
Fast and Accurate Resource Conflict Simulation for
Performance Analysis of Multi-Core Systems

Stefan Stattelmann†, Oliver Bringmann†
†FZI Forschungszentrum Informatik

Haid-und-Neu-Str. 10–14
D-76131 Karlsruhe, Germany

{stattelmann, bringmann}@fzi.de

Wolfgang Rosenstiel†‡
‡University of Tuebingen

Sand 13
D-72076 Tuebingen, Germany

rosenstiel@informatik.uni-tuebingen.de

Abstract—This work presents a SystemC-based simulation ap-
proach for fast performance analysis of parallel software compo-
nents, using source code annotated with low-level timing properties.
In contrast to other source-level approaches for performance
analysis, timing attributes obtained from binary code can be
annotated even if compiler optimizations are used without re-
quiring changes in the compiler. To consider concurrent accesses
to shared resources like caches accurately during a source-level
simulation, an extension of the SystemC TLM-2.0 standard for
reducing the necessary synchronization overhead is proposed as
well. This enables the simulation of low-level timing effects without
performing a full-fledged instruction set simulation and at speeds
close to pure native execution.

Index Terms—System analysis and design; Timing; Modeling;
Software performance;

I. INTRODUCTION

An increasing portion of functionality in current embedded
systems is implemented in software. For systems which have to
fulfill timing constraints, estimating software performance at an
early design stage is often crucial. If the violation of timing re-
quirements is detected too late, it can entail a costly redesign of
the entire system. Yet estimating the performance of software-
intensive systems is a complex task, as it is influenced by the
actual hardware on which the software is executed and the final
binary code to which it gets compiled. Especially in multi-
core systems, the interaction of software components due to
concurrent accesses to shared resources does have a significant
effect. Hence, to estimate performance precisely, considering a
single software component in isolation is insufficient. Instead,
the effect of all other system components must be considered
as well.

There are static and dynamic methods for analyzing software
execution times. Static approaches do not require an actual exe-
cution of the analyzed system or program; instead, performance
properties are derived from an analytical model. Most static
timing analyses determine execution times through a sequence
of isolated, subsequent steps [1]: Firstly, the execution time of
smaller program parts is analyzed on machine code level using
an abstract processor model. This information is then used to
determine the maximal execution time of a single task [2]. Based
on the characteristics of the complete system design (e.g the
scheduling policy of the operating system), the performance of
the entire system can be evaluated [3]. As all analysis steps
are executed independently, the interference between different
components must be approximated conservatively. Hence static
methods can often only determine properties of the worst-
case performance of a given software component. To provide
accurate results, the use of shared resources like caches must be
restricted [4]. This limitation prohibits the application of static
timing analysis for common multi-core architectures.

Dynamic methods for timing analysis rely on observing a
system while it is running. Measurements using real hardware
or register transfer level (RTL) models are hardly feasible in
early system design phases. Measuring timing properties this
way is very time consuming as all details of the design must be
observed or simulated. Instead, an instruction set simulator (ISS)
can be used to estimate the performance of binary code. Using
a modeling language like SystemC [5], multiple instances of an
ISS can be employed in parallel to analyze the behavior of a
multi-core system [6]. More recently, the annotated source code
of software components [7] is used for this purpose using native
execution instead of an ISS interpreting binary code. While
this approach allows a faster simulation of software execution,
it also creates additional challenges, like the consideration of
compiler optimizations and the synchronization of accesses to
shared resources.

This paper presents a fast and accurate approach for system
level performance analysis of software components in multi-
core systems. To precisely estimate the execution times without
using an ISS, software components are annotated with timing
properties from a low-level execution time analysis to precisely
estimate their performance. To model accesses to shared caches
precisely without sacrificing simulation speed, an extension of
the SystemC TLM-2.0 standard is described which reduces the
synchronization overhead necessary to model shared resources.
Combining these two approaches allows simulating low-level
effects of software execution without an ISS and at speeds close
to pure native execution.

