
Distributed Hardware Matcher Framework
for SoC Survivability

Ilya Wagner Shih­Lien Lu
ilya.wagner@intel.com shih − lien.l.lu@intel.com

Platform Validation Engineering Oregon Microarchitecture Lab
Intel Corporation Intel Corporation

ABSTRACT

Modern systems on chip (SoCs) are rapidly becoming com-
plex high-performance computational devices, featuring mul-
tiple general purpose processor cores and a variety of func-
tional IP blocks, communicating with each other through
on-die fabric. While modular SoC design provides power
savings and simplifies the development process, it also leaves
significant room for a special type of hardware bugs, interac-
tion errors, to slip through pre- and post-silicon verification.
Consequently, hard to fix silicon escapes may be discovered
late in production schedule or even after a market release,
potentially causing costly delays or recalls.

In this work we propose a unified error detection and re-
covery framework that incorporates programmable features
into the on-die fabric of an SoC, so triggers of escaped in-
teraction bugs can be detected at runtime. Furthermore,
upon detection, our solution locks the interface of an IP for a
programmed time period, thus altering interactions between
accesses and bypassing the bug in a manner transparent to
software. For classes of errors that cannot be circumvented
by this in-hardware technique our framework is programmed
to propagate the error detection to the software layer. Our
experiments demonstrate that the proposed framework is
capable of detecting a range of interaction errors with less
than 0.01% performance penalty and 0.45% area overhead.

1. INTRODUCTION
In the last decade systems on chip (SoCs) have become

an extremely popular type of digital design, and are widely
employed today in millions of embedded and mobile devices.
In addition to general purpose processor cores, SoCs feature
multiple IP accelerator blocks, all integrated on a single sili-
con die. For example, Samsung S5PC100, a design compara-
ble to that inside of iPhone 3GS, features an ARM processor
core, a crypto engine, a set of hardware video, graphics and
image codecs, and a variety of controllers for peripherals
[11]. To communicate between the functional blocks SoCs
typically employ on-die fabrics such a buses (AMBA AXI
[2]) or point-to-point networks (Wishbone [10], OCP [9]).
The modular architecture of SoCs brings several important
benefits: First, it enables efficient integration of externally
developed modules into the design. Second, it allows blocks
to be powered down when not in use, thus lowering the en-
ergy consumption of the chip. Moreover, performance of
IP accelerators typically exceeds that of general purpose

This material is based upon work supported by the Na-
tional Science Foundation under grant No.0937060 to the
Computing Research Association for the CIFellows Project.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foun-
dation or the Computing Research Association.
978-3-9810801-7-9/DATE11/ c©2011 EDAA

processor cores for specific applications targeted by SoCs.
However, the higher level of integration and diversification
of components in an SoC makes validation and debugging of
these devices extremely hard and increases the likelihood of
errors escaping into production silicon. Since individual IP
blocks are typically well validated in isolation, the majority
of these errors are expected to arise due to unforeseen inter-
actions between modules. Therefore, efficient survivability
solutions are needed to detect and bypass such interaction
bugs at runtime to lower the risk of a costly product recall
or a release schedule slip.

Historically, companies employing SoCs in their products
had significant control over both the hardware and the soft-
ware stack and, therefore, could potentially implement soft-
ware or firmware workarounds for late silicon bugs. For in-
stance, the operating system of the device would be updated
to check for certain outstanding accesses before scheduling
DMAs or requesting data from I/O devices to ensure absence
of offending interactions. Unfortunately, as the power of
SoC-based devices increases, they begin to run progressively
more complex software, including mainstream operating sys-
tems and third party applications. Consequently, SoC hard-
ware vendors cannot rely on the traditional workarounds any
longer and must look for techniques that enable patching of
escaped bugs transparently, with respect to the operating
system and application software.

