
An Approach to Improve Accuracy of Source-Level
TLMs of Embedded Software

Zhonglei Wang∗†, Kun Lu∗ and Andreas Herkersdorf∗
∗Technische Universität München, Arcisstraße 21, 80290 München, Germany

{Zhonglei.Wang, Kun.Lu, Herkersdorf}@tum.de
†Karlsruhe Institute of Technology, Chair for Embedded Sytems, Karlsruhe, Germany

Abstract—Virtual Prototypes (VPs) based on Transaction Level
Models (TLMs) have become a de-facto standard for design space
exploration and validation of complex software-centric multicore
or multiprocessor systems. The most popular method to get timed
software TLMs is to annotate timing information at the basic-
block level granularity back into application source code, called
source code instrumentation (SCI). The existing SCI approaches
realize the back-annotation of timing information based on map-
ping between source code and binary code. However, optimizing
compilation has a large impact on the code mapping and will
lower the accuracy of the generated source-level TLMs. In this
paper, we present an efficient approach to tackle this problem.
We propose to use mapping between source-level and binary-
level control flows as the basis for timing annotation instead of
code mapping. Software TLMs generated by our approach allow
for accurate evaluation of multiprocessor systems at a very high
speed. This has been proven by our experiments with a set of
benchmark programs and a case study.

I. INTRODUCTION

Today, the complexity of embedded systems is ever increas-
ing. Many embedded systems consist of multiple processing
elements and complex communication architecture. To support
efficient design space exploration of such systems, TLM-based
virtual prototypes (VPs) are widely used. TLM (Transaction
Level Modeling) is a standard modeling style for system-
level design and is often associated with SystemC, a standard
System-Level Design Language (SLDL). In this modeling
style, communication and computation can be modeled sepa-
rately, with different communication architectures supporting
a common set of abstract interfaces to functional units. In a
TLM-based VP of a software-centric system, software TLMs
(Transaction Level Models) play a very important role. They
represent the functional behavior, capture computation delays
and generate workload on the communication architecture. It
will reduce the design effort significantly, if we can get an
automation tool to generate fast and accurate software TLMs
from application code.

A TLM for a software program can be generated from
different representation levels of the program, including source
level, IR level and binary level [1]. Source-level software
TLMs are most widely used, because of their high simulation
speed and low complexity. A source-level TLM uses source
code as the functional representation. Timing information that
represents execution delays of the software on the target
processor is inserted into the source code. This process is
often called Source Code Instrumentation (SCI). Software

simulation using source-level TLMs is called Source Level
Simulation (SLS). To the best of our knowledge, in all the
existing SCI approaches back-annotation of timing information
is based on mapping between source code and binary code.
These approaches cannot generate accurate software TLMs in
the case of optimizing compilation, because after optimizing
compilation it is hard to find an accurate mapping between
source code and binary code. Even when a code mapping
can be found, due to the difference between source-level and
binary-level control flows the back-annotated timing informa-
tion cannot be aggregated correctly during the simulation. This
problem will be presented with an example in Section III.

In this paper, we present a solution to the mapping problem
raised by compiler optimizations. In our approach, we anno-
tate the timing information estimated from binary code back
to source code according to mapping between binary-level
and source-level control flows instead of code mapping. The
source-level TLMs generated by our approach allow for much
more accurate simulation than those generated by previous
approaches.

The rest of this paper is organized as follows: related work
is discussed in Section II. Following this, Section III gives
an overview of source code instrumentation and states the
mapping problem. Then, the proposed approach is presented
in detail in Section IV. Some experimental results and a case
study are shown in Section V. Finally, the paper is concluded
in Section VI.

II. RELATED WORK

Software is usually simulated using instruction set simula-
tors (ISSs). To simulate a multiprocessor system, a popular
method is to integrate multiple ISSs into a SystemC based
simulation backbone. Many simulators are built following this
solution, e.g., the commercial simulators from Synopsys [2]
and academic simulation platforms like MPARM [3]. Such
simulators are able to execute target binary, boot real RTOSs,
and provide cycle-accurate (or cycle-count-accurate) perfor-
mance data. However, they have the major disadvantage of
extremely low simulation speed and very high complexity.

