
Scalable Hybrid Verification for Embedded Software
Jörg Behrend, Djones Lettnin, Patrick Heckeler,

Jürgen Ruf, Thomas Kropf and Wolfgang Rosenstiel
Wilhelm-Schickard-Institute for Computer Science

Department of Computer Engineering
University of Tübingen

Sand 13
72076 Tübingen, Germany

E-mail: {behrend,lettnin,heckeler,ruf,kropf,rosenstiel}@informatik.uni-tuebingen.de

Abstract—The verification of embedded software has become
an important subject over the last years. However, neither stand-
alone verification approaches, like simulation-based or formal
verification, nor state-of-the-art hybrid/semiformal verification
approaches are able to verify large and complex embedded
software with hardware dependencies. This work presents a new
scalable and extendable hybrid verification approach for the
verification of temporal properties in embedded software with
hardware dependencies using for the first time a new mixed
bottom-up/top-down algorithm. Therefore, new algorithms and
methodologies like static parameter assignment and counter-
example guided simulation are proposed in order to combine
simulation-based and formal verification in a new way. We have
successfully applied this hybrid approach to embedded software
applications: Motorola’s Powerstone Benchmark suite and a
complex industrial embedded automotive software. The results
show that our approach scales better than stand-alone software
model checkers to reach deep state spaces. The whole approach
is best suited for fast falsification.

I. INTRODUCTION

Embedded software (ESW) is omnipresent in our daily life.
It is responsible for controlling car functions, telecommuni-
cation products, electrical appliances, robots, medical devices
and aircrafts to mention only a few examples. It plays a key
role in overcoming the time-to-market pressure and providing
new functionalities, like reduction of fuel emissions, improve-
ment of security and comfort. Therefore, a high number of
users are dependent on the services provided by embedded
software.

The increasing processing power, the decreasing power
consumption, the decrease in prices and the structural size
minimization of microcontrollers and microprocessors make
it possible to move more functionalities from hardware to
embedded software which ends up in million lines of code
and a fast increasing complexity [1].

These functionalities are mostly implemented using the
C language at different levels of implementation. Software
applications, which have in most cases no direct access to
the hardware (HW), provide high level operations to the
user. On the other hand, drivers or firmwares, which are
mostly hardware-dependent (low level) software, have direct
access to the hardware based on pointers, interrupts or inline

assembly [2]. Most of the fatal errors occur in hardware-
dependent software (e.g., low level drivers) and not in ap-
plication software. Some examples of severe coding errors
at low level drivers are finite-state machine errors, timing
errors, stack/memory overflow errors and inconsistence errors
(e.g., in non-volatile memory) [3]. Therefore, the verification
of hardware-dependent embedded software is of fundamental
importance.

The most commonly used approaches to verify embedded
software (ESW) are based on simulation or formal verification
(FV) approaches. Testing, co-debugging and/or co-simulation
techniques result in a tremendous effort to create test vec-
tors. Furthermore, critical corner case scenarios might remain
unnoticed. Assertion-based verification (ABV) methodology
captures a design’s intended behavior in temporal properties
and monitors the properties during system simulation. This
methodology has been successfully used at lower levels of
hardware designs, which are not suitable for software. ESW
has no timing reference and contains more complex data
structures (e.g., integers, pointers) requiring a new mechanism
to apply an assertion-based methodology. In order to verify
temporal properties in ESW, formal verification techniques
are efficient, but only up to medium sized software systems.
For more complex software designs, formal verification using
model checking often suffers from the state space explosion
problem. Therefore, abstraction techniques (e.g., predicate
abstraction [4]) are applied to take the load of the back-end
model checker.

