
Empirical Design Bugs Prediction for Verification
Qi Guo∗†, Tianshi Chen∗‡, Haihua Shen∗‡, Yunji Chen∗‡, Yue Wu∗† and Weiwu Hu∗‡

∗Key Laboratory of Computer System and Architecture,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
†Graduate University of Chinese Academy of Sciences(GUCAS), Beijing 100049, China

‡Loongson Technologies Corporation Limited, Beijing 100190, China

Abstract—Coverage model is the main technique to evaluate
the thoroughness of dynamic verification of a Design-under-
Verification (DUV). However, rather than achieving a high
coverage, the essential purpose of verification is to expose as many
bugs as possible. In this paper, we propose a novel verification
methodology that leverages the early bug prediction of a DUV
to guide and assess related verification process. To be specific,
this methodology utilizes predictive models built upon artificial
neural networks (ANNs), which is capable of modeling the
relationship between the high-level attributes of a design and
its associated bug information. To evaluate the performance of
constructed predictive model, we conduct experiments on some
open source projects. Moreover, we demonstrate the usability
and effectiveness of our proposed methodology via elaborating
experiences from our industrial practices. Finally, discussions on
the application of our methodology are presented.

Index Terms—Verification; Complexity Metric; Bug Predic-
tion; Empirical Study

I. INTRODUCTION

As hardware designs continue to grow in complexity and
time-to-market pressure intensifies, verification has become
the key bottleneck of state-of-the-art design development cy-
cle. Although dynamic simulation-based verification is still the
main verification technique to guarantee the success of first
tape-out of practical industrial designs, the main drawback
is the difficulty of assessing the verification progress. More
precisely, it is difficult to determine whether the verification
has been sufficient to find out all potential bugs, owing to
the complexity of the industrial design. As a compromise,
the problems of evaluating the quality and determining the
completeness of verification are addressed by employing cov-
erage models that measure the state space of a DUV has been
touched during simulation.

Generally, coverage models can be classified into two cate-
gories: structural coverage and functional coverage. Actually,
both coverage models are widely accepted alternatives to
provide feedback mechanism for evaluating the quality of
verification. However, structural coverage is only an indicator
that partially quantify the progress of verification, and it is hard
to be used to guide the verification process. Another category
of coverage models, functional coverage is somewhat casual
without effective metrics to measure its quality. Meanwhile,
the intrinsic goal of verification is to reveal all potential design
bugs instead of meeting all coverage requirements, which

This work is partially supported by the National S&T Major Project
(under Grant No. 2009ZX01028-002-003, 2009ZX01029-001-003 and
2010ZX01036-001-002), the National 863 Program of China (under Grant
No. 2005CB321600), the National 973 Program of China (under Grant
No. 2008AA010901 and 2009AA01Z125), and the National Natural Science
Foundation of China (under Grant No. 6073601260921002, 60803029 and
61003064).

2
m

3
m

DUV Detected Bugs

Undetected Bugs

1
m

Fig. 1. A practical example to illustrate how to leverage early bug prediction
to assist verification.

implies that even all coverage goals are satisfied, one still
cannot guarantee that the design is bug-free since the coverage
space represents only a subset of testing space [5]. Hence, we
seek for a complementary method of current coverage models
to evaluate and guide the verification process more effectively
and reliably.

Since detecting all bugs is the essential purpose of verifi-
cation, in this paper, we propose a novel verification method-
ology that incorporates bug information, which indicates the
distribution and density of bugs in a design, to guide and assess
the verification flow. The basic idea is that if we can precisely
estimate the distribution and density of bugs for a DUV in the
early stage, then the predicted bug information can be adopted
to assist the verification process. An example about our
methodology is illustrated in Fig. 1, where we consider a DUV
consisting of 3 modules as m1,m2, and m3, and distribution
of bugs varies significantly among different modules. During
the entire life cycle of verification, we describe the usability
of early bug prediction as following:
1) During the arrangement of verification plan, the one with
most bugs (i.e., m1) should obtain the largest amount of
verification resources and time efforts.
2) As verification proceeds, once most of the bugs have been
detected in m1, verification resources should be steered to
those modules with unexposed bugs (i.e., m3). In other words,
the verification process could be controlled quantitatively and
precisely according to predicted results.
3) Once there is no difference between the number of exposed
bugs and the predicted value, we can conclude that the
verification is complete, under the condition that the predictor
is “perfect”.
Hence, this paper is dedicated to introduce a novel verifica-
tion methodology from bug-centric perspective and offers an
alternative perspective to the traditional coverage-centric view.