II. SYSTEMC TLM-2.0

For the purpose of architecture exploration and pre-silicon
software development, virtual prototypes based on SystemC
using transaction level modeling (TLM) are in widespread
use. SystemC uses discrete event simulation to model arbitrary
hardware or software components using SystemC processes
written in C++. The simulation of the processes is synchronized
by the SystemC scheduler which keeps track of global simu-
lation time and the time-ordered sequence of events from all
processes. SystemC uses a cooperative scheduling mechanism
which requires all processes to yield control in order to allow
the scheduling of other simulation processes. To increase the
simulation speed of SystemC-based virtual prototypes and to
ease the exchange of these models, the SystemC TLM-2.0
standard [8] has been introduced. TLM-2.0 defines two coding
styles to model timing behavior at different abstraction levels:
the approximately-timed coding style (TLM-AT) based on lock-
step simulation and the loosely-timed coding style (TLM-LT)
using temporally decoupled simulation to increase simulation
performance.

978-3-9810801-7-9/DATE11/ c©2011 EDAA



TLM-AT assumes that all simulated processes can be an-
notated with specific delay values. In order to run in lock-step
with the SystemC simulation kernel, these delay values are used
in calls to the wait function at certain fixed synchronization
points. As a result of these calls, another process gets scheduled
by the simulation kernel which introduces a lot of task switching
overhead. Fig. 1 shows the negative effect of synchronization
on simulation performance. If wait is called too often by
the simulation processes, a large amount of CPU time on the
simulation host is spent for task switching. To reduce the task
switching overhead of repeated synchronization, the TLM-LT
coding style does not require that all simulated processes always
synchronize with the simulation kernel explicitly. Instead, TLM-
LT allows processes to run ahead of the global simulation time.
To allow this so called temporal decoupling, each process keeps
track of its local time offset with respect to the global simulation
time. Due to the cooperative scheduling mechanism employed in
the SystemC simulation kernel, a maximal value for the local
offset, the global time quantum, is defined for all simulated
processes. As soon as the local time offset of a temporally
decoupled process reaches the global time quantum, it must
synchronize its local time with the global simulation time by
calling wait.

For simplifying a loosely timed simulation with temporal
decoupling, the TLM-2.0 standard implementation provides the
so called Quantum Keeper class. It can be used to automatically
synchronize a process as soon as the local time offset passes
its maximal value by replacing calls to wait with calls to
the respective method of the Quantum Keeper which simply
sums up the local offset. The Quantum Keeper only calls wait
if the time offset reaches the threshold or synchronization is
explicitly demanded. Nonetheless, temporal decoupling and the
quantum keeper are solely methods to allow a fast simulation
despite the cooperative scheduling mechanism of SystemC.
They cannot replace a synchronization mechanism to resolve
data dependencies between processes or accesses to shared
resources.

The lack of a synchronization mechanism leaves it to pro-
cesses what should be done if a dependency between the
execution of temporally decoupled processes is detected. In
effect this means that it either cannot be guaranteed that
data exchanged between processes is consistent or all involved
processes have to synchronize their local time. If, for instance,
shared memory is used, processes should synchronize before
every memory access. Otherwise, they might read old data
or newly written data can be overwritten by an earlier write
from another process which is scheduled afterwards. In the
worst case, excessive synchronization will degrade the TLM-LT
simulation performance to the level of TLM-AT. On the other
hand, exchanging inconsistent data between processes might not
be an option if the functional or non-functional properties of the
simulated software components depend on the order in which
transactions are executed. If for instance an instruction or data
cache is simulated, the order of accesses can determine whether
an access is cache hit or cache miss. While data dependencies
in the executed code usually require a synchronization for the
functional part of the simulation, this does not hold for non-
functional properties like an increased execution time because
of a cache miss or due to task preemption. If the simulation
of software components is carried out at the source level using
instrumented versions of the original source code [7], the simu-
lation of functional and non-functional properties can be clearly
separated. In this case, synchronizing at each cache access for