1.1 Contributions
In this work we propose and evaluate a novel programm-

able framework for detection and correction of hardware er-
rors that arise due to unforeseen interaction of accesses in-
side of an SoC. The framework is composed of distributed
detectors, designed as a part of fabric interfaces of each SoC
IP block. If an interaction error is discovered during post-
silicon validation process or in a product deployed in the
field, a patch describing the sequence of accesses that trig-
ger the bug is generated and uploaded as firmware to the
SoC. The firmware programs the detectors at system startup
to monitor for the offending access sequence(s) and initiate
recovery upon detection. For recovery we propose an innova-
tive in-hardware scheme, which does not rely on costly state
checkpointing and replay. Instead, the interaction of trans-
actions in the offending sequence is altered in a predictable
and deterministic manner, effectively bypassing the error.
Conceptually, this can be thought of as programmable time
dilation of transactions in the SoC fabric that eliminates
buggy interaction between them.

We also demonstrate that our framework can be employed
together with a software-based recovery solution, providing
timely detection of error triggering events and invocation of
appropriate handling routines. The messaging mechanism,
that we use to warn the main processor core about a bug
trigger in an individual IP block, is also applied to propa-



gate information between detectors, enabling recognition of
distributed trigger sequences. Furthermore, we discuss ad-
ditional benefits that our proposed framework can provide
in areas of post-silicon validation, debug, and runtime per-
formance monitoring. Finally, we evaluate the performance
and various overheads induced by this solution in a func-
tional simulator. To the best of our knowledge this is the
first work that investigates hardware survivability features
designed specifically for SoCs.

The rest of the paper is organized as follows: In Section 2
we survey errors reported in public errata and overview sev-
eral prior works on hardware survivability. In Section 3 we
present the architecture of our framework and detail the de-
tector design, time dilation error recovery and inter-detector
messaging. Section 4 presents experimental evaluation of
our approach and Section 5 concludes the paper.

2. BACKGROUND
To create an efficient solution for in-hardware SoC sur-

vivability we began by analyzing escaped errors reported in
publicly available specification update documents. In addi-
tion to SoCs from Sun Microsystems and Texas Instruments
[13, 14] we inspected three I/O controllers from AMD and
Intel [1, 4, 7], and an integrated processor design [6]. In the
latter we looked only at the errata located outside of the
main IA32 core. The total 123 escapes that were listed in
these sources were classified into the following categories:

- Not a bug - errata has no implication on the proper
functionality of the device in the field. For example the
escape 14 in [4] causes a wrong conflict code to be signaled on
certain invalid operations, which has impact on correctness.
- Electrical error is an issue with analog signal proper-

ties, such as voltage levels (e.g. errata 8 in [7]) or timing
(e.g. errata 98 in [1]).
- Functional bug category includes errors that hamper

functionality of the circuit regardless of its operating mode.
An example of that is uncore bug 4 in [6], which causes I/O
controller to writeback invalid data for certain accesses.
- Mode errors, unlike functional bugs, occur only when

the system is in a particular mode of operation, as was the
case in errata 13 of [13], where corrupted data may be writ-
ten to memory in a mode with credit overflow disabled.
- Interaction bug is a category of errors that involves

interaction between accesses or different modules within a
device. This includes, for instance bug 1.1.7 in [14], which
manifests itself only when a pin polarity change command
coincides with a receipt of a new request.

The breakdown of the categories is shown in Figure 1. As
the figure demonstrates, the largest fraction (35%) of errors
in the devices under survey was due to unforeseen inter-
actions between modules of the design. Extrapolating this
data to SoCs with dozens of IPs and complex communica-
tion fabric, we expect that interaction bugs will dominate
the landscape of escaped errors in the future. Consequently,
the industry and academia alike must begin to look into scal-
able solutions that combine efficient detection of offending
interactions with low-overhead recovery techniques.

As we mentioned in the introduction of this work, software
and firmware update is a viable patching solution for smaller
SoCs, especially if the same entity controls the hardware
and the software. Unfortunately, this assumption no longer
holds for more complex designs of today: These products
run under third party operating systems and contain a vast

Figure 1: Survey of reported hardware escapes in SoCs, chipsets
and embedded designs. We categorized errors reported in [1, 4,
6, 7, 13, 14] into five groups: Not a bug (does not affect in the
field functionality), Electrical error, Functional bug, Mode error
(manifested in certain modes only) and Interaction bug.

range of IPs bought from external vendors. Therefore, pure
software techniques are becoming progressively less viable
and SoC designers turn to in-hardware survivability.