Obviously, the decisive issue is how to construct a highly
accurate bug predictor for a design at the early stage of
verification. To construct such a predictor, we employ machine
learning techniques to model the relationship between the
static metrics of high-level designs and the corresponding
bug information that are mined from bug repository. It stems
from the assumption that the complexity of a design can
be estimated by some crucial high-level attributes [13], [11],
[1], while more complex a design is, more bug-prone it

978-3-9810801-7-9/DATE11/ c©2011 EDAA

should be. To validate this assumption, we perform preliminary
experiments on several open source projects from different
fields. And the experimental results show that complexity
metrics indeed highly correlate with bug occurrence.

A potential concern about our approach is how to collect
enough data to train highly accurate predictors. However, in in-
dustrial practices, such a concern can be addressed by utilizing
the bug reports of previous releases (or early life cycle of the
current release) of the design. Actually, most successful chips
are series of productions, which manage to occupy the market
for a long time. As significant examples, the Power series of
IBM and the X86 series of Intel have even tens of releases in
their decades of history. Thus, there are often plenty of prior
knowledge to train accurate predictors. To provide empirical
evidence for the above view, we carry out experiments on two
releases of Godson-2 microprocessor [8]: We utilized the bug
information gathered from Release 1 to construct predictors for
Release 2, and the promising experimental results on Release
2 demonstrate that our methodology is practical to assist the
verification of future designs via cross-releases prediction.

The main contributions of this paper are: (1) To our best
knowledge, it is the first time that a quantitative methodology
is proposed to employ bug prediction built from previous
bug repositories to provide feedback to verification plan and
execution; (2) We introduce our industrial experiences from
employing the proposed methodology to assist the verification
process on a series of microprocessors.

This paper proceeds as follows. Section II presents previous
related work. Section III introduces the framework of our
methodology. Section IV shows the research approach we
followed. Section V studies the effectiveness of proposed
approach on some open source projects. Section VI describes
how to employ constructed predictors from previous release
to assist the verification of next release in industrial practice.
Section VII discusses some issues on bug prediction for
verification. Finally, section VIII concludes this paper.

II. RELATED WORK

A. Complexity Metrics and Bug Analysis
An important issue associated with our work is to measure

the design complexity of high-level hardware designs. Unfor-
tunately, there are few studies that systematically investigate
the complexity metrics of hardware designs. At first, inspired
by the structural and process similarities between VHDL
description and software language, measures of syntactic com-
plexity have been proposed in [13]. Then, to evaluate the de-
sign quality, Protheroe et al. [11] have provided some metrics
on register transfer level (RTL) of a design. Besides, Bazeghi
et al. have studied some metrics of HDL code and results
provided by Design Compiler to estimate design effort of
microprocessors [1]. And Bentley has introduced the sources
for bugs from the verification practices of Intel processor [2].
Even Guo et al. have investigated the relationship between
the complexity metrics and bug occurrence [7], none of these
works have discussed how to use predicted bug information
to facilitate verification.

B. Fault Prediction in Software
In the field of software engineering, many investigations

have been dedicated to characterize the relationship between
code metrics and fault-proneness of software to assess the
design quality [6], [3]. Most of those studies have focused on
quantitatively characterizing the impact of static metrics on
bug occurrence. However, only a few of them have worked on

Bug
Repository

ANN

Correlation
Reduction

1. Collecting data from source code and bug repository

2. Before verification, predicting bugs for modules in next releases.

3. During verification, leveraging bug information to assist verification.

New
Module

Predictor Bug
Information

Bug
Information

Verification
Plan Verification

Module n

Module 1

Predictor

...