(a) Standard SystemC Simulation (b) Temporal Decoupling

Fig. 1: Synchronization Frequency

example incurs an unacceptable performance penalty, but the
accesses must be synchronized in order to detect conflicting
accesses of concurrent software tasks. Similar problems occur
if the execution of software components is controlled using
a simulated OS scheduler or if tasks can be suspended by
interrupts at arbitrary points in time: the non-functional property
to be evaluated (i.e. execution time and deadline violations)
does not necessarily depend on the functional simulation, yet a
precise synchronization of competing tasks is necessary to get
precise results.

III. ACCESS SYNCHRONIZATION OF SHARED RESOURCES

This section describes a synchronization mechanism for
TLM-LT which reduces the synchronization overhead necessary
to model shared resources. In order to speed up simulation,
transactions are completed without enforcing synchronization,
but a central instance keeps track of all transactions which are
potentially influenced by other processes which have not yet
synchronized their local time. After all processes have reached
the maximal local time offset or an explicit synchronization
point, conflicting transactions are arbitrated and execution times
can be revised with a posteriori knowledge. These retroactive
adjustments are carried out in a way which is completely
transparent to the involved processes. In effect, this approach
achieves a precise synchronization of transactions despite the
use of temporal decoupling and without any task switching
overhead in the SystemC kernel.

A. The Quantum Giver for TLM-2.0

To allow a precise synchronization of conflicting transactions
in a temporally decoupled simulation, the Quantum Giver
synchronization approach is presented. By adding an additional
layer of abstraction, it is possible to hide the synchronization
mechanisms from the involved SystemC processes and hence
reduce the number of context switches during simulation. The
Quantum Keeper defined in the SystemC TLM-2.0 standard
implementation hides the abstraction of temporal decoupling
by simply providing interfaces to “consume” simulation time to
the processes using it. Calling wait and hence synchronization
with the other SystemC processes occurs implicitly if the local
time offset reaches the global time quantum.

The proposed Quantum Giver generalizes the concept of the
Quantum Keeper by providing means to consider the effect of
conflicting transactions during the synchronization process. In
effect, the synchronization mechanism proceeds in rounds which
contain several phases. In the first phase, the simulation phase,
processes are simulated using temporal decoupling. All transac-
tions issued by an initiator are completed immediately, meaning
without synchronizing with other processes. After all initiators
have reached the maximal local time offset or a point in time
where synchronization was explicitly demanded by one of the



processes, the synchronization phase is executed. In this phase,
all target components order the transactions they have received
in the simulation phase and detect any changes in the previously
predicted time for transactions due to conflicts. These changes
are then broadcasted to all other target components, possibly
triggering further changes. This procedure is performed until all
components have reached a stable state. If the local time offset
of an initiator component has changed because of interfering
transactions detected in the synchronization phase, this is not
signaled to the component itself, but to the Quantum Giver. The
Quantum Giver is responsible for adjusting the local time offset
of the component for the next round in the scheduling phase.
This means that an initiator can get a smaller time slice in the
next round if one of its transactions was delayed, or a bigger
slice if a transaction was accelerated. Compared to TLM-LT,
the proposed method requires no additional context switches to
perform these adjustments, i.e. there is only one context switch
per process in each round.

B. Synchronization Protocol

One round of the synchronization mechanism is depicted
in Fig. 2, which will be explained in the following. One
prerequisite not explicitly stated is that all initiators and all
target components register with the Quantum Giver during
elaboration of the SystemC virtual prototype.

