these D flip-flop pairs will be reset
to ZERO. Signal r1 and r2 represent the comparator results
from two filters. With the proposed method, we can effectively
avoid the rollbacks to these voltage emergencies which have
no adverse effects on program execution. In order to avoid the
reoccurrence of voltage emergencies during the rollback stage,
the microprocessor will execute at a slower frequency for a
short interval, such as at half of the normal frequency.

B. Performance and Area Overhead Analysis

We further analyze the performance and area overhead of
our proposed method. In this design, as the added delay sensors
and filters are not in critical paths, they will not affect system
performance. The performance penalty of our method mainly
comes from rollbacks and succeeding recovery executions.
A program needs to roll back and rerun when a voltage
emergency is proved to affect program execution. As many
voltage emergencies will be masked, the number of rollbacks
can be significantly reduced. Experimental results in Section
VI demonstrate that our proposed method is cost-effective.

The area overhead of our method is mainly incurred by the
added delay sensors and substantial-impact-filter circuits for
each structure under analysis. After synthesized with Synopsis
Design Compiler, the netlist of our added circuits only contains

about 5,000 logic gates. Comparing with a microprocessor
having hundreds of millions logic gates, the additional area
overhead by these extra hardware is rather negligible.

V. EVALUATION METHODOLOGY

We use a cycle-accurate execution-driven simulator Sim-
pleScalar 3.0d [17] to evaluate our IV Fitf computation and
substantial-impact-filter based method. Table 1 lists the con-
figuration parameters used to initialize the simulator for our
baseline microprocessor design. Wattch [18] is combined to
model the power consumption at the structure level. To model
a PDS, we utilize Matlab to implement a second order linear
model based on the characteristics of the Pentium 4 package
[19] which is also used by prior works [4], [6]. In this model,
we assume a voltage emergency occurs when noise-margin
violation is beyond 5% of a 1V supply voltage. The cycle-level
current is computed through dividing the power consumption
to the assumed supply voltage. With the cycle-level current
and impulse response of the linear model, the voltage is
a convolution summation of the cycle-level current and the
impulse response of the circuit model. We choose 16 SPEC
CPU2000 benchmarks (10 INT, 6 FP) to evaluate our method.
All the benchmarks are compiled for the Alpha ISA. In order
to reduce simulation time, we use Simpoint tool [20] to pick
the most representative simulation point for each benchmark
and each benchmark is fast-forwarded to its representative
point before detailed performance simulation takes place. Each
benchmark is evaluated for 100 million instructions using the
full reference input set.

Besides, the delay of a structure should be computed when
an intermittent timing fault occurs. The delay of a gate (Tdelay)
is mainly determined by the supply voltage (Vdd), the threshold
voltage (Vth), and the effective channel length (Leff). The
variation of these parameters will directly affect Tdelay , as is
expressed by the alpha-power model [21]:

Tdelay ∝ Leff × Vdd

µ× (Vdd − Vth)µ
(2)

Vth ∝ Vth0 + k1 × (T − T0), µ ∝ T−1.5 (3)

where µ is the carrier mobility, and α is typically 1.3. Both µ
and Vth are associated to the temperature (T) of a structure. We
compute Tdelay for different structures considering the variation
of Vdd with this model. Besides, Leff and Vt vary within-die
due to process variation, and T varies across different structures
due to temperature variation. As these two variations are not
considered in this work, we use constant Vth and Leff for each
structure generated by VARIUS model [22], and a constant T
(80C) in our following experiments.

VI. EXPERIMENTAL RESULTS

In this section, we first present IV Fitf for two microproces-
sor structures, and then describe the performance overhead of
our substantial-impact-filter based method.

Fig. 5 shows the upper bound of IV Fitf for LSQ and REG
across different benchmarks. We assume the values of Ndead

and Nun−ACE are zero and all these timing violations affecting

TABLE I
SIMULATED MICROPROCESSOR CONFIGURATION

Parameters Configuration
Clock Frequency 3.0 GHz

Fetch/Decode Width 8 instructions/cycle
Branch-Predictor Type 64 KB bimodal gshare/chooser,

1K entries
Reorder Buffer Size 128

Unified Load/Store Queue Size 64
Physical Register File 32-entry INT, 32-entry FP

INT ALU, INT Mul/Div, 8/2/4/2
FP ALU, FP Mul/Div

L1 Data Cache 64KB, 2-way, 32B line-size,
1-cycle latency

L1 Instruction Cache 64KB, 2-way, 32B line-size,
1-cycle latency

L2 Unified Cache 2MB, 4-way, 64B line-size,
16-cycle latency

I-TLB/D-TLB 128-entry, fully-associative

bz
ip2

cra
fty eo

n
ga
p

gc
c
pa
rse
r

pe
rlb
mk tw

olf

vo
rte
x vp

r art

eq
ua
ke
fm
a3
d
ga
lge
l
me
sa

wu
pw
ise av

g
0

20

40

60

80

up
pe

r b
ou

nd
 IV

F itf
(%

)