Fig. 2. Framework of our methodology that leverages early bug prediction
to assist verification.

the validation of constructed predictor to other releases [10], or
other projects [15]. According to these literatures, due to com-
plicated contributors to bug occurrence, constructing a general
bug predictor for different softwares is still a challenge and
open issue. Nevertheless, the successful application of fault
prediction in software implies that there are some underlying
relationships between the complexity and bug-proneness. Due
to the similarities between HDL and software languages, it
is intuitive to investigate the impact of complexity on bug
occurrence.

III. FRAMEWORK

In this section, we elaborate the framework of our method-
ology that leverages early bug prediction to assist verification,
which are illustrated in Fig. 2. From this figure, we can detail
our methodology into three steps: 1) we collect training data
from the source codes (where high-level attributes concerned
with complexity are extracted), and the bug repository. Before
sending the extracted candidate attributes into Artificial Neural
Networks (ANNs), Principal Component Analysis (PCA) [12]
is employed to reduce the correlations among the attributes,
which is crucial to the accuracy of the resultant predictor. After
that, we use ANNs to model the relationship between crucial
attributes and corresponding bug-proneness. 2) Once we obtain
the predictor on bugs, we can employ it to predict bugs for new
modules in the next releases before verification. Technically,
we employ the predictor to estimate the distribution and
density of bugs for each new module in interested releases to
obtain predicted bug information. 3) During the arrangement
of verification plan, we can quantitatively allocate resources
and time efforts according to predicted bug information on
each new module. Moreover, the verification process can also
be guided and assessed.

It is notable that the constructed predictor is employed to
predict bug information before the arrangement of verification
plan, which is referred to “early bug prediction”. In other
words, it is in contrast to predicting bug information during
the verification, when the number of undetected bugs of a
module obviously decreases as verification proceeds. In fact,

TABLE I
ATTRIBUTES IN MODULE LEVEL

Metrics Definition
LOC Lines of Code

NODP No. of Decision Points
NOP No. of Ports
NOIP No. of Input Ports
NOOP No. of Output Ports
NOTO No. of Total Operators
NOUO No. of Unary Operators
NOBO No. of Binary Operators
NOSD No. of Signal Definitions
NOIM No. of Instantiated Modules
NODM No. of unique Instantiated Modules
NOII No. of Inputs to Instantiated Modules
NOOI No. of Outputs from Instantiated Modules
TOC Times of Clocks are used
NOC No. of unique Clocks
NOS No. of Statements

NOCS No. of Control Statements
NOPB No. of Process Blocks

to predict bug information during verification, we have to
implement a dynamic bug prediction mechanism, which is
unnecessary for assisting verification. The reason is that once
we can obtain the number of potential bugs in a module before
the verification, it is adequate to guide and assess the overall
process of verification with possessed bug information, which
will be elaborated later.

IV. MODEL CONSTRUCTION

In this section, we present the approach followed to con-
struct the bug predictor. Firstly, we introduce high-level at-
tributes of a design, which implies the design complexity.
Then, we utilize PCA to reduce the correlation among the
original attributes. Finally, two categories of ANNs models
are shown to construct predictive models for bug distribution
and density, respectively.

A. High-level Attributes of a Design
The key idea of our approach is to empirically explore the

relationship between high-level attributes of a design and its
bug-proneness. Therefore, we should specify related attributes
at first. As stated, design complexity may be closely related to
the bug occurrence of a design. Thus, attributes that determine
the design complexity are listed in Table I, where interpretation
of each metric is explained in detail. In order to make
complexity attributes of a design independent of specific HDL
language, we choose attributes from the following aspects:
lines of codes, number of decision points (i.e., branch condi-
tions), port related, operator related, signal related, instantiated
module related, clock related, and statement related.