In the mainstream processor domain survivability has been
investigated in several research projects. DIVA [3] proposed
using a small formally verified core in the “slipstream” of a
high-performance pipeline. Thus, all execution results are
checked and correctness is guaranteed, even with escapes in
the main core. A similar solution was applied to the proces-
sor memory subsystem by Meixner et al. [8], who relied on
in-hardware detectors and checkpointing for recovery.

Unlike the two solutions above, where detectors are fully
specified in silicon, hardware patching techniques rely on
flexible circuits that can be programmed in the field to mon-
itor for specific error-related events and initiate recovery.
For processor cores solutions were proposed by Sarangi et
al. [12], as well as in our previous work [16], that observed
the control state of the pipeline at runtime and changed the
execution flow to bypass an error upon detection. Our later
work [15] extended hardware patching to processor memory
subsystem. However, all of the survivability research to date
has been limited to mainstream processors and not SoCs,
where the primary cause of errors is interaction of accesses.
Furthermore, many of the prior recovery techniques rely on
checkpointing and replay mechanisms, which are extremely
hard to apply to SoCs. Finally, all of these schemes imply
close integration of the detectors into the design, which may
not be possible for IPs bought externally.

In contrast with the prior research, we concentrate specif-
ically on design error survivability for SoCs, proposing a
distributed hardware patching system that is non-invasive
of IP blocks and has an efficient field-programmable mech-
anism to detect timed sequences of accesses. Moreover, we
do not rely on costly checkpointing for recovery, instead at-
tempting to distort interaction between accesses to an IP
and make the offending sequence benign.

3. FRAMEWORK OVERVIEW
We overview our survivability framework based on the ex-

ample of an SoC in Figure 2. The system there consists of
a general purpose core, a graphics engine and a memory
controller communicating over a high-performance bus, and
several downstream blocks connected via point-to-point hi-
erarchical network. A switch IP routes the traffic between
the downstream modules and bridges both fabrics together.

The goal of our framework is to enable the hardware
to monitor incoming and outgoing traffic for particular se-
quences of transactions, known to trigger escaped bugs. We



accomplish this with survivability detectors (matchers) lo-
cated at the interfaces of IP blocks (shown in gray in the
figure). Note that for the upstream shared bus only a single
matcher may be adequate to observe all traffic. However,
this design would not suit our time dilation recovery tech-
nique, described below, hence we employ multiple detector
modules. In the downstream portion, the distributed nature
of the point-to-point network also entails multiple matchers.

Matched sequences in our framework are not set in sili-
con, but are programmed in the field through an external
interface or by software/firmware running on the GP core
via IPs’ control registers. The complexity and length of the
sequence that a matcher is capable of detecting is dependent
on the detector’s physical area, and presents a design trade
off. Matchers also must support wildcarded patterns to be
able to efficiently detect broad classes of operations, e.g. ac-
cesses to a range of addresses. More complex and capable
matchers will be able to identify offending sequences more
precisely and have fewer false positive detections.

Figure 2: High­level architecture of the proposed framework.
An example SoC consists of a high­performance bus connecting the
general purpose core, memory and graphics, and a point­to­point
network connecting other blocks through a switch/bridge. Proposed
solution augments IP interfaces with programmable matchers (gray)
that are capable of detecting timed transaction sequences and lock­
ing the corresponding IP’s Rx port for error bypass.

For detection of distributed transaction sequences com-
munication between matchers must be enabled. This can
be done through in-band messages or by using a dedicated
side-band channel. We use the former in our experiments in
Section 4 to analyze the impact of inter-matcher traffic on
the SoC performance. The latter design would trade those
overheads for higher area penalty and design complexity.
In addition to detection of distributed sequences, messaging
allows us to combine in-hardware detection with software-
based recovery: A matcher can now be programmed to send
an interrupt message to the core, invoking an error-handling
routine (see Section 3.2). Consequently, software patching
becomes more efficient, since the GP core does need to mon-
itor for errors and intervenes only when necessary.