 LSQ REG

Fig. 5. Upper bound of IV Fitf for LSQ and REG.

architecture states have been considered. The average values for
these two structures are 16.6% and 36.4%, respectively. We can
see that the number of timing violations propagating to REG is
much higher than that propagating to LSQ. For LSQ, the related
write operations occur when the result is written into it by store
instructions, and the result will not be written to cache until the
commit stage; while for REG, the related write operations take
place when an instruction commits or when a value is loaded
from memory. The number of instructions writing to REG is
much more than the number of memory access instructions.

Fig. 6 shows the IV Fitf results obtained by the computation
method presented in Section III.B for LSQ and REG. The
average IV Fitf for these two structures are 14.8% and 31.7%,
respectively. The IV Fitf of REG is also higher than that
in LSQ. Compared with the upper bound value, the IV Fitf

reduction of these two structures are about 1.8% and 4.7%,
respectively. The reduction is due to these voltage emergencies
which only affect dead values and un-ACE bits are excluded
during computation. When executing the benchmark fam3d,
voltage emergencies occur very rare, the number of which
affecting program execution is also very small.

Fig. 7 illustrates the performance overhead of the once-
occur-then-rollback approach, a prior proposed delayed-commit
and rollback (DeCoR) mechanism [5], and our substantial-
impact-filter based method. We use a system without voltage
emergencies tolerance as a baseline. As checkpoints can be
taken at different intervals (e.g. from 50 to 1000 cycles), we

bz
ip2

cra
fty eo

n
ga
p

gc
c
pa
rse
r

pe
rlb
mk tw

olf

vo
rte
x vp

r art

eq
ua
ke
fm
a3
d
ga
lge
l
me
sa

wu
pw
ise av

g
0

20

40

60

80
IV

F itf
 (%

)
 LSQ REG

Fig. 6. IV Fitf of LSQ and REG.

bz
ip2

cra
fty eo

n
ga
p

gc
c
pa
rse
r

pe
rlb
mk tw

olf

vo
rte
x vp

r art

eq
ua
ke
fm
a3
d
ga
lge
l
me
sa

wu
pw
ise av

g
0

5

10

15

20

25

30

P
er

fo
rm

an
ce

 L
os

s
(%

) Once-occur-then-rollback
 DeCoR [5]
 Filter-based

Fig. 7. Performance loss of the once-occur-then-rollback approach, DeCoR
mechanism [5], and our substantial-impact-filter based method.

assume a 100-cycle rollback penalty for each recovery. As can
be seen, comparing with the baseline system, the average per-
formance overhead for these three methods are 13%, 5.1%, and
5.6%, respectively. Our substantial-impact-filter based method
can gain back about 57% performance loss from the once-
occur-then-rollback approach as many rollbacks are avoided.
Besides, for most benchmarks, our method has less overhead
than DeCoR. There are two reasons for this. First, our method
exploits the architecture-level masking of voltage emergencies
and reduces the cost of recovery; Second, DeCoR delays the
commit to the microprocessor state and needs to rollback for all
voltage emergencies. We can also observe a notable exception
that our method has much higher performance loss than DeCoR
for some benchmarks (such as eon and equake). The reason is
that the percentage of voltage emergencies to be masked is very
small and the performance loss due to rollbacks increases.

Our proposed substantial-impact-filter based method focuses
on these voltage emergencies that will change architecture
states. In this work, voltage emergencies only affecting dead
values or un-ACE bits have not been considered, which leaves
the optimization space. How to reduce performance overhead
when tolerating the two kinds of voltage emergencies is left
for our future work. Ernst et al. [23] also propose a similar
scheme named ”Razor” to detect and correct path delay failures.
”Razor” aims to design low power pipeline through dynamic
voltage tuning, but our method aims to tolerate voltage emer-
gencies and reduces performance overhead, which is the main
difference between these two methods.

VII. CONCLUSIONS

We have analyzed the characteristics of voltage emergencies
and categorized the induced timing violations as intermittent

timing faults. We computed IV Fitf for two microprocessor
structures (LSQ and REG). With the guide of IV Fitf , we pro-
posed a substantial-impact-filter based method to tolerate volt-
age emergencies. Our experimental results show the averaged
IV Fitf for LSQ and REG are 14.8% and 31.7%, respectively.
Besides, our proposed method can guarantee system reliability
while gains back nearly 57% of performance loss compared
with the once-occur-then-rollback approach.