Recently, most research activities focused on modeling
processors at a higher level to achieve a much higher simu-
lation speed but without compromising accuracy. Trace-based
simulation methods proposed in [4], [5] are in this category.
However, trace-driven simulations have a common drawback

978-3-9810801-7-9/DATE11 c© 2011 EDAA

that traces are not able to capture a system’s functionality.
Furthermore, the execution of most tasks is data-dependent,
but traces can represent only the workload of one execution
path of a program.

To get high-level simulation models that capture both
the function and data-dependent workload of software tasks,
Source-level TLMs are being increasingly used. In recent years
many papers on source level simulation are published, such
as [6], [7], [8]. All the proposed approaches generate software
simulation models by annotating application source code with
timing information at the basic-block level granularity. The
timing information of each basic block can be obtained by
means of static analysis [7], [8] or measurement using cycle-
accurate simulators [6]. However, in the scope of a basic block,
it lacks the execution context of global timing effects, such
as the cache effect and the branch prediction effect, so these
timing effects cannot be resolved before the simulation run-
time. A solution proposed in [7], [8] is to annotate some code
to trigger dynamic simulation of the global timing effects at
simulation run-time. Nevertheless, all these approaches use
code-mapping as the basis for source code instrumentation and
have the mapping problem raised by optimizing compilation,
as discussed before.

An efficient solution to the mapping problem is to transform
source programs to IR-level code which comprises machine-
independent optimizations and has a structure close to that
of binary code, so that there is accurate mapping between
this IR-level code and binary code and software TLMs can
be generated by annotating timing information into the IR-
level code. This idea is proposed in [9], [10]. This method has
been proven to be efficient but it will increase the complexity
of TLM generation. Furthermore, the obtained IR-level TLMs
lose readability. It is hard to debug a system’s functionality
during the simulation.

III. OVERVIEW OF SOURCE CODE INSTRUMENTATION AND
PROBLEM STATEMENTS

In Fig. 1 we use an example to give an overview of code-
mapping-based source code instrumentation (SCI). The inputs
are the source code and binary code of a program and the
output is the same source code annotated with extra timing
information at the basic-block level granularity. The timing
information is obtained by timing analysis on the binary code.
Delay values are expressed by wait() statements to advance
SystemC simulation time.

The back-annotation of the timing information relies on
mapping between source code and binary code. However, in
the case of optimizing compilation, binary-level control flows
are quite different from source-level control flows. The back-
annotated timing information according to the code mapping
cannot be aggregated correctly along the source-level control
flows during the simulation. This is especially true for control-
dominated programs, which contain complex structures.

Fig. 2 shows an example to depict this mapping problem.
The code is part of the program fibcall. It is found that
the instructions at 0x1800074, 0x180007c–0x1800080, and

. . .

wait(5*T); //delay of bb1

wait(2*T); // delay of bb3

8: while(i<10){

wait(2*T); // delay of bb3

9: c[i]=a[i]*b[i];

wait(12*T); // delay of bb2

10: i++;

11: }

. . .

. . .

8: while(i<10){

9: c[i] = a[i] * b[i];

10: i++;

11: }

. . .

(a) Source code

(c) Instrumented source code

bb1

t = 5 cycles

bb2

t = 12 cycles

bb3

t = 2 cycles

bb4
. . .

(b) Binary level CFG

Code mapping &

back-annotation++++

Fig. 1. An Example of Source Code Instrumentation

0x1800074 cmpwi cr7,r3,1

0x1800078 mr r9,r3

0x180007c li r3,1

0x1800080 blelr cr7

7: while(i<=n)

8: temp = Fnew;

9: Fnew = Fnew + Fold;

10: Fold = temp;

11: i++;

13: ans = Fnew
. . .

. . .

0x1800094 add r3,r0,r9

0x1800098 mr r9,r0

0x180009c mr r0,r3

0x18000a0 bdnz+ 1800094

0x1800084 addi r9,r9,-1

0x1800088 li r0,1

0x180008c mtctr r9

0x1800090 li r9,0

. . .

Fig. 2. Code Mapping

0x18000a0 are generated from source line 7. This code map-
ping is illustrated in the figure with dashed lines. According to
the code mapping, the timing information of these instructions
will be back-annotated into the while loop. All the timing
information will be aggregated the same number of times as
the loop iterations, but, along the binary-level control flows,
the instructions at 0x1800074 and 0x180007c–0x1800080 are
executed only once. Therefore, the software TLM generated by
the code-mapping-based SCI has a large error. Another serious
problem is that, in order to get a code mapping, basic blocks
have to be broken into smaller sequences of instructions,
most consisting of only 2-3 instructions. Timing information
obtained from timing analysis on such small sequences of
instructions is hard to take some important timing effects into
account.