Semiformal or hybrid approaches have been proposed many
times before with only limited success. Therefore, this paper
presents a new scalable hybrid verification approach using
for the first time a new mixed bottom-up/top-down algo-
rithm, which combines assertion-based verification and formal
verification based on state-of-the-art software model check-
ers (SMCs). It provides new algorithms and methodologies
for hybrid verification, that is static parameter assignment
and counterexample guided simulation. This hybrid approach
allows to reach deep state spaces (compared to software
model checkers) and improves the state space coverage relative
to a simulation-based verification approach. Our approach
employs the SystemC Temporal Checker (SCTC) [5] and dif-

978-3-9810801-7-9/DATE11/ c©2011 EDAA

ferent software model checkers (e.g., CBMC [6] and ESBMC
[7]). During the bottom-up/formal exploration phase software
model checkers try to verify individual modules or functions
until a time bound or memory limit has been reached. SCTC
is used to verify temporal properties in ESW during the top-
down/hybrid phase and it can also be used to initialize/pre-
define variables and other structures of the function under test
in order to reduce the state space (formal phase). Informations
from counterexamples are used to guide the simulation (learn-
ing process). For instance, the randomization of input variables
in our testbench is constrained to generate more efficient test
vectors. Therefore, both techniques complement each other in
order to enable the verification of large industrial hardware-
dependent software. The whole approach is intended for early
bug detection using fast debugging iterations. Therefore, it is
best suited for fast falsification.

The paper is organized as follows. Section II summarizes
the related work. Section III describes the verification method-
ology. Section IV presents the technical details. Section V
summarizes our case studies and presents the results. Section
VI concludes this paper and describes the future work.

II. RELATED WORK

BLAST [8] and SATABS [9] are formal verification tools for
ANSI-C programs. Both programs use predicate abstraction
mechanisms to enhance the verification process and support
satisfiability modulo theory solver (SMT) [10] as verification
back-end. Due to the scalability of recent SMT-solvers, more
and more software model checkers are using them as back-
ends. C bounded model checking (CBMC) [6] has proven
to be a successful approach for automatic software analysis.
CBMC is a bounded model checker for ANSI-C developed
by Kroening et al. The key idea is to build a propositional
formula whose models correspond to program traces (with
bounded length) that violate some given property and then
use state-of-the-art SAT solvers to check the formula for
satisfiability. Armando et al. [11] implemented SMT support
into CBMC. Kroening et al. [6] have also enhanced CBMC
to support different SMT solvers. Codeiro et al. [7] have
implemented ESBMC based on the front-end of CBMC and a
new back-end based on SMT. Lettnin et al. [12] have presented
an assertion-based verification approach to verify temporal
properties for hardware independent software. However, in
embedded software with hardware dependencies, simulation
has to consider more test cases for the hardware-software
interface variables requiring higher efforts in the generation
of test cases (e.g., pointers that enable direct accesses to
the hardware, which are commonly used to set the hardware
registers). This results in even more coverage limitations.
Semiformal/hybrid verification approaches have been applied
successfully to hardware verification [13], [14]. However, the
application of a current semiformal hardware model checker
to verify embedded software is not viable for large industrial
programs [15]. In the area of embedded software using C
language, Lettnin et al. [16] proposed a semiformal veri-
fication approach based on simulation and symbolic model

checking. However, the symbolic model checker (SymC) [17]
was the bottleneck for the scalability of the formal verification.
The model checker SymC was originally developed for the
verification of hardware designs. Cordeiro et al. [18] have
published a semiformal approach to verify medical software.
But they have scalability problems caused by the used model
checker. The aforementioned related work have their pros and
cons. However, they still have scalability limitations in the
verification of complex hardware-dependent software.

A. Contributions

As shown in related work it is hard or sometimes even im-
possible to select the suitable approach for the verification of
ESW (compatible with MISRA [19]). To overcome these cons
we take advantage of the pros of the related work and combine
different state-of-the-art formal-based and simulation-based
approaches to a new hybrid verification approach. This paper
presents for the first time a new mixed bottom-up/top-down
algorithm. The main contributions are:

• Hybridization:
– The simulation supports the formal verification e.g.,

static parameter assignment to shrink the state space.
– Formal SMCs support the simulation process e.g.,

counterexample guided simulation.
• Automated Testbench:

– Use of a simulation approach with SystemC model
derivation from ESW. No abstraction is used. There-
fore, the derived model is as precise as the original
C program.

– An automatically generated testbench with random-
ized input variables is included.

• Scalability:
– Splitting of the verification task into independent

subtasks.
– Distribution of the verification process among differ-

ent computational nodes (e.g., single multicore node,
cluster).

• Expandability:
– Adaptable to different software model checkers.