1) After SystemC elaboration, the synchronization mecha-
nism starts with its first simulation phase. In this phase,
all processes are scheduled using the standard SystemC
scheduler. This means that the order in which processes
are executed is arbitrary. To control the order of trans-
actions without explicit synchronization using the Sys-
temC kernel, the target components execute an incoming
transaction under the optimistic assumption that no other
transaction will interfere with its outcome. To allow an
eventual correction, transactions are also stored in an
internal list. After the local time offset of an initiator has
reached the global quantum, it notifies the Quantum Giver
using a simple method call (i.e. without overhead in the
simulation kernel) and yields control to another process
by waiting for a SystemC event which will be generated
by the Quantum Giver. If the Quantum Giver has received
this notification from all initiator components, the simu-
lation phase has been completed and the synchronization
phase can be started.

2) To resolve conflicting accesses and inter-component ef-
fects, the Quantum Giver orders all targets to sort their
internal transaction list according to the time stamps of the
transactions in the synchronization phase. If overlapping
transactions are detected, the target component is respon-
sible for arbitrating this conflict. As a consequence of this
arbitration, the time it takes to complete a transaction can
be different from the time estimated during the simulation
phase. To revise incorrect predictions, a target component
which detects a change in the duration of a transaction
must notify all other targets about this change. This
information is then used to update the time stamps of
all transactions from the same initiator. In order to avoid
degrading simulation performance, the respective changes
are accumulated over the complete simulation phase and
only their effect on the next round of the protocol are com-
municated among components. As the synchronization
phase is entered as soon as the last initiator component
has depleted its time slice using standard method calls

Fig. 2: Phases of Synchronization Protocol

and without task switches in the simulation kernel, it
consumes no simulation time. If no conflicts are detected,
the target components will only sort the requests they have
received and execute them in the correct order, so the
induced overhead depends mainly on the data structure
used for storing and sorting transactions.

3) When all transactions have been processed successfully,
the Quantum Giver enters the scheduling phase. Depend-
ing on the actual time required for the transactions of an
initiator during the simulation phase, the Quantum Giver
creates SystemC events to wake up the respective process.
This event will only be created if the process has not
already depleted its time slice for the next round. So if
an initiator consumes more execution time from the next
round than the global quantum, its wake up event will
not be scheduled. Hence no additional task switches are
created.

The timing correction performed by the Quantum Giver is
illustrated in Fig. 2: during the simulation phase, the simulation
process of Initiator 1 is scheduled before the process of Ini-
tiator 2; the resource access of Initiator 1 is simulated before
those of Initiator 2 and both initiator processes use up the same
amount of simulation time. As Initiator 1 is assumed to have a
lower priority than Initiator 2, the access of Initiator 1 would
have been delayed by the target components in a lock-step simu-
lation. In a temporally decoupled simulation, this is not always
possible as concurrent accesses with higher priority could be
simulated after the current process has consumed its complete
time slice. Using the Quantum Giver approach, conflicts from
concurrent accesses are detected during the synchronization
phase and the transactions of the respective process are delayed.
In the given example, this leads to an increase of the local time
for Initiator 1, since the transactions require more time than
originally predicted in the simulation phase. As simulation time
from the next round has been used due to this wrong prediction,
Initiator 1 must use less simulation time than Initiator 2 in
the next round of the synchronization protocol. The Quantum
Giver performs the required correction by adjusting the local
simulation time for the simulation process of Initiator 1 and by
delaying the activation event of the respective process. These
adjustments are performed transparently for the initiator process
and there is no additional overhead as the processes simply wait
for the event scheduled by the Quantum Giver. For this reason,
existing simulation code can be very easily modified to use
the Quantum Giver approach. All it requires is replacing calls
to wait with calls to the respective method of the Quantum
Giver.