IV. THE PROPOSED APPROACH

The proposed TLM generation approach is illustrated in
Fig. 3 along with an example. The source code is the same
as the one in Fig. 2, but, in the generated software TLM, the
timing information has been correctly annotated. As shown at
the right hand side of the figure, the whole approach consists
of three working steps: (1) mapping information generation,
(2) timing information generation and (3) back-annotation of

Target Binary

Timing Info.

Back-
Annotation

Back-
Annotation

ELF

Cross-
Compilation

Cross-
Compilation

Timing
Analysis
Timing

Analysis CPU1

Processor
Description Files

Software Tasks
in C/C++

Timed SW TLMs
in SystemC

t

Flow
Mapping

Flow
Mapping

Mapping Info.

. . .

7: while(i<=n){

8: temp = Fnew;

9: Fnew = Fnew + Fold;

10: Fold = temp;

11: i++;

12: }

13: ans = Fnew

. . .

Source Code

Software TLM

TLM

Generation

. . .

wait(3*T); //delay of bb1

wait(4*T); //delay of bb2
7: while(i<=n){

. . .

10: Fold = temp;

11: i++;

wait(3*T); //delay of bb3
12: }

. . .

Fig. 3. The Proposed Software TLM Generation Approach

the timing information according to the mapping information.
We use a hybrid timing analysis approach, similar to the one
introduced in [8], to get timing information at the basic block
level granularity. Different from the previous SCI approaches,
we use a more efficient way to get mapping information for
accurate back-annotation of timing information. This is the
main contribution of this paper. Hence, the step of mapping
information generation is first and foremost introduced in
detail. The other two steps are described briefly. After that, the
whole approach is demonstrated using an example insertsort.

A. Mapping Information Generation

During optimizing compilation, a compiler will often move
code from within a loop to outside the loop as much as
possible, to achieve a better execution time. However, using a
code-mapping-based SCI approach, the binary code that has
been moved out of the binary-level loop is still mapped to
source code in the source-level loop and its timing information
will be annotated into the source-level loop. This is the main
error in software TLMs generated by code-mapping-based
approaches. This problem has been illustrated in Fig. 2 in the
last section. Therefore, a correct instrumentation should put the
timing information of the binary code outside a binary-level
loop out of the corresponding source-level loop and put the
timing information of the binary code within the binary-level
loop into the source-level loop, without caring from which
source code the binary code is generated. To establish such
a mapping between source-level loops and binary-level loops,
we introduce the notion of loop level. A loop level indicates
the depth of a loop. All the code that does not belong to any
loop is assigned loop level 0. Then, the most outer loops are
assigned loop level 1. If a loop with loop level n contains
another loop, the loop level of the inner loop is n+1. In this
way, all the code blocks of a program are assigned a loop
level. This applies to both source code and binary code.

After identifying the loop levels, the timing information of
binary code is then back-annotated into source code at the
same loop level. The exact mapping information is generated
according to the mapping between source-level and binary-

level control flows at the same loop level. In other words, loops
set up scopes for flow mapping. Therefore, in our approach,
mapping information generation is achieved by two steps:
(1) identifying loop levels and (2) mapping control flows at
each loop level. The whole approach is flow-mapping-based,
different from the code-mapping-based approaches.

bb1: loop level 0

bb3: loop level 1

bb2: loop level 0

bb4: loop level 0

(a) Source code (b) Binary level CFG

. . .

7: while(i<=n){

8: temp = Fnew;

9: Fnew = Fnew + Fold;

10: Fold = temp;

11: i++;

12: }

13: ans = Fnew

. . .

loop

level 0

loop

level 1

loop

level 0

3 cycles

4 cycles

3 cycles

1 cycle

bb1 -> line 6

bb2 -> line 6

bb3 -> line 11

. . .

(c) Mapping information

Fig. 4. An Example of Mapping Information Generation

1) Identifying Loop Levels: It is relatively easy to identify
loop levels for source code. We can simply parse the source
code to find the key words of loop structures such as while
and for and then find the scope of the loops. Fig. 4 shows the
same example as in Fig. 2. In the source code, there is only
one while loop. The code in the loop is assigned loop level 1,
while the other code belongs to loop level 0.