III. VERIFICATION METHODOLOGY

The verification approach consists of three phases: prepro-
cessing, bottom-up and top-down. Additionally, an orchestra-
tor coordinates the aforementioned phases and the interaction
between simulation and formal verification. We start a verifi-
cation run with preprocessing the C code. As we have seen in
the related work, the state-of-the-art software model checkers
suffer from the embedded software complexity. In order to
overcome this complexity, we developed a mixed bottom-
up/top-down approach. Fig. 1 shows the application flow as a
whole. Details about the single steps are given below.

A. Software Preprocessing

The C code is preprocessed (Fig. 1, lines 3-12). This process
consists of following parts:

1) Conversion of the C program into three-address code (3-
AC) and merge the C source code into one single file
using CIL [20]. 3-AC is normally used by compilers in
order to support code transformations and it is easier to
handle compared to the degrees of freedom of a user
implementation (Fig. 1, lines 5-6).

2) A SystemC model is derived from the embedded soft-
ware. No abstraction is used and therefore, the derived
model is as precise as the original C program. A test-
bench is automatically generated and all input variables
are randomized with constrains (Fig. 1, line 7-8).

3) A function call graph (FCG) [21] is generated (see Fig.
2 and Fig. 1, lines 9-10). We use this FCG as input to
guide our bottom-up verification.

4) We include the user-defined properties into the C code.
Therefore, we translate the LTL-style properties into
assert/assume statements based on [22] (Fig. 1, lines 11-
12).

B. Bottom-up Phase/Formal Exploration

After preprocessing the C code we start the bottom-up
verification (Fig. 1, lines 14-20). We verify all functions of the
FCG beginning with the leaves using state-of-the-art software
model checkers with build-in properties and the user-defined
properties specified in LTL. We distribute the computation
controlled by the orchestrator of every function to a different
verification instance of the supported software model checkers
(SMC) (Fig. 3). The default distribution heuristic is a “try-all”
approach, which means that all functions are checked with
all supported SMCs. Furthermore, the user can orchestrate the
distribution of the functions manually and choose between the
different SMCs. If it is not possible to verify all functions of
the FCG using the SMCs (bottom-up/exploration), we switch
to the hybrid top-down phase. Therefore, a marked FCG is
returned including the status of the verification of all functions.

C. Top-down Phase/Hybrid Verification

The hybrid top-down phase (Fig. 1, lines 26-41) starts with
the analysis of the marked FCG (mFCG). All functions, that
were not yet verified due to failed verification (e.g., time out
(TO) or out of memory (MO)) are marked as point of interest
(POI) (Fig. 1, lines 21-25).

We use a simulation approach based on SystemC. Therefore,
we derive a SystemC model from the embedded software
and apply SCTC, which supports specification of user defined
properties in LTL [23]. The derived model is automatically
generated using no abstractions. An automatically generated
testbench is included with all input variables constrained.
For refinement of the testbench we monitor the behavior
using coverage metrics. The derived model consists of one
SystemC class (ESW_SC) mapped to a corresponding C pro-
gram. The main function in C is converted into a SystemC
process (SC_THREAD). Since software itself does not have
any clock information, we propose a new timing reference
using a program counter event (esw_pc_event) [12]. The
automatically generated testbench includes all input variables

1Verifyr(Cprog,prop)
2{
3preProcess(Cprog)
4{
5cil (Cprog)
6return preC
7c2sctc (Cprog)
8return simC
9genFCG(preC)
10return FCG
11ltl2Assert(preC, prop) //manual task
12return(propC)
13}
14startBOTTOM−UP(propC, FCG)
15{
16while functionsNotChecked
17distribute()
18checkFunctions()
19return V erifiedFunctions
20}
21markFCG(V erifiedFunctions)
22{
23visualize()
24return mFCG;
25}
26startTOP−DOWN(preC, simC, prop, mFCG)
27{
28while time < timeBound
29simulate(simC, prop, mFCG)
30extractPOI(mFCG)
31return POI
32if actualState == POI then
33saveState()
34staticParameterAssignment()
35distribute()
36checkFunctions()
37if counterexample == TRUE then
38guideSimulation()
39update(mFCG)
40visualize()
41}
42}

Fig. 1. Algorithm

an it is possible to choose between different randomization
strategies like constrained randomization and different random
distributions, supported by the SystemC Verification Library
(SCV) [24].