Unfortunately, software-based recovery may entail multi-
ple queries from the core to the buggy IP and, thus, may
have noticeable performance overheads. More importantly,
this scheme has some delay between the detection and the
actual recovery, allowing the error to spread through the sys-
tem. To alleviate these shortcomings we designed a hardware-
only “time dilation” recovery technique. Recall, that we
target errors that occur due to unforeseen interactions of
accesses, thus, spreading out or delaying one of the opera-

tions in the offending sequence has the potential to eliminate
the error. To this effect, the matcher has control of the re-
ceive port of the IP and locks it upon a match. We propose
that port locks are controlled exclusively by timers or cycle
counters and do not wait for an explicit unlock command.
The rationale behind this is to prevent a possibility of circu-
lar wait between locked matchers, which leads to deadlock.
While a time-based lock may have to seal the port longer
than needed to bypass the error, it will not induce new un-
certainties and error conditions in the system. We overview
time dilation recovery in more detail in Section 3.3 below.

In Figure 3 we show the operation of our solution with two
example escapes: In the first case the state of the memory
controller is corrupted when a configuration access from the
core (1) is followed, within a certain time, by a DMA from
a graphics engine (2). To remedy the bug we program the
controller’s matcher to detect this timed access sequence and
send a message (3) to the core to invoke a software handler.
In the second example we assume that it is discovered that
the encryption engine and the wireless modem, which reside
physically close on the SoC die, interact through the power
delivery network. To avoid data corruption due to voltage
droop we must ensure that transactions in these two blocks
are started some time apart. Patching this bug involves
programming the engine’s matcher to detect an incoming
accesses (A) and to send a notification message (B) to the
modem’s detector. In turn, the matcher in the modem is
programmed to wait for the message and delay subsequent
transactions (C) with a time-based lock (D).

Figure 3: Examples of error detection and recovery with soft­
ware intervention and time dilation. An escape in the memory
controller is patched by programming its matcher to detect a trig­
gering interaction between a core access (1) and graphics DMA (2),
and to send a recovery request (3) to the core. In the second ex­
ample a distributed interaction between the encryption engine and
the modem is detected by first matching an access to the engine
(A) and alerting the modem’s matcher with message (B). Upon an
interfering access (C) the Rx port of the modem is locked (D) and
the interaction between (A) and (C) is distorted to bypass the error.

3.1 Detector Structure
A generalized architecture of a matcher is shown in Figure

4, where we mark all programmable fields with sold white
rectangles. A matcher observes the values of transaction
headers (1) and consists of multiple pattern entries (2), pro-
grammable by the system software/firmware or through an
external interface, and control logic (3). Each entry has
a decrementing counter (4) with a parallel load. Upon pat-
tern activation the value of time-to-live, TTL (5), associated



with a pattern is loaded into the counter, which will decre-
ment with every clock cycle until saturating at zero. The
corresponding pattern is said to be active and participates
in matching, while the counter is greater than zero, thus,
with the help of TTL timing between accesses comprising
an offending sequence can be specified and matched.

Figure 4: Structure of a detector. The detector compares trans­
action headers to multiple independent wildcarded patterns. Upon
a match additional patterns can be activated or detection can be
signaled to a hardware or software recovery engine.

Each pattern has multiple separate fields (6) that corre-
spond to fields in transaction headers. For each N-bit field
we allow specification of N fixed bits (7), N don’t care bits
(8) and a single invert match bit (9). Fixed bits must match
those in the corresponding header field exactly, while don’t
cares match any bit value. Invert match bit, as its name
implies, reverses the value of the field match signal, if set.