IV. SOURCE-LEVEL SIMULATION OF MACHINE CODE

In order to use the presented synchronization approach, soft-
ware components must be augmented with information about
their timing behavior. To estimate the timing behavior of a
software component using native execution on a simulation host,
a precise mapping between its source code and the compiled
binary code for the target architecture is necessary. Using this
mapping, properties of the target machine code can be annotated
to the source code before it is used in the simulation model.
If an optimizing compiler is used, relating binary code and
source-level statements can be very complicated, as the compiler
might change the program structure significantly. The compiler-
generated debug information, which is used to relate binary code
and source code for source-level debugging, cannot be trusted
if optimizations are enabled, as the generated information
might be incomplete, ambiguous or incorrect. To overcome this
problem, this section describes a method for analyzing debug
information to match binary code and source code at points
that are important for program control flow. Combining this
mapping with analyses of binary control flow and low-level
execution times allows source-level performance estimation
despite compiler optimizations. The complete analysis flow is
depicted in Fig. 3.

A. Relating Source Code and Binary Control Flow

Save an exhaustive analysis of program semantics, compiler-
generated debug information is the only way to relate source
code and machine instructions of a program without modifying
the compiler used for creating the machine code. If compiler
optimizations are used, the line information stored in the debug
information might not be accurate. This means that the order of
executed machine instructions is different from the order of the
source code statements from which the instructions were created
according to line information. To allow a precise source-level
simulation of binary code execution, these inconsistencies in the
compiler-generated debug information must be eliminated.

A precise relation between source code and binary code can
be established based on control flow information from both
levels. A method for achieving this is sketched in the analysis
steps 1–5 of Fig. 3. Debug information often contains several
references to source code lines for one basic block. Each of
these entries describes a potential relation between a binary-
level basic block and a source-level basic block (Fig. 3, step 3).
From these potential relations, an accurate mapping between
binary-level and source-level basic blocks is determined by
selecting at most one source-level equivalent for every binary-
level basic block. This is done in a way that the order of
execution between basic blocks in the source-level and binary-
level control flow graph is preserved. Hence if one binary-
level basic block is always executed before a second one, the
same relation holds for their respective source-level entries in
the mapping determined by step 5 in Fig. 3. Based on the
reconstructed relation between basic blocks in the binary code
and source code lines, instrumentation code can be added to the
source for a source-level simulation of binary attributes (Fig. 3,
step 8).

B. Simulating Binary Control Flow

Relating the binary-level control flow graph and the respective
source-level control flow graph without ambiguity is not always
possible statically, as there is not always a unique source code
position for every basic block in the binary code. This can
happen for example due to function inlining, as inlining creates

Fig. 3: Analysis and Instrumentation Work Flow

several copies of identical basic blocks all referencing the same
source location. Yet, if the predecessors of the respective basic
blocks are known, it is usually clear which instance in the binary
code would be executed during an actual execution.

Dynamic information can be used to resolve the remaining
ambiguity in the mapping between source code and binary code
which is used for the annotation of timing properties. Based
on the corrected line information (Fig. 3, step 5), the binary-
level control flow is analyzed to create code for performing a
dynamic reconstruction of executed basic blocks (Fig. 3, step 9).
For source code locations which are referenced by multiple
binary basic blocks, the generated code decides which basic
block would be executed during an execution of the actual
target binary. Based on previously executed basic blocks, the
remaining ambiguity can be resolved and the correct annotations
for every basic block can be applied during native simulation
of the instrumented source code.

Performing this dynamic path reconstruction also makes the
approach more robust against incomplete line information. If
some binary-level basic blocks cannot be mapped to a source
code line, the control flow can still be reconstructed precisely us-
ing the information from surrounding basic blocks. Dynamically
reconstructing binary control flow has the additional advantage
that the transition between basic blocks can be annotated with
an execution time, not just the basic blocks themselves.