B. Correlation Reduction of Attributes
The attributes specified in last section may contain “noisy

data”, and complicated dependencies among variables, i.e.,
some attributes are highly correlated with each other. For
instance, NOP is the sum of NOIP and NOOP. To identify
and filter the correlation among attributes, statistical method
(e.g., PCA) is performed on the original attribute set. Thus, we
can attain a reduced set best representing the original attributes
at hand while with reduced correlation among attributes.

PCA captures the majority of the variations as best as
possible via a few unrelated new variables which are linear
combinations of the original attributes, called principal compo-
nents (PCs). Intuitively, to form the reconstructed attribute set,
it is possible to extract the same number of PCs as the number

of the original variables. However, our goal is to extract as
few PCs as possible while preserving most of the original
information. The retained information of extracted PCs can
be represented by cumulative variance. For instance, if the
cumulative variance of q PCs contributes to 90% of the total
variance, q PCs can be employed to construct a new data set
with no more than 10% loss of information. Here we select
the PCs only whose eigenvalue is larger than 1.0.

C. ANNs Model
In this section, we elaborate the application of ANNs in

modeling the relationship between aforementioned PCs and
bug information. First, we briefly introduce the technique of
ANNs. Then, in order to estimate the bug information in
different aspects, we construct classification and regression
model via ANNs, respectively.

1) Overview of ANNs: Machine learning techniques have
recently been utilized by a number of researchers in the field of
design verification, and most of the investigations focused on
CDG (Coverage Directed test Generation). For this problem,
we pay our attention to a particular class of machine learning
algorithms called Artificial Neural Networks (ANNs). An
ANN consists of a collection of highly-interconnected process-
ing elements to model the complicated relationship between
input and output. The actual relationship is determined by the
set of weights, which are dynamically updated by a training
algorithm, such as back-propagation etc., associated with the
links connecting elements. Without any prior knowledge of
target function, the representational power of ANNs is rich
enough to express complex interactions among variables: any
function can be approximated to arbitrary precision by three-
layer ANNs [9]. Another advantage of ANNs is that the target
function output can be discrete-valued, real-valued, or a vector
of several discrete- or real- attributes, which is well suited to
express the bug information of a design.

2) Classification Model: Identifying whether or not a mod-
ule contains bugs is an important task of the bug prediction,
which can be treated as a conventional classification problem
according to the machine learning view. More specifically
and formally, to construct such a classification model, first
we should attain a set of training data with l samples as
D = {(zi, yi)|zi ∈ Rm, yi ∈ {+1,−1}, i = 1, . . . , l}, where
zi is a vector of m PCs as zi = {fi1, . . . , fim} (which is
reconstructed from the original attributes extracted from the ith
module as stated in Section IV-B), and yi is a label indicating
the ith module contains bug or not. According to the label yi,
the data set is divided into two categories: one category that
contains modules with at least one bug is labeled as +1 and the
other contains modules without bugs is labeled as -1. Once we
obtain the classification model from training data with stated
form, it can be employed to estimate the label of new given
testing data.

3) Regression Model: In addition to the estimation of
whether or not a module is buggy, we also want to predict the
probable number of bugs in a module with the help of ANN
model, which can be regarded as a regression problem. Unlike
stated classification problem, the target variable of regression
problem is real-valued instead of discrete-valued, that is, the
form of training data with l samples can be expressed as
D = {(zi, yi)|zi ∈ Rm, yi ∈ R, i = 1, . . . , l}, where zi is
the same meaning as in classification model and yi indicates
the number of bugs of the ith module. And yi is attained from
the bug repositories of evaluated designs in the training data.
Then, during prediction, yi provides the probable number of
bugs for a new module by trained regression model.

TABLE II
PROFILE OF EVALUATED DESIGNS

Design Name # of Revisions # of Modules
UART 16550 108 10

Memory Controller 30 15
AC 97 Controller 20 15

V. PRELIMINARY EVALUATION

A. Experimental Setup
To validate the assumption that there exists underlying

relationship between design complexity and bug occurrence,
we preform experiments on several open source projects
downloaded from www.opencores.org, as listed in Table II.