The orchestrator monitors the simulation process-properties
and variables-during the hybrid phase based on SystemC
Temporal Checker (SCTC) [5] in order to start a new formal
verification process at every POI (Fig. 1, line 32). We use the
monitored information to initialize variables (interaction with
formal) to statically assign parameters (Fig. 1, line 34) and to

main

F1

F3 F4 F5

F2

F6(1) (1) (1) (1)

(2) (2)

(3)

Fig. 2. Hybrid verification approach

Node 01

Cluster

main

F1

F3 F4 F5

F2

F6

Node 04

Node 02

Node 05

Node 03

Node 06

Node 07 Node n...

Fig. 3. Distribution of computation

create a temporary version of the source code of the function
under test (FUT). These functions under test are distributed
and checked with the formal SMCs (Fig. 1, lines 35-36). Static
parameter assignment will lead to different access points for
the software model checkers and it will help shrinking the
state space of the function. Therefore, the formal verification
benefits from the simulation.

If a counterexample is reported, this information is used to
guide the simulation (learning process). For instance, the ran-
domization of input variables in our testbench is constrained
in order to generate more efficient test vectors (Fig. 1, lines
37-38). To present the counterexample to the user we save the
global variable assignment of the used simulation run (“seed”)
to trace back from the counterexample given by the SMC to
the entry point of the simulation run. Then we translate the
CIL generated information back to the original C code. The
checked properties are the same as in bottom-up phase.

IV. TECHNICAL DETAILS

The main task of this new approach is to provide a scalable
and extendable hybrid verification service. We have imple-
mented our new approach as a verification platform called
Verifyr which can verify embedded software in a distributed
and hybrid way. To make use of the advantage of several CPU
cores on more than one computing node, we have to split

the whole verification process into multiple verification jobs.
Furthermore, Verifyr is platform independent and extendable
by using a standard communication protocol to exchange
information. The Verifyr framework provides a service to
verify a given source code written in C language. It consists
of a collection of formal verification tools such as CBMC
and ESBMC and simulation tools (e.g., SCTC) and a com-
munication gateway in order to invoke verification commands
and to exchange status information of the hybrid verification
process. These commands are passed to the orchestrator using
the simple object access protocol (SOAP) [25] over HTTP
respectively HTTPS. The whole set of the SOAP calls are
stored in the web service description language (WSDL) file
for the verification service. The client application passes the
SOAP document including the name of the command and its
parameters such as function name, verification information and
authorization credentials. For refinement of the testbench we
monitor the behavior using code coverage provided by Gcov
[26].

V. RESULTS AND DISCUSSION

A. Testing environment

We performed two sets of experiments based on two dif-
ferent case studies (cf., Sections V-B and V-C) conducted on
a cluster with one Intel R© Core

TM
2 Quad CPU Q9650 @

3.00 GHz and two Intel R© Core
TM

2 Duo CPU E8400 @
3.00 GHz all with 8GB RAM and Linux OS. The first set
of experiments represents the results using the state-of-the-
art formal verification tools CBMC [6] and ESBMC [7]. The
second set of experiments shows the verification results of our
new scalable and extendable hybrid verification methodology
(Verifyr).

B. Motorola Powerstone Benchmark Suite

For our first case study we used Motorola’s Powerstone
Benchmark Suite [27] and tried to verify the build-in prop-
erties (e.g., division-by-zero) from CBMC and ESBMC. We
evaluated CBMC [6] with SAT and SMT back-ends versus
ESBMC [7]. Overall ESBMC shows the best results except for
jpeg.c, where CBMC (SAT) outperforms ESBMC. Therefore,
we decided to support more than one SMC. As a next step we
focused our interests on Modem Encoding/Decoding (v42.c).
In total, the whole code comprises approximately 2,700 lines
of C code and 12 functions. Again, we tried to verify the
build-in properties (e.g., division by zero, array out of bounds)
from CBMC and ESBMC. It was not possible to verify the
whole program using one of the above mentioned SMCs with
a unwinding parameter (bound) bigger than 4. Therefore, we
decided to use this example as a case study for our new
approach. The function call graph (FCG) (see Fig. 4) is used
as start point for our bottom-up approach/exploration. For
every function we used a different instance of CBMC or
ESBMC in parallel. It was possible to verify the marked nodes
(see Fig. 4) using the SMCs. For all other nodes we faced
problems, such as memory limit reached or time out exceeded.
Based on this bottom-up analysis, we switched to our top-