It is a little more complicated to identify loops at the binary
level than at the source level. We first need to create a control
flow graph (CFG) for each function, which is essential to
control flow analysis. In a CFG, a back edge is a special
edge that points to an ancestor in a depth-first traversal of the
CFG. Each loop in a binary-level CFG contains at least one
back edge. We define this kind of back edges as loop-forming
back edges. Finding a back edge is considered as a necessary
condition but not the sufficient condition of identifying a loop.
To make sure that a back edge is really a loop-forming back
edge, it must be checked whether there is a control flow leads
the destination block of the back edge to its source block, i.e.,
to find a closed graph. In the binary-level CFG of the running
example, there is only one back edge, which jumps from the
last instruction of bb3 to the first instruction of the same block.
Therefore, bb3 alone forms a loop and is assigned loop level
1. The other basic blocks are at loop level 0.

2) Mapping Control Flows: After identifying loop levels,
mapping information can be generated based on a mapping be-
tween source-level and binary-level control flows at respective
loop levels. Besides loops, the control flows at each loop level
are constructed by simple branches. Normally, each path of a
binary-level branch can be simply mapped to a source-level
structure like “if ... else ...” or “switch ... case ...”. An entry
of mapping information is written in form of “basic block

number −→ source line number”, indicating that the timing
information of the specified basic block should be annotated
after the specified source line.

In the running example, the timing information of bb3 at
loop level 1 should be back-annotated into the while loop,
the code of which is also at loop level 1. The binary-level
loop contains only one basic block and the loop body of the
source-level loop has also only one basic block. Therefore,
the mapping is quite straightforward. On principle, the timing
information of bb3 can be put anywhere in the loop body. We
insert it after the last line of the source-level basic block, so
we get the mapping entry “bb3 −→ line 11”. In the binary
code at loop level 0, we find a branch that leads control flows
from bb0 to bb2 and bb4. However, we cannot find a source-
level branch that corresponds to this branch. There is only one
basic block of source code before the while loop. Therefore,
it fails to get an exact mapping between the control flows in
the scope of loop level 0. In this case, we simply annotate the
timing information of both bb1 and bb2 into the source code
before the while loop. This does not cause any error in most
cases, since most input data does not lead the control flow
from bb1 to bb4 at all.

During the flow mapping basic blocks are the smallest units.
We do not need to break them into smaller sub-blocks as
in code-mapping-based approaches. Hence, the source-level
TLMs generated by our approach are annotated with more
accurate timing information.

B. Timing Information Generation and Back-annotation

We use a hybrid timing analysis method to take into account
the important timing effects of processor microarchitecture in
source-level TLMs. Hybrid timing analysis means that timing
analysis is performed both statically and dynamically. Some
timing effects like pipeline effects are analyzed at compile-
time using an offline performance model and are represented
as delay values. Other timing effects like the branch prediction
effect and the cache effect that cannot be resolved statically are
analyzed at simulation run-time using an online performance
model. Therefore, there are two categories of timing infor-
mation: (1) delay values obtained by static timing analysis,
and (2) some code for triggering dynamic analysis. In all the
illustrated examples in this paper, only delay values are shown
for clarity. For more information about dynamic simulation of
global timing effects, please refer to [8]. Given the mapping
information as shown in Fig. 4(c), the basic-block level timing
information can be simply back-annotated.

The SystemC wait() statements will cause a large overhead
on simulation performance. To improve the simulation per-
formance, we can reduce the number of wait() statements by
aggregating timing information using variables and calling a
wait() only before an access to an external device.

C. Another Example: insertsort

Now, we use a more complicated example insertsort, which
contains two nested loops, to demonstrate the whole approach.
With this example, we will also discuss about the possible

bb1: loop level 0

. . . // line 1 – 8

9: while(i <= 10){

10: j = i;

11: while (a[j] < a[j-1])

12: {

13: temp = a[j];

14: a[j] = a[j-1];

15: a[j-1] = temp;

16: j--;

17: }

18: i++;

19: }

. . .