To collect training data from these designs, we intensively
inspect their source codes and corresponding change logs.
According to [14], the revisions with change logs containing
bug fixing information are considered as the bug fix revisions
and the revisions prior to them are their respective buggy
revisions. Thus, by comparing the buggy and the bug fix
revisions, it is possible to obtain the number of bug fix
patterns, e.g., Addition of if branch, etc., in these two
revisions. Unfortunately, this scheme is not practical to count
the actual number of bugs. The reason is that one bug
may be related to more than one line or one “bug hunk”,
i.e., code section in the buggy version that is modified in
the bug fix version, which causes counting the number of
actual bug is extraordinary ambiguous without a detail change
log of bugs. Nevertheless, whether or not a fixed module
evolved from a buggy version can be identified via “diff” each
version. During the comparison of each version, we ignore
those changes not related to the functional correctness, e.g.,
modification of comments, includes, etc. The analyzed results
of employed designs are listed in Appendix A. Accordingly,
in this experiment, we only construct classification models
for evaluated designs due to the lack of accurate training
information. We anticipate that in the future more detail bug
repositories (similar to information provided by Bugzilla ∗ in
software engineering) can be contributed by developers and
maintainer accompanying with open source designs. Besides,
we employ Perl to build an automatic static analysis tool for
attaining attributes, which are the source to reconstruct PCs of
training data, of a high-level design.

B. Results
Following the approach described in previous sections, we

first demonstrate the effectiveness of PCA that reduces the
correlation among attributes. The result on UART is presented
in Table III. We only reserve 3 PCs since their eigenvalues are
both greater than 1.0 and the cumulative variance is already
more than 95%. We can see that PC1 is almost related to all
the attributes except NOII, which is highly correlated with
PC2. And PC3 is more correlated with NOC and NOIP.

During the training of classification models, to avoid over-
fitting of the training model, 10-fold cross-validation is uti-
lized for learning and testing. In the 10-fold cross-validation
method, we randomly divide the training set into 10 subsets.
Then, we select the first fold as the test set, and the others
as the training set. To measure the classification results,
Precision (the proportion of true positive against all positive
modules†) and Accuracy (the proportion of correctly classified
modules to all modules) are employed. Actually, according to
Appendix A, we can see that most modules in UART 16650

∗www.bugzilla.org
†positive module here means the module is buggy

TABLE III
PRINCIPAL COMPONENTS FOR UART 16650
Metrics PC1 PC2 PC3

LOC 0.2704 0.0073 0.0876
NODP 0.2677 0.1364 -0.014
NOP 0.2303 -0.2528 -0.2535
NOIP 0.0286 -0.4217 -0.5609
NOOP 0.2685 -0.0792 -0.0031
NOTO 0.268 0.0716 0.1545
NOUO 0.2649 0.1157 -0.0044
NOBO 0.2589 0.0474 0.2252
NOSD 0.276 -0.0289 0.0289
NOIM 0.1752 -0.4253 0.1694
NODM 0.2075 -0.35 0.1856
NOII 0.0733 -0.5455 0.0999
NOOI 0.2646 0.125 0.0566
TOC 0.2566 0.1265 -0.1765
NOC 0.1579 0.1795 -0.6442
NOS 0.2689 0.0678 0.0466

NOCS 0.2526 0.1629 0.0673
NOPB 0.2609 0.1257 -0.0929

Eigenvalues 12.97361 2.9684 1.25473
Cum. Var. % 72.076 88.567 95.537

and Memory Controller are buggy. Conversely, only a few
modules in AC 97 controller are buggy. From Table IV, we
can see that learned bug models on both categories performs
well, i.e., only two modules are classified into opposite class
in total.

TABLE IV
CLASSIFICATION RESULTS

Design Name Precision Accuracy
UART 16550 100% 90%

Memory Controller 90.91% 93.33%
AC 97 Controller 100% 100%

According to above experimental results, we are confident
that proposed attributes are indeed related with bug occur-
rence. Furthermore, evaluated designs from different applica-
tion fields show that our approach is independent of concrete
designs and can be widely used in practice.