decode

add_dict getcodeinit_dict putdata putssearch_dict

encode

checksize_dict getdata

putcode

main

Fig. 4. Function call graph after bottom-up approach for Modem Encod-
ing/Decoding (v42.c). (Marked functions mean successfully verified)

down verification phase triggered by the simulation tool. At
every entry point (POI), SCTC exchanges the actual variable
assignment with the orchestrator, which uses this information
to create temporary versions of the source code of the function
under test with static assigned variables. Table I shows the
comparison between CBMC (SAT), ESBMC and our Verifyr
platform. The used symbols are P (passed), F (failed), MO
(out of memory), TO (time out, 90 minutes) and PH (passed
using hybrid methodology). PH means that it was possible
to verify this function with our hybrid methodology using
simulation to support formal verification with static parameter
assignment. All tested properties were safe. This table shows
that Verifyr presented the same valid results as CBMC (SAT)
and ESBMC, and no MO or TO has occurred. Furthermore,
the table presents the verification time in seconds in order to
reach P, MO or PH results. The time for PH consist of the time
for the simulation runs plus formal verification using static
parameter assignment. We have used 1000 simulation runs.
Overall, we have simulated the whole modem encoding/de-
coding software using our automatically generated testbench
and beyond that we are able to verify 6 out of 12 observed
functions using formal verification and the 6 remaining with
hybrid verification. However, Verifyr outperforms the single
state-of-the-art tools in complex cases where they are not
capable to reach a final verification result.

C. EEPROM emulation software from NEC Electronics

Our second case study is an automotive EEPROM Emu-
lation software from NEC Electronics [28], which emulates
the read and write requests to a non-volatile memory. This
embedded software contains both hardware-independent and
hardware-dependent layers. Therefore, this system is a suitable
automotive industrial application to evaluate the developed
methodologies with respect to both abstraction layers. The
EEPROM emulation software uses a layered approach divided
into two parts: the Data Flash Access layer (DFALib) and the
EEPROM Emulation layer (EEELib). The Data Flash Access
layer is a hardware-dependent software layer that provides an
easy-to-use interface for the FLASH hardware. The EEPROM
Emulation layer is a hardware independent software layer and
provides a set of higher level operations for the application
level. These operations include: Format, Prepare, Read, Write,
Refresh, Startup1 and Startup2. In total, the whole EEPROM
emulation code comprises approximately 8,500 lines of C code
and 81 functions. We extracted from the NEC specification

Function CBMC (SAT) ESBMC Verifyr

result time result time result time

Leaves
putcode P 2s P 2s P 2s
getdata P 2s P 2s P 2s
add dict MO 135s MO 155s PH 535s
init dict MO 152s P 40s P 40s
search dict MO 161s MO 234s PH 535s
putdata P 1s P 1s P 1s
getcode P 1s P 1s P 1s
puts MO 163s MO 134s PH 535s

Parents Level 1
checksize dict TO TO PH 535s
encode MO 354s MO 289s PH 2s
decode P 1s P 1s P 1s

ALL
main MO 351s MO 274s PH 535s

TABLE I
VERIFICATION BOTTOM-UP MODEM ENCODING/DECODING (V42.C)

POWERSTONE

Function CBMC (SAT) ESBMC Verifyr

result time result time result time

EEELib
Eee Leaf01 P 1s P 1s P 1s
Eee Leaf02 P 1s P 1s P 1s

Eee Parent01 MO 231s MO 174s PH 1840s
Eee Parent02 MO 110s MO 119s PH 1840s

DFALib
DFA Leaf01 P 1s P 1s P 1s
DFA Leaf02 MO 109s MO 90s PH 1840s

DFA Parent01 MO 112s MO 92s PH 1840s
DFA Parent02 MO 125s MO 100s PH 1840s

TABLE II
VERIFICATION RESULTS NEC.