bb4: loop level 1&2

bb2: loop level 1

. . . : loop level 0

bb3: loop level 1

bb5: loop level 2

loop

level 0

loop

level 1

loop

level 2

loop

level 1

loop

level 0

Fig. 5. Flow Mapping of insertsort

a[0]=0; a[1]=11; a[2]=10; a[3]=9; a[4]=8; a[5]=7;

a[6]=6; a[7]=5; a[8]=4; a[9]=3; a[10]=2;

bb1

. . . // 0x1800074 – 0x18000ec

0x18000f4 blt- cr7,1800128

bb2

0x18000f8 addi r6,r6,1

0x18000fc cmpwi cr7,r6,10

0x1800100 mr r9,r6

0x1800104 bgt- cr7,1800138

bb3

0x1800108 mr r11,r9

bb4

0x180010c addi r9,r11,-1

0x1800110 rlwinm r10,r11,2,0,29

. . .

0x1800120 cmpw cr7,r11,r0

0x1800124 bge- cr7,18000f8

bb5

. . . // 0x1800128 – 0x1800134

. . .

. . . // line 1 – 8

wait(180, SC_NS); //delay of bb1

9: while(i <= 10){

wait(40, SC_NS); //delay of bb2

wait(10, SC_NS); //delay of bb3

10: j = i;

11: while (a[j] < a[j-1])

12: {

13: temp = a[j];

14: a[j] = a[j-1];

15: a[j-1] = temp;

wait(60, SC_NS); //delay of bb4

wait(30, SC_NS); //delay of bb5

16: j--;

17: }

wait(60, SC_NS); //delay of bb4

18: i++;

19: }

. . .

1

10

9

54

45

9

1

9

8

53

45

(a) Input Data

(b) Instrumented Source Code

and Execution Count

(c) Binary Code and

Execution Count

Fig. 6. Instrumented Source Code and Binary Code of insertsort

sources of errors. First, we identify the loop levels for both
source code and binary code, as shown in Fig. 5. The outer
loop has loop level 1, while the inner loop has loop level 2.
In the binary code, bb4 is a common part of the inner loop
and the outer loop, so it is assigned both loop level 1 and
2. After identifying loop levels, the binary-level basic blocks
can be mapped to the source code. The mapping is shown
in the figure. With this mapping, the timing information of
each basic block is back-annotated and we get instrumented
source code as shown in Fig. 6(b). As bb4 belongs to both
loop level 1 and 2, its timing information is back-annotated
into both the inner loop and outer loop. In Fig. 6, we also
show the execution count of each block of source code and
binary code at its right hand side, given a set of input data
shown in Fig. 6(a). As shown, the delay values of most basic

TABLE I
SIMULATION ACCURACY

Estimated Execution Time in Cycles Estimation Error of SLS+

ISS BLS SLS SLS+ Timing Error Mapping Error Overall Error

fibcall 3307 3281 12996 3281 -0.79% 0.00% -0.79%
insertsort 516 518 672 525 0.39% 1.35% 1.74%
bsearch 46057 47008 51008 47008 2.06% 0.00% 2.06%
crc 10288 10284 15430 10540 -0.04% 2.49% 2.45%
blowfish 178610 175919 187184 175919 -1.51% 0.00% -1.51%
AES 2292275341 2296272902 2336484895 2296272902 0.17% 0.00% 0.17%

blocks are aggregated the same number of times as these basic
blocks are executed, except bb3 and bb4. The delay values of
bb3 and bb4 are aggregated 9 and 54 times, respectively, along
the source-level control flows, but bb3 and bb4 are actually
executed 8 and 53 times in the real execution. This results
in an error of 7 cycles. This error is very small, only 1.35%
in percentage, and is fully acceptable in system level design
space exploration. This example shows that in the case of some
complicated control flows our approach may fail to find an
exact mapping between binary-level and source-level control
flows, resulting in a small margin of error.

D. Limitations

The method is based on the assumption that the loop
structures are not heavily changed by optimizations. Some
loop transformations such as complete loop unrolling or loop
fission can still be tackled. However, if a loop is partially
unrolled or is broken into multiple loops which iterate over
different contiguous portions of the index range, then it is
hard to perform back-annotation of timing information.

V. EXPERIMENTAL RESULTS

The experiments have been carried out mainly to show
the accuracy and performance of software TLMs generated
by the proposed approach, compared with representative ap-
proaches of ISS, binary level simulation (BLS) and source
level simulation (SLS). We chose the approach introduced
in [8] to represent SLS. To be differentiated from the previous
SLS approaches, the proposed one is referred to as SLS+ in
the following discussion. We selected 6 benchmark programs
and chose a PowerPC processor as the target processor. All
the programs were compiled using a cross-compiler ported
from a GCC compiler, with the optimization level -O2. After
showing the efficiency of our approach, we used a case study
to demonstrate how the approach facilitates design space
exploration of MPSoCs.