Hence the effects of the processor pipeline, i.e. the perfor-
mance gain from an overlapping execution of basic blocks or
the performance penalty of pipeline flushes induced by branch
instructions, can already be considered during the generation
of the annotated source code. Thus dynamic effects can be
simulated without the need for additional computations at run-
time. To determine the execution time of machine instructions,



Fig. 4: Evaluation of Simulation Performance

the commercial tool AbsInt aiT [9] was integrated into the
presented analysis flow to produce a binary-level control flow
graph annotated with execution times (Fig. 3, step 7). This
approach allows the annotation of arbitrary properties to the
original source since all machine instructions from the original
binary can be accessed in the graph. For the experimental
evaluation, instruction addresses were extracted to perform a
simulation of the instruction cache. The approach can easily be
extended for other non-functional properties e.g. power analysis
using instruction-dependent or instruction-sequence-dependent
power models [10].

V. PRELIMINARY EXPERIMENTAL RESULTS

The presented synchronization method was evaluated using a
synthetic example platform and parts of a traffic sign recognition
system. The simulated multi-core systems consisted of two
and four ARM7TDMI cores. The cores were sharing 1kB
of 2-way set associative instruction cache using a line size
of 16 bytes and a PLRU replacement policy. All cores were
running an instance of a circle recognition algorithm. Timing
annotations were added to the source code of the program using
the work flow described in the previous section. Additionally,
the memory accesses for instruction fetches were extracted
from the binary code and annotated as well. Instances of the
annotated software components were combined with a cache
model to form the model of the simulated platform. The cache
model implemented various methods to synchronize the order
of the memory requests created by the software components to
determine whether an access is a cache hit or a cache miss.

To determine the synchronization overhead for cache simu-
lation, three synchronization approaches were tested:

• No synchronization, meaning each access to the instruction
cache was executed directly during TLM-LT simulation.

• Optimistic synchronization using the Quantum Giver ap-
proach.

• Explicit synchronization using calls to wait before each
cache access which corresponds to TLM-AT.

For the test runs using the TLM-LT and Quantum Giver
methods, the global time quantum was varied from 10 µs to
10 ms. The outcome of the performance evaluation in Fig. 4
depicts the simulation runtime in seconds. Results using explicit
synchronization are labeled AT, those for temporal decoupled
simulation without synchronization are labeled LT and the
results for the Quantum Giver approach are labeled QG. The
labels of the latter two also include the value of the global
quantum used for simulation in round brackets.

Fig. 5: Cache Simulation Accuracy

For an unsynchronized TLM-LT simulation, the number of
predicted cache misses doubles for each additional simulated
processor core. The reason for this is that in the evaluated
system, all cores access the same memory regions as they
execute the same program code. During temporally decoupled
simulation, the first scheduled thread simulating one of the cores
loads data into the cache and also evicts it again before yielding
control. The thread simulating the next core will then do the
same, even if it accesses the same data as the first thread. Hence
the simulation does not respect the effects which would occur
in the real system. Similar effects would occur if all cores were
executing different programs.

The estimates of the synchronized simulations report fewer
cache misses as they represent the interaction of the cores
correctly. If one instance of the algorithm changes the cache
content and an instance running on another core accesses the
same code region shortly afterwards, the simulation correctly
detects a cache hit. The estimates provided by the Quantum
Giver synchronization approach are very close to the estimates
reported by lock-step simulation as long as the global quantum
is not too large. Despite the additional overhead for ordering
the transactions, the simulation performance is improved by
about 25%. The optimistic synchronization approach is not com-
pletely accurate, as not all cache accesses are strictly ordered.
For performance reasons, the delays created by conflicting
transactions are accumulated for one complete round of the
synchronization protocol. Hence if the values chosen for the
global quantum are too large, the simulation results become
less accurate. Nevertheless, it is more accurate than simulation
without synchronization and considerably faster than lock-step
simulation. The overhead of the optimistic synchronization
approach can potentially be improved, as the implementation
of the conflict resolution algorithm is not optimized yet. For
example, cache accesses are stored in a simple list data structure
which is traversed during conflict resolution.