When all fields of an active pattern match the appropriate
portions of a header, the detector’s control logic is alerted.
To allow for multiple simultaneous matches each entry’s de-
tect signal (10) is routed independently to the control logic
block. It is then the job of the control logic block to take
actions based on the values of the detect signals. With each
pattern we associate programmable action and action pa-
rameters fields (11). These actions can include activation
and deactivation of other patterns, initiation of time dilation
recovery or signaling of sequence detection (12) to another
detector or GP core. Detector control logic is also capable
of handling multiple simultaneous matches - for mutually
exclusive requests we use implicit priority of pattern IDs to
determine the action to take. It is important to note that
this matcher is not IP-specific, since it does not observe any
internal signals and is restricted to the fabrics interface.

3.2 Messaging and Software­based Recovery
To enable our survivability framework to bypass errors

at runtime we propose two recovery mechanisms. The first
technique is structured around signaling of error detection
in an IP up to the general purpose core and invoking a soft-
ware error handler. This is implemented by injecting error-
reporting messages into the fabric through the Tx port of
the IP upon detection. The fields of the message indicate the
error code to help the software select an appropriate han-
dling routine. The handler can be supplied together with
the matcher pattern to address a specific error, or it can be
a generic routine that suspends the execution, queries the
state of each component and resets or recovers the erroneous
block. Since error-reporting messages are destined for the
CPU core, their routing can be implicit, making this scheme
lightweight and efficient. This approach is more flexible than
the in-hardware solution described in the next section, since

a software handler can perform a variety of recoveries de-
pending on the particular error. The overhead of a recovery,
on the other hand, is higher, since it involves propagating
an alert message and multiple queries from the core. Conse-
quently, this technique must be used judiciously and invoked
only for rare bugs, for minimum impact on the performance.

3.3 Time Dilation Recovery
The second recovery scheme that we propose stems from

the observation that a vast majority of interaction errors
do not manifest themselves, if the timing of interfering ac-
cesses is changed even slightly. In the most pathological
case it is fairly safe to assume that if transactions are made
completely mutually exclusive, an IP would perform them
properly, since the block was sufficiently validated. This
perturbation can be done efficiently at the interface level of
the IP by locking its Rx port and preventing transactions
from entering the block and triggering the bug. Typically,
sufficient buffering resources to implement this are already
present in IPs, so only a few control signals are required.
Note that time dilation is transparent to the software, since
it is indistinguishable from contention and routing delays.

While time dilation could solve a large fraction of interac-
tion errors, it must be implemented in a manner that does
not introduce more severe issues, such as deadlock. We de-
signed our framework with this particular goal in mind and
made our locks exclusively time-based. The control logic of
each detector is augmented with a counter that is set to the
value of the pattern’s action parameter (11 in Figure 4) if
the pattern matches and its action is “Lock”. After being
set, the counter starts decrementing, releasing the lock upon
reaching zero. No traffic flows through the port when it is
locked and no new transactions are analyzed by the matcher.
As a result, we do not rely on an explicit unlock event and
eliminate the possibility of circular wait, thus protecting the
system from deadlock. There are, of course, some escapes
for which time locks are not as efficient as event-based ones.
Yet, we believe that the danger of a more serious problem
outweighs the efficiency advantages of the latter approach,
so our time dilation locks are strictly counter-based.

3.4 Limitations and Extensions
There are several limitations to the approach proposed

in this work, which must be kept in mind. First and fore-
most, this technique targets interaction errors specifically,
and, therefore, may not be efficient, or even applicable, to
issues such as functional bugs (see Section 2 for error classi-
fication). While our detectors are flexible enough to recog-
nize accesses producing functionally invalid results, our time
dilation technique is incapable of correcting them. Never-
theless, in these cases we can still resort to the software
recovery scheme described in Section 3.2.