A. Accuracy and Performance of Software Simulation

To evaluate software simulation alone, the selected pro-
grams can execute to the end without interactions to other
devices. The estimation error of SLS+ can be analyzed by
comparing estimates from ISS, BLS and SLS+.

BLS generates a software simulation model of a program
by first translating the binary code to functionally equivalent C
code, with one basic block corresponding to a C function, and

then annotating the timing information of each basic block into
the corresponding C function. The timing information at basic-
block level granularity used in BLS has a slight error compared
with the cycle level timing information of the ISS. We can
measure this error by comparing the estimates from BLS and
the ISS. Our SLS+ uses the same basic-block-level timing
information as BLS but has an extra error caused by back-
annotation of the timing information from the binary level to
the source level. As BLS gets both functional representation
and timing information from the binary level, it has no such
a mapping error. By comparing the estimates from BLS and
SLS+, we can measure the mapping error of SLS+. And by
comparing the estimates from the ISS and SLS+, we can get
the overall estimation error.

The estimated execution times of all the programs from the
ISS, BLS, SLS and SLS+ as well as the estimation errors of
SLS+ are shown in Table I. We can see that for four programs
SLS+ has no mapping error and allows for software simulation
as accurate as BLS. For the other two programs the mapping
error is also within 2.5%. The reason for the mapping error
in the simulation of insertsort has been discussed in detail
in Section IV-C. The error of the basic-block level timing
information used in BLS is also very small, only 0.83% on
average for the selected programs. SLS+ uses the same timing
information as BLS and therefore has the same timing error.
Taking both mapping error and timing error into account,
SLS+ has an overall error of 1.45% on average, much better
than SLS, which applies code-mapping-based source code
instrumentation. As shown in Table I, SLS allows for accurate
simulation of computation-intensive programs like AES and
blowfish. In the simulation of the other programs, large errors
are seen. The average error is 65.1%

We measured the simulation performance on a PC equipped
with a 3 GHz Intel CPU and 4 GB memory. As all the
programs are simulated without interactions to other devices,
the timing information is aggregated simply using a variable
to get the execution time of a program and thus the slowdown
due to SystemC wait() statements and events has not been
taken into account. These effects are taken into account in
the following case study, where a whole system is simulated.
SLS+ had an average simulation speed of 4675.6 MIPS, close
to native execution (5198.2 MIPS on average) and much faster
than the ISS (11.9 MIPS on average) and BLS (349.4 MIPS
on average).

CPU1

SW1

BUS

CPU2

SW2

CPU3

SW3

ICU

RAM DPRAM SIF OUT/KBDAES

Fig. 7. System Configuration

HW/SW timing comparison
Case 1 2 3
ISS[ms] 9.74 80.94 174.8
SW TLM[ms] 10.05 81.14 181.78
Error[%] 3.23 0.24 4.02

Runtime comparison
Case 1 2 3
ISS [s] 0.82 4.77 14.15
SW TLM[s] 4.36e-3 0.011 0.027
Gain 187 428 523

TABLE II
SIMULATION RESULTS FOR BOTH ISS-BASED AND TLM-BASED VPS

B. Case Study of MPSoC Design

The proposed software TLM generation method is applied
in a hypothetic MPSoC system design to justify its efficiency.
Besides the software TLMs, a virtual prototype (VP) of the
whole system also includes the hardware TLMs.

The configuration of the system is shown in Fig. 7. The
system is similar to the one shown in [11]. Three CPUs
with the MIPS instruction set are instantiated. Each CPU
runs an algorithm of prime number calculation. It fetches
instructions and data from the RAM and DPRAM respectively,
stores the calculated numbers in a buffer, and sends them to
the SIF (serial interface) for display. In addition, each CPU
encrypts/decrypts the data using an AES accelerator module.

We built two VPs for the same system. One uses instruction
set simulators (ISSs) for software simulation, while the other
uses the software TLMs generated by the proposed approach.
In each ISS, a simplified OS is also modeled to provide library
or device driver functions to the application software. The
simulation models of the other system components are the
same in the both VPs. The ISS-based VP is taken as reference
to evaluate the other one.