VI. INDUSTRIAL PRACTICES

A. Investigated Designs
In this section, we conduct a case study on a series of

industrial general purpose microprocessors named Godson-
2 [8], which is a 64-bit, 4-issue, out-of-order execution RISC
processor that implements the 64-bit MIPS-like instruction set.
Precisely, we adopt two releases as Godson-2A and Godson-
2E to perform the experiments. Godson-2A is the first version
of Godson family and consists of more than 340 modules. And
improved Godson-2E is composed of about 530 modules and
has been massively produced over several millions. For sim-
plicity, we refer these two releases as Release 1 and Release
2, respectively. In each release, the whole system is logically
divided into several subsystems, each is built of components.
Each component, which is stored in a file, consists of a
number of modules. And in comparison with Release 1, 16
new components with about 120 modules are added in Release
2 to enhance the functionality and performance.

Currently, we intend to verify Release 2 on the premise that
we have already possessed the bug information of Release
1. In other words, we hope to assist verification process on
Release 2 with the help of predictive models on bugs that
are obtained via proposed approach from high-level design
and bug repository of Release 1. To attain the set of training
data as stated in Section IV-C, we collect the number of
bugs detected and corrected in each module of Release 1
from its bug repository, which is used to report and track

TABLE V
CLASSIFICATION RESULTS ON RELEASE 2

Predicted Buggy
yes no

Actual yes A = 18 B = 4
Buggy no C = 11 D = 87

Positive Precision = 62.07% Negative Precision = 95.60%

Accuracy = A+D
A+B+C+D

= 87.5%

problems with, and potential enhancement to, the design. In
Release 1, the number of logic, algorithmic and timing design
bugs [4] that are detected during system-level verification,
which is especially expensive and resource-intensive phase of
development, is 118. And they scatter in 41 different modules
of 3 main subsystems as out-of-order execution logic, memory
system (includes I/DCache, I/DTLB and load/store queue) and
functional units (includes integer and floating-point functional
units). Considering the balance of the number of two category
modules, we randomly select other 59 representative modules
without bugs to constitute the training set with 100 modules.

B. Early Bug Prediction on Release 2
As stated in Section III, cross-releases bug prediction fo-

cuses on components that are newly added in Release 2,
which consist of 120 modules. The results of classification and
regression model on such modules are presented as follows.

1) Classification Results: Since we have built classification
model on Release 1, it can be used to predict bug information
of new modules in Release 2. The effectiveness of such
model is also evaluated by two stated measures: precision and
accuracy as shown in Table V. Moreover, positive precision,
which is defined as the number of true positives divided by all
positive modules, of classification model is 62.07%. Similarly,
negative precision is 95.6%. And accuracy, i.e., the proportion
of correctly classified samples in the total population, of
classification model is 87.5%.

Positive precision of classification results (62.07%) implies
that a considerable proportion of modules that are classified
as buggy are actually bug-free. Fortunately, such inaccurate
result only incurs a small amount of waste of resources and
time efforts. On the other hand, most prone-to-bug modules
(A
A+B = 81.82%) are captured by proposed predictive models,

which is very beneficial to verification since those modules
we will focus on indeed contain bugs.

2) Regression Results: Since it is impractical to list pre-
diction results of all modules in this paper, we categorize
the modules in Release 2 into different classes according to
corresponding number of system-level bugs, which ranges from
0 to 7, as shown in Table VI. As we can see, most of the
modules (81.67%) are bug-free and the mean absolute error
of predicted value in this category is only 0.3419. Although
for some modules (in the second row) the predicted results
may be too inaccurate to determine the completion criterion of
verification, we can still ascertain that such modules are with
more bugs than modules with 1 bugs according to predicted
results. Thus, unbalanced resources allocation can still be
carried on under the guidance of bug prediction.