Secondly, it is possible that our matchers, restricted to
the interface level of IPs, cannot precisely capture the na-
ture of the interaction error without the insight into the
block’s internal state. Consequently, to bypass the bug, an
overapproximated pattern must be used, causing the detec-
tor to initiate some unnecessary false positive recoveries and,
thus, impacting processor performance. However, if only a
small amount of time dilation is needed for error bypass,
even high false positive rates will not hinder the system per-
formance significantly, as we demonstrate in Section 4.3. Fi-
nally, delays introduced by time dilation may be undesirable
in real-time systems, where timeliness of the response could



be more important than its correctness. In such applications
the detectors can be selectively and dynamically disabled by
the software via configuration register accesses.

Survivability is not the only application of our solution:
It can also offer significant benefits to post-silicon valida-
tion and runtime performance monitoring. In the former
field, observability of the on-die fabric is crucial for error
isolation and reproduction, so matchers capable of detect-
ing programmed sequence of transactions can be used as
an on-die logic analyzers for the IP interfaces. Furthermore,
our solution provides a methodology to bypass show-stopper
post-silicon bugs, which otherwise may hinder the validation
efforts. Finally, the system can configure unused patterns
in matchers to monitor inbound transactions and pass this
statistics to the processor core for performance optimiza-
tion. Altogether, the proposed architecture offers signifi-
cant value added in several phases of the design’s life-cycle
and, most importantly, provides a structured methodology
for survivability-enhanced SoC design.

4. EXPERIMENTAL EVALUATION
In this section we overview our experimental evaluation

setup and present several analyses of SoC performance over-
heads arising due to time dilation recovery.

4.1 Experimental Platform
For evaluation of our framework we developed a trace-

driven SoC fabric simulator around an internal C++ PCIe
library. While PCIe itself is not used in SoCs, functionally
it represents a complex point-to-point hierarchical network
with various types of accesses, which is likely to become the
dominant communication medium of future high-end sys-
tems on chip. Consequently, lessons that we learned in this
evaluation are not PCIe-specific, but can be generalized eas-
ily to any point-to-point fabric. Note that we did not need
to model the exact behavior of the functional IPs, only their
communication, since the simulator was capable of dynami-
cally adjusting the trace timing depending on fabric resource
usage, thus, being representative of the full system behavior.

Our simulator modeled an SoC with twelve IP blocks, in-
cluding a root complex (GP core and memory controller),
graphics and audio accelerators, crypto engine and several
I/O controllers. The fabric was arranged as a hierarchical
tree with high-performance components (graphics, crypto)
residing closer to the root and on wider links. Fabric band-
width tapered off closer to the third and fourth tier nodes,
which modeled IPs with lower throughput requirements. We
tested the system with twelve traces, each 10M cycles long,
with bandwidth varying from 13.6 to 32 Gb/s. The traffic in-
cluded large size DMAs, memory accesses, periodic message-
signaled interrupts, and configuration operations.

4.2 Error Resilience Analysis
In our first study we analyzed the ability of our frame-

work to protect an SoC from a variety of errors. We present
the bugs we investigated in Table 1, listing the ID of each
error, its name and the total number of times it was encoun-
tered throughout 120M-cycle simulation. In the last column
we also show the duration of the time dilation lock that
was needed for recovery. This value was dependent on the
throughput and latency of IP blocks affected by the bug, as
well as the worst case latencies in the fabric.

The errors were split into three groups. Locally correctable
contained bugs, which could be bypassed with time dilation

Table 1: Error group, ID, name, total number of occurrences
and maximum lock duration (in cycles) of analyzed design bugs.

ID Error name
No. of
occur.

Lock
cycles

L
o
c
a
ll
y

c
o
r
r
e
c
ta

b
le

1 crypto rd+wr 63,215 150
2 crypto unaligned 275 150
3 crypto mutex 145,407 150
4 rc non timer msi 103,517 250
5 rc 2msi delay 61,832 10
6 rc rd+wr+msi delay 350 300
7 rc crypto rd+net wr 1,047 780
8 net sata rd+rc wr 818 1,700
9 rc pwr rd+cam wr 10 300
10 rc 2rd+msi 24,353 1,600
11 sata rd crypto+wr net rd 30 1,700

G
lo

b
a
ll
y

c
o
r
r
.