The experimental results are shown in Table II. Three
cases of software computation effort are inspected. Case 1
represents low computation effort, where each CPU calculates
the prime number up to 1000. Case 2 considers computation
effort, where each CPU computes up to 100, 1000, and 5000,
respectively. Case 3 shows the highest computation effort with
each CPU running the algorithm up to 5000. In all cases, the
HW/SW co-simulated timing is compared between the two
VPs. Using software TLMs, the estimation error of the overall
HW/SW timing remains below 4% in all the examined cases.
And this error does not scale with the computation effort.
Thus, it justifies the accuracy of the software TLMs generated
by the proposed approach. For the simulation performance, the

gain of simulation performance using the source-level TLMs
is related tightly to the computation effort. It is more than 500
in case 3, where the computation time dominates the whole
simulation.

VI. CONCLUSIONS

This paper presented an efficient approach for automatic
generation of source-level software TLMs. Especially, we
attacked the mapping problem that exists in previous source
code instrumentation approaches and limits their usability.
The software TLMs generated by our approach are annotated
with accurate timing information at the basic-block level
granularity and take all the compiler optimizations and the
necessary timing effects of the processor microarchitecture
into considerations. Combined with simulation models of other
system components, the software TLMs allow for fast and
accurate software simulation in MPSoC design. The efficiency
of the source-level TLMs was proven by our experiments with
a set of benchmark programs and a case study of MPSoC
design. The experimental results show that the source-level
TLMs allow for 393 times faster simulation than an ISS with
the simulation accuracy larger than 97.5%.

ACKNOWLEDGMENT

We would like to thank Michael Velten from Infineon
Technologies AG for providing the virtual platforms used in
the MPSoC case study.

REFERENCES

[1] Z. Wang and A. Herkersdorf, “Software performance simulation strate-
gies for high-level embedded system design,” Performance Evaluation,
vol. 67, no. 8, pp. 717–739, 2010.

[2] Synopsys. [Online]. Available: http://www.synopsys.com
[3] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri,

“MPARM: Exploring the Multi-Processor SoC Design Space with
SystemC,” Springer Journal of VLSI Signal Processing, vol. 41, no. 2,
pp. 169–182, 2005.

[4] A. D. Pimentel, M. Thompson, S. Polstra, and C. Erbas, “Calibration of
abstract performance models for system-level design space exploration,”
Journal of Signal Processing Systems, vol. 50, no. 2, pp. 99–114, 2008.

[5] T. Wild, A. Herkersdorf, and G.-Y. Lee, “TAPES–Trace-based ar-
chitecture performance evaluation with SystemC,” Journal of Design
Automation for Embedded Systems, vol. 10, no. 2-3, pp. 157–179, 2005.

[6] T. Meyerowitz, M. Sauermann, D. Langen, and A. Sangiovanni-
Vincentelli, “Source-level timing annotation and simulation for a hetero-
geneous multiprocessor,” in Proceedings of the conference on Design,
automation and test in Europe (DATE’08), 2008.

[7] J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel, “High-
performance timing simulation of embedded software,” in Proceedings
of the Design Automation Conference, Anaheim, USA, June 2008.

[8] Z. Wang, A. Sanchez, and A. Herkersdorf, “SciSim: A Software Per-
formance Estimation Framework using Source Code Instrumentation,”
in Proceedings of the 7th International Workshop on Software and
Performance (WOSP’08), Princeton, NJ, USA, Jun 2008, pp. 33–42.

[9] A. Bouchhima, P. Gerin, and F. Pétrot, “Automatic instrumentation of
embedded software for high level hardware/software co-simulation,” in
Proceedings of the Asia and South Pacific Design Automation Confer-
ence, 2009, pp. 546–551.

[10] Z. Wang and A. Herkersdorf, “An Efficient Approach for System-
Level Timing Simulation of Compiler-Optimized Embedded Software,”
in Proceedings of the 46th Annual Design Automation Conference
(DAC’09), San Francisco, California, July 2009, pp. 220–225.

[11] W. Ecker, V. Esen, and M. Velten, “TLM+ Modeling of Embedded
HW/SW Systems,” in Proceedings of the conference on Design, au-
tomation and test in Europe (DATE’10), 2010.