manual two property sets (LTL standard). One for EEELib and
one for DFALib. Each property in the EEELib set describes
the basic functionality on each EEELibs operation (i.e., read,
write, etc.). A sample of our LTL properties is as follows:

F (Read → X F (EEE OK || . . .)) (A)

The property represents the calling operations in the EEELib
library (e.g., Read) and several return values (e.g., EEE OK)
that may be received. For CBMC we translated the LTL
properties to assert/assume style properties based on [22].
We have selected for both EEELib and DFALib (hardware-
dependent) two leaf functions and two corresponding parent
functions in relation to the corresponding FCG. We have

renamed the selected functions for convenience. Table I shows
that Verifyr presented the same valid results as CBMC (SAT)
and ESBMC, and no MO or TO has occurred. All tested
properties were safe. Overall, when we look at the results, we
have simulated the whole NEC software using our generated
testbench and beyond that we were able to verify 3 out of 8
observed functions using formal verification and the remaining
using hybrid verification. Verifyr outperforms the state-of-the-
art tools in this complex application where they are not able
to reach a final verification result for all functions.

VI. CONCLUSION AND FUTURE WORK

We have presented our scalable and extendable hybrid
verification approach for embedded software. We have de-
scribed our new bottom-up/top-down verification methodology
and have pointed out the advantages of this approach. It is
possible to use different strategies for the whole or parts of the
verification process. We start with the formal phase and end
up with hybrid verification based on simulation and formal
verification. During the bottom-up/exploration phase formal
verification tries to verify all possible functions under test
based on a FCG until a time bound or memory limit has been
reached. The FCG is marked to indicate the Points-of-Interest.
Then, we start with simulation and whenever one of these POI
is reached, the orchestrator generates a temporary version of
the function under test with initialized/pre-defined variables
in order to shrink the state space of the formal verification.
Our results show that the whole approach is best suited for
complex embedded C software with hardware dependencies.
It scales better than stand-alone software model checkers and
reaches deep state spaces. Furthermore, our approach can be
easily integrated in a complex software development process.
Currently, we are working on a new hybrid coverage metric
to estimate the quality of the hybrid verification and to show,
that it boosts the state space coverage.

ACKNOWLEDGMENT

This work has been partially funded by German Research
Council (DFG) within project RO1030/16-1 and by the BMBF
project SANITAS under grant 01M3088A. We would like
to thank NEC Electronic (Europe) GmbH for providing an
example component of ESW. The authors also would like
to thank Alexander Grünhage, Edgar Auerswald and Patrick
Köcher for supporting the development of the Verifyr platform.

REFERENCES

[1] A. A. Jerraya, S. Yoo, D. Verkest, and N. Wehn, Embedded Software
for SoC. Norwell, MA, USA: Kluwer Academic Publishers, 2003.

[2] W. Ecker, W. Mueller, and R. Doemer, Hardware-dependent Software:
Principles and Practice. Springer Publishing Company, Incorporated,
2009.

[3] T. Kropf, “Software Bugs Seen from an Industrial Perspective or
Can Formal Methods Help on Automotive Software Development?” in
CAV’07: Proceedings of the 19th international conference on Computer
aided verification. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 3–3.

[4] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, “The software
model checker blast: Applications to software engineering,” INT. J.
SOFTW. TOOLS TECHNOL. TRANSFER, 2007.

[5] R. J. Weiss, J. Ruf, T. Kropf, and W. Rosenstiel, “Efficient and
customizable integration of temporal properties into SystemC,” in FDL,
2005.

[6] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ansi-c
programs,” in In Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 2004, pp. 168–176.

[7] L. Cordeiro, B. Fischer, and J. Marques-Silva, “Smt-based bounded
model checking for embedded ansi-c software,” in ASE ’09: Proceedings
of the 2009 IEEE/ACM International Conference on Automated Software
Engineering. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 137–148.

[8] T. A. Henzinger, R. Jhala, and R. Majumdar, “The BLAST software
verification system,” Model Checking Software, vol. 3639, pp. 25–26,
2005.

[9] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav, “SATABS: SAT-
based predicate abstraction for ANSI-C,” in TACAS, vol. 3440. Springer
Verlag, 2005, pp. 570–574.

[10] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, Satisfiability Mod-
ulo Theories, ser. Frontiers in Artificial Intelligence and Applications.
IOS Press, February 2009, vol. 185, ch. 26, pp. 825–885.