REFERENCES

[1] J. W. McPherson. ”Reliability challenges for 45nm and beyond,” In DAC,
2006.

[2] N. James, P. Restle, J. Friedrich, B. Huott, and B. McCredie. ”Comparison
of Split-Versus Connected-Core Supplies in the POWER6TM Micropro-
cessor,” In ISSCC, 2007.

[3] M. K. Gowan, L. L. Biro, and D. B. Jackson. ”Power Considerations in
the Design of the Alpha 21264 Microprocessor,” In DAC, 1998.

[4] E. Grochowski, D. Ayers, and V. Tiwari. ”Microarchitectural Simulation
and Control of di/dt-induced Power Supply Voltage Variation,” In HPCA,
2002.

[5] M. S. Gupta, K. Rangan, M. D. Smith, G.-Y. Wei, and D. M. Brooks.
”DeCoR: A Delayed Commit and Rollback Mechanism for Handling
Inductive Noise in Processors,” In HPCA, 2008.

[6] R. Joseph, D. Brooks, and M. Martonosi. ”Control Techniques to Eliminate
Voltage Emergencies in High Performance Processors,” In HPCA, 2003.

[7] M. S. Gupta, K. Rangan, M. D. Smith, G.-Y. Wei, and D. M. Brooks.
”Towards a Software Approach to Mitigate Voltage Emergencies,” In
ISLPED, 2007.

[8] M. S. Gupta, V. J. Reddi, M. D. Smith, G.-Y. Wei, and D. M. Brooks.
”An event-guided approach to handling inductive noise in processors,” In
DATE, 2009.

[9] V. J. Reddi, M. S. Gupta, G. Holloway, G. Y. Wei, M. D. Smith, and
D. Brooks. ”Voltage Emergency Prediction: Using Signatures to Reduce
Operation Margins,” In HPCA, 2009.

[10] S. S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin.
”A Systematic Methodology to Compute the Architectural Vulnerability
Factors for a High-Performance Microprocessor,” In MICRO, 2003.

[11] P. M. Wells, K. Chakraborty, and G. Sohi. ”Adapting to Intermittent Faults
in Multicore Systems,” In ASPLOS, 2008.

[12] S. Pan, Y. Hu, and X. Li, ”IVF: Characterizing the Vulnerability of
Microprocessor Structures to Intermittent Faults,” In DATE, 2010.

[13] F. Mohamood, M. Healy, S. Lim, and H.-H. S. Lee. ”A Floorplan?Aware
Dynamic Inductive Noise Controller for Reliable Processor Design,” In
MICRO, 2006.

[14] B. Fahs, S. Bose, M. Crum, B. Slechta, F. Spadini, T. Tung, S. Patel, and
S. Lumetta. ”Performance Characterization of a Hardware Mechanism for
Dynamic Optimization,” In MICRO, 2001.

[15] R. B. Staszewski, S. Vemulapalli, P. Vallur, J. Wallberg, and P. T. Balsara,
”1.3 V 20 ps time-to-digital converter for frequency synthesis in 90-nm
CMOS,” IEEE Trans. on Circuits and Systems II, 2006.

[16] S. Henzler, S. Koeppe, W. Kamp, H. Mulatz, D. Schmitt-Landsiedel.
”90nm 4.7ps-Resolution 0.7-LSB Single-Shot Precision and 19pJ-per-
Shot Local Passive Interpolation Time-to-Digital Converter with On-Chip
Characterization,” In ISSCC, 2008.

[17] D. Burger and T. M. Austin. ”The SimpleScalar Tool Set, Version 2.0,”
Computer Architecture News, pp. 13-25, June 1997.

[18] D. Brooks, V. Tiwari, and M. Martonosi. ”Wattch: a Framework for
Architectural-level Power Analysis and Optimizations,” In ISCA, 2000.

[19] K. Aygun, M. Hill, K. Eilert, R. Radakrishnan, and A. Levin. ”Power De-
livery for High-Performance Microprocessors,” Intel Technology Journal,
9(4), Nov. 2005.

[20] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. ”Automatically
Characterizing Large Scale Program Behavior,” In ASPLOS, 2002.

[21] T. Sakurai and R. Newton. ”Alpha-power law MOSFET model and its
applications to CMOS inverter delay and other formulas,” Journal of Solid-
State Circuits, 1990.

[22] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J.
Torrellas. ”VARIUS: A Model of Process Variation and Resulting Timing
Errors for Microarchitects,” IEEE TSM, Feb. 2008.

[23] D. Ernst, N. Kim, S. Das, S. Pant, R. Rao, T. Pham, T. Austin,
et al. ”Razor: A Low-Power Pipeline Based on Circuit-Level Timing
Speculation,” In MICRO, 2003.