12 usb1 wr+net wr delay 6,236 1,250
13 usb1 usb2 mutex delay 5,866 920
14 pwr wr+graphics 9 500
15 pwr mutex 1,473 1,300

S
/
W

c
o
r
r
. 16 sata wr 479 N/A

17 network audio wr 8,328 N/A
18 graphics rd wr 761 N/A

in a single IP block. Globally correctable represented dis-
tributed interaction bugs that could be bypassed by locking
multiple IPs simultaneously. Finally, software correctable er-
rors could not be avoided with the in-hardware technique,
thus, their detection was signaled to the GP core. We inves-
tigated each error in isolation by programming the simulator
to flag the interactions that would cause the bug to manifest.

All bugs in Table 1 belong to the interaction error class,
targeted by our framework, and some were taken from the
errata we surveyed in Section 2. For others we modified
reported escapes for more devastating effects; for instance,
bug 3:crypto mutex is a scenario, where the crypto engine
can handle only one transaction at a time. While this issue
may not arise in a released component in reality, it helped
us analyze pathological errors and worst case overheads.

This experiment showed that our proposed survivability
framework was able to identify all instances of erroneous
behavior and was able to correct all bugs belonging to the
first two groups using the time dilation recovery mechanism.
Furthermore, we were able to detect all occurrences of er-
rors 16-18 and propagate an alert message to the root com-
plex within 100 cycles. Overall, without our programmable
detection and recovery framework these errors could have
produced wrong results in individual IPs or could have cor-
rupted the state of the entire SoC.

4.3 Detector False Positive Rate
In addition to initiating an in-hardware or a software-

based recovery when an actual error trigger sequence oc-
curs, our detectors may trigger an error bypass due to false
positive matches. We computed the false positive rate from
the total number of recoveries and the number of error in-
stances shown in Table 1. As the gray bars in Figure 5
illustrate, false positive rate of our framework may be fairly
high in some scenarios, however, it is important to keep
the absolute number of error occurrences in mind. For in-
stance, for bug 9:rc pwr rd+cam wr, which appeared only
10 times in 120M cycles of simulation, recovery was initi-
ated 71 times, resulting in relatively high false positive rate
(>85%), but without noticeable performance impacts. Sim-
ilar situation occurred for bugs 11:sata rd crypto+wr net rd
and 14:pwr wr+graphics. To further analyze this, we plot-



ted the percentage of simulation cycles that had at least one
time dilation lock in the system engaged (black bars in Fig-
ure 5). As the figure shows, in the majority of cases locks
were active less than 10% of time, despite the false positive
recoveries. Situations of high locking activity include high-
frequency bugs 3 and 4, and bug 10, for which we have to
engage a long latency lock (1,600 cycles).

Figure 5: False positive detection rate and percentage of sim­
ulation cycles with recovery lock engaged. Gray bars show the
false positive rate for each of the investigated errors, which was
computed based on the number of error instances and the number
of initiated recoveries. Black bars show the fraction of total cycles
during which at least one recovery lock was engaged.

4.4 Time Dilation Recovery Overhead
In our third study we investigated performance overheads

introduced by the time dilation solution. Since we lock
IPs’ interface ports upon detection of an offending sequence,
completions of transactions are delayed, extending the exe-
cution. Comparing SoC performance with each of the errors
in Table 1 to that of an ideal error-free system we discov-
ered that the performance penalty does not exceed 0.01%.
We attribute this negligible overhead to the bursty nature
of the traffic and the fact that locking a single IP does not
typically affect the rest of the system.

Figure 6: Transaction jitter due to lock­based recovery and
injection of inter­detector messages. Jitter is computed as a dif­
ference, in clock cycles, between access completion times in an
ideal error­free SoC model and in each of the buggy configurations.