[11] A. Armando, J. Mantovani, and L. Platania, “Bounded model checking
of software using SMT solvers instead of SAT solvers,” Int. J. Softw.
Tools Technol. Transf., vol. 11, no. 1, pp. 69–83, 2009.

[12] D. Lettnin, P. K. Nalla, J. Ruf, T. Kropf, W. Rosenstiel, T. Kirsten,
V. Schönknecht, and S. Reitemeyer, “Verification of temporal properties
in automotive embedded software,” in DATE ’08: Proceedings of the
conference on Design, automation and test in Europe. New York, NY,
USA: ACM, 2008, pp. 164–169.

[13] S. Gorai, S. Biswas, L. Bhatia, P. Tiwari, and R. S. Mitra, “Directed-
simulation assisted formal verification of serial protocol and bridge,”
in DAC ’06: Proceedings of the 43rd annual Design Automation
Conference. New York, NY, USA: ACM, 2006, pp. 731–736.

[14] K. Nanshi and F. Somenzi, “Guiding simulation with increasingly refined
abstract traces,” in DAC ’06: Proceedings of the 43rd annual Design
Automation Conference. New York, NY, USA: ACM, 2006, pp. 737–
742.

[15] S. A. Edwards, T. Ma, and R. Damiano, “Using a hardware model
checker to verify software,” in In Proc. of the 4th International Confer-
ence on ASIC (ASICON, 2001.

[16] D. Lettnin, P. K. Nalla, J. Behrend, J. Ruf, J. Gerlach, T. Kropf,
W. Rosenstiel, V. Schönknecht, and S. Reitemeyer, “Semiformal verifica-
tion of temporal properties in automotive hardware dependent software,”
in DATE, 2009, pp. 1214–1217.

[17] J. Ruf, P. M. Peranandam, T. Kropf, and W. Rosenstiel, “Bounded
property checking with symbolic simulation,” in FDL, 2003.

[18] L. Cordeiro, B. Fischer, H. Chen, and J. Marques-Silva, “Semiformal
verification of embedded software in medical devices considering strin-
gent hardware constraints,” Embedded Software and Systems, Second
International Conference on, vol. 0, pp. 396–403, 2009.

[19] MISRA, “MISRA - The Motor Industry Software Reliability
Association,” 2000. [Online]. Available: http://www.misra.org.uk/

[20] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “CIL: Intermedi-
ate language and tools for analysis and transformation of C programs,”
in Computational Complexity, 2002, pp. 213–228.

[21] R. Shea, Call Graph Visualization for C and TinyOS programs, Dept.
of Computer Science School of Engineering UCLA, 2009. [Online].
Available: http://www.ambleramble.org/callgraph/index.html

[22] E. Clarke, D. Kroening, and K. Yorav, “Behavioral consistency of C
and verilog programs using bounded model checking,” in DAC ’03:
Proceedings of the 40th annual Design Automation Conference. New
York, NY, USA: ACM, 2003, pp. 368–371.

[23] E. Clarke, O. Grumberg, and K. Hamaguchi, “Another look at LTL
model checking,” in Conference on Computer Aided Verification (CAV),
ser. Lecture Notes in Computer Science, D. L. Dill, Ed., vol. 818.
Stanford, California, USA: Springer-Verlag, June 1994, pp. 415–427.

[24] Open SystemC Initiative, “SystemC Verification Standard Library 1.0p
Users Manual,” 2003.

[25] D. e. a. Box, “Simple Object Access Protocol (SOAP) 1.1,” World
Wide Web Consortium (W3C), Tech. Rep., 2000. [Online]. Available:
http://www.w3.org/TR/soap/

[26] GNU, “Gcov coverage,” 2010. [Online]. Available: http://gcc.gnu.org/
onlinedocs/gcc/Gcov.html

[27] “The M’CORE(TM) M340 Unified Cache Architecture,” in ICCD ’00:
Proceedings of the 2000 IEEE International Conference on Computer
Design. Washington, DC, USA: IEEE Computer Society, 2000, p. 577.

[28] NEC, “NEC Electronics (Europe) GmbH,” http://www.eu.necel.com/.