Although the system design used for the experiments was not
very complex, the results are already very encouraging. In larger
systems and particularly for shared resources which are accessed
by several other components, the advantage of the optimistic
synchronisation approach can be even bigger as a larger number
of components usually means more task switching overhead
during lock-step simulation. Since the Quantum Giver synchro-
nization approach allows a precise resolution of resource access
conflicts, without the need to perform a lock-step simulation, the
performance of larger systems can be analyzed accurately.



VI. RELATED WORK

Several methods for dynamic performance evaluation using
source code, enriched with timing annotations obtained from
binary code, can be found in the literature. Earlier approaches
do not support compiler optimizations [11]. More recently, the
use of compiler optimizations is supported through the use of
modified compiler tool chains [12][13]. A dynamic correction
of statically determined execution times using a non-functional
cache simulation was originally proposed by Schnerr et al.
in [7]. Very similar approaches were presented by Lin et al.
in [14] and Castillo et al. in [15], while the latter also describes
a cache simulation specifically developed for non-functional
simulation which increases simulation performance. Transaction
level models of software components are used in [16] to
simulate memory accesses, but the presented method requires
synchronization before an access is performed. However, none
of these publications provide solutions for an efficient tempo-
rally decoupled simulation of shared caches.

The concept of Result-Oriented Modeling [17] for buses
in transaction level models shares many similarities with the
presented Quantum Giver approach. It also relies on optimistic
estimation of transaction duration and retroactive adjustments in
case of an incorrect prediction. As the focus of the technique is
to make conflict resolution more accurate, the adjustments can
induce additional context switches and hence have a negative
effect on simulation performance. This is not the case for the
Quantum Giver approach. Result-oriented modeling has also
been successfully used to simulate preemptive scheduling in
real-time operating systems [18].

Reducing the number of simulated transactions by modeling
sequences of similar transactions as a single transaction is
used in [19] to increase simulation performance of TLM-2.0
models. Conflict resolution occurs through a central control
instance called Resource Model, which is very similar to the
Quantum Giver. The temporal order of transactions is not
resolved precisely, which is however necessary to perform an
accurate cache simulation.

VII. LIMITATIONS AND FURTHER IMPROVEMENTS

While the presented synchronization approach can improve
simulation performance for some applications, it is not equally
well-suited for all abstraction levels. In order to perform trans-
actions optimistically, it is assumed that data accessed by the
transaction is provided through the native execution on the
simulation host. This assumption often holds for the simulation
of non-functional properties, for example if a cache simulation
is only performed to determine cache hits and misses. On the
other hand, if the actual values stored in the cache are of interest
for the simulation, e.g. since an instruction set simulator is
used, explicit synchronization remains mandatory to avoid read-
before-write conflicts.

VIII. CONCLUSION

This work presented a framework for fast and accurate
performance analysis of software components using SystemC
TLM-2.0. The Quantum Giver synchronization approach has
been introduced to precisely model execution time influencing
resource access conflicts of concurrent software tasks. Simula-
tion of software timing properties is achieved by annotating low-
level properties to the source code of a task before compiling
it for the simulation host. These annotations are obtained from
binaries for the simulated target architecture and can include

many non-functional properties like timing, memory accesses
or power consumption.

Experimental results have shown that the presented synchro-
nization approach is almost as accurate as lock-step simulation,
but significantly faster. Component interaction must be modeled
precisely to obtain accurate performance estimates in multi-
core systems, so the presented method is particularly useful for
software performance analysis in these systems. Nonetheless,
it can also be used for access synchronization at arbitrary
shared resources like buses, memory hierarchies, peripherals and
software scheduling during system-level performance analysis
of complex embedded systems.

ACKNOWLEDGMENT

This work has been partially supported by the BMBF project
SANITAS under grant 01M3088C and by the ITEA/BMBF
project VERDE under grant 01|S09012A.