In addition to the total overhead we measured transaction
jitter, i.e. the difference of completion times of individual
transactions between an error-free model and in the buggy
SoCs. We graph the average jitter (in cycles) in Figure 6
for each of the erroneous designs. Note that jitter can be
introduced by either time dilation locks or by inter-detector
messages. As the figure demonstrates, for 11 of 18 errors the
average jitter does not exceed 50 cycles. However, for some
bugs, e.g. 4:rc non timer msi and 10:rc 2rd+msi, jitter is
relatively high. We observed that these values are correlated
with the error frequency and lock duration (discussed in
Section 4.2) and the false positive rate (Section 4.3).

As another measure of the performance impact of our
framework we calculated the amount of inter-detector traffic
injected into the SoC fabric. We found it to be only 0.075%
of the total traffic in the worst case, a negligible overhead.

4.5 Detector Area Overhead
Finally, we analyzed the area of our matching hardware,

which is added to the SoC at design time. We looked at the
sizes and locations of the matchers that would be needed
to detect and correct all 18 errors in parallel. We assumed
no sharing of entries between patterns belonging to different
errors for worst case overhead calculation. The total area of
the matching hardware that we computed with an internal
estimation tool for Intel 45nm technology is 248,645 µm2.
Accounting for the control logic we estimate that the over-
head of our solution is below 0.45% of the area of the 45nm
Intel R© AtomTM D410 processor [5]. For complex SoCs based
on this core the overhead is expected to be even lower.

5. CONCLUSION
In this paper we presented a framework for detection and

recovery from interaction errors, a major category of logic
bugs in modern SoCs and embedded devices. Our solution
is designed with minimum design invasiveness in mind and
consists of multiple programmable detectors residing at the
interfaces of individual IP blocks. These circuits can be con-
figured to monitor for a variety of access sequences and in-
voke either the in-hardware time dilation recovery or signal
error detection to the software level. As the results of our
experiments demonstrate, our framework is capable of cor-
recting a variety of escapes, while incurring less than 0.01%
performance and less than 0.45% area overhead.

6. REFERENCES
[1] Advanced Micro Devices. AMD GeodeTMCS5535 Companion

Device Silicon Revision A3 Specification Update, 2006.

[2] ARM Ltd. AMBA Open Specifications, 2010. www.arm.com/
products/system-ip/amba/amba-open-specifications.php.

[3] T. M. Austin. Diva: A dynamic approach to microprocessor
verification. Journal of Instruction-Level Parallelism, 2000.

[4] Intel Corporation. Intel R©82574 Family Gigabit Ethernet
Controller Specification Update, 2010.

[5] Intel Corporation. Intel R©AtomTMProcessor D410
Specifications, 2010.
http://ark.intel.com/Product.aspx?id=43517.

[6] Intel Corporation. Intel R©EP80579 Integrated Processor
Product Line Specification Update, 2010.

[7] Intel Corporation. Intel R©I/O Controller Hub 10 (ICH10)
Family Specification Update, 2010.

[8] A. Meixner and D. Sorin. Dynamic verification of memory
consistency in cache-coherent multithreaded computer
architectures. In Proc. DSN, pages 73–82, 2006.

[9] OCP International Partnership. Open Core Protocol
Specification Release 3.0, 2009.

[10] OpenCores Organization. Wishbone B4 System-on-Chip (SoC)
Interconnection Architecture for Portable IP Cores, 2010.

[11] Samsung Electronics. Samsung S5PC100: ARM Cortex A8
based Mobile Application Processor, 2009.

[12] S. Sarangi, S. Narayanasamy, B. Carneal, A. Tiwari, B. Calder,
and J. Torrellas. Patching processor design errors with prog-
rammable hardware. IEEE Micro Special Issue, Jan. 2007.

[13] Sun Microsystems. Fire 2.0/2.1 Chip Errata, 2007.

[14] Texas Instruments. TMS320DM355 Digital Media
System-on-Chip (DMSoC) Silicon Errata, 2008.

[15] I. Wagner and V. Bertacco. Caspar: Hardware patching for
multicore processors. In Proc. DATE, pages 658–663, 2009.

[16] I. Wagner, V. Bertacco, and T. Austin. Using field-repairable
control logic to correct design errors in microprocessors. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 27(2):380–393, Feb. 2008.