REFERENCES

[1] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse, “System Architecture
Evaluation Using Modular Performance Analysis: a Case Study,” Int. J.
Softw. Tools Technol. Transf., vol. 8, no. 6, pp. 649–667, 2006.

[2] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, F. Mueller, I. Puaut, P. Puschner,
J. Staschulat, and P. Stenström, “The Worst-Case Execution-Time Problem
— Overview of the Methods and Survey of Tools,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 7, no. 3, pp. 1–53, 2008.

[3] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst, “Sys-
tem Level Performance Analysis - the SymTA/S Approach,” Computers
and Digital Techniques, IEE Proceedings, vol. 152, no. 2, pp. 148–166,
2005.

[4] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and
C. Ferdinand, “Memory Hierarchies, Pipelines, and Buses for Future Ar-
chitectures in Time-Critical Embedded Systems,” Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, vol. 28, no. 7,
pp. 966 –978, 2009.

[5] “Open SystemC Initiative (OSCI),” http://www.systemc.org.
[6] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi, and M. Poncino,

“SystemC Cosimulation and Emulation of Multiprocessor SoC Designs,”
Computer, vol. 36, no. 4, pp. 53 – 59, 2003.

[7] J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel, “High-
Performance Timing Simulation of Embedded Software,” 45th Design
Automation Conference (DAC 2008).

[8] “Open SystemC Initiative TLM-2.0 Language Reference Manual,”
http://www.systemc.org/downloads/.

[9] “AbsInt aiT WCET Analyzer,” http://www.absint.com/ait/.
[10] B. Sander, J. Schnerr, and O. Bringmann, “ESL Power Analysis of

Embedded Processors for Temperature and Reliability Estimations,” in
CODES+ISSS ’09: Proceedings of the 7th IEEE/ACM International Con-
ference on Hardware/Software Codesign and System Synthesis.

[11] T. Meyerowitz, A. Sangiovanni-Vincentelli, M. Sauermann, and D. Lan-
gen, “Source-Level Timing Annotation and Simulation for a Hetero-
geneous Multiprocessor,” DATE ’08: Proceedings of the conference on
Design, automation and test in Europe.

[12] A. Bouchhima, P. Gerin, and F. Petrot, “Automatic Instrumentation of
Embedded Software for High Level Hardware/Software Co-Simulation,”
14th Asia and South Pacific Design Automation Conference (ASP-DAC
2009).

[13] Z. Wang and A. Herkersdorf, “An Efficient Approach for System-Level
Timing Simulation of Compiler-Optimized Embedded Software,” 46th
Design Automation Conference (DAC 2009).

[14] K.-L. Lin, C.-K. Lo, and R.-S. Tsay, “Source-Level Timing Annotation
for Fast and Accurate TLM Computation Model Generation,” 15th Asia
and South Pacific Design Automation Conference (ASP-DAC 2010).

[15] J. Castillo, H. Posadas, E. Villar, and M. Martinez, “Fast Instruction Cache
Modeling for Approximate Timed HW/SW Co-Simulation,” in GLSVLSI
’10: Proceedings of the 20th Great lakes symposium on VLSI.

[16] E. Cheung, H. Hsieh, and F. Balarin, “Memory Subsystem Simulation in
Software TLM/T Models,” 14th Asia and South Pacific Design Automation
Conference (ASP-DAC 2009).

[17] G. Schirner and R. Dömer, “Result-Oriented Modeling - A Novel Tech-
nique for Fast and Accurate TLM,” IEEE Transactions on CAD of
Integrated Circuits and Systems, 2007.

[18] G. Schirner and R. Dömer, “Introducing Preemptive Scheduling in
Abstract RTOS Models using Result Oriented Modeling,” in Design,
Automation and Test in Europe (DATE 2008).

[19] W. Ecker, V. Esen, R. Schwencker, T. Steininger, and M. Velten, “TLM+
Modeling of Embedded HW/SW Systems,” in Design, Automation and
Test in Europe (DATE 2010).