C. Utilization of Early Bug Prediction
Now that the effectiveness of proposed approach to predict

bug information of Release 2 has been validated, we give
a detailed explanation that employs bug prediction in the
early stage to assist verification of Release 2 as described in
Section I.

TABLE VI
SUMMARY OF REGRESSION RESULTS ON RELEASE 2

of System- # of Mean
level Bugs Modules Absolute Error

7 1 1.258
6 2 2.132
4 1 0.024
3 4 1.063
2 2 1.317
1 12 0.8326
0 98 0.3419

(1) When creating a verification plan, verification resources
should be inclined to those prone-to-bug modules, i.e., those
modules are predicted containing bugs as identified by clas-
sification models. More precisely, for those buggy modules,
regression model demonstrates the verification priorities of all
modules according to their potential bugs. For instance, dcache
module contains more bugs than gr module in our case, where
more resources should be invested consequently, e.g., during
the full-chip verification, we can set constraints of constrained
random generator so that the difference of probabilities of
hitting the coverage space of these two modules is comparable
with the gap of numbers of predicted bugs in these two
modules.
(2) Bug information not only can facilitate the allocation
of verification resources, it also can be employed to assess
the completeness of the verification, even provide grounds to
select modules for formal verification. Take fmaf component
as an example, which is an additional functionality in Release
2 against Release 1 to replace the original fadd and fmul
components so as to improve the floating-point performance.
An important characteristic of such operation units is that
their functional coverage models are not so straightforward
to specify as control logic due to the large testing space. By
employing proposed approach, the total number of probable
bugs in fmaf is 8, while the detected number was only 2
without report of new bugs in later two months during system
level verification. In this situation, we could not conclude
that it was near the end of verification even constraints of
other modules were met. Fortunately, since many verification
resources were transferred from other modules where com-
pletion criteria were satisfied, two extra bugs were exposed.
However, the number of detected bugs was still far less than
predicted value. Therefore, formal method were considered to
expose potential counterexamples in the design to ensure its
quality. Eventually, final three bugs were detected by adopted
formal method. In this case, although the prediction is not
complete accurate, our method can yet employed to guide
verification in a higher level compared with coverage model.
(3) As verification proceeds, most of the potential bugs are
exposed for several modules. Then, if bug detection rate, the
proportion of exposed bugs against the total potential ones of
a design, and other constraints (functional coverage, structure
coverage and bug drop rate, etc.) are met, we can conclude
that verification on such modules approximates the end phase.
Therefore, we can concentrate on those complicated modules
which are still with many unexposed hard-to-verify bugs.

VII. DISCUSSIONS

A. Emphasis on bug repository
Obviously, performance of predictive model is decisive to

the successful application of our methodology. To obtain an
accurate enough model, the quality of training data is very
crucial. Unfortunately, the bug repository is always maintained
for specific purposes, such as project management and problem
tracking etc., instead of for bug prediction. Hence, the structure

and quality of such bug repository may be inappropriate to
collect required metrics for prediction. Actually, in the case
study of ourCPU, through inspecting the source codes of such
modules, we notice that many bugs documented in the RTL
source codes, which are represented by comments, do not
comply with bugs reported in bug repository. Therefore, we
should attach more importance to the maintenance of bug
repository in the future, which may not only be beneficial
to proposed approach, but also facilitate future design and
verification to improves the design quality. According to our
experience, each bug report submitted to the repository should
at least contains bug ID, time of exposure, exposure tool,
information of corresponding module (which can be tracked
from version database), bug type, bug level(unit-level, system-
level or instruction-level) etc.

B. Limitations and extensions
Now we highlight the limitations of our proposed

verification-assisting methodology. First and most important,
our work only investigates the correlation between complexity
metrics of HDL codes and bug occurrence, which is still hard
to delve all possible factors, such as, designers experiences,
management ability etc., that impact bugs. To eliminate the
effect of these human-related factors, our approach can be
applied on consecutive releases of one project, which implies
that human intervention does not fluctuate a lot among re-
leases. Second, our scheme tries to predict bug information
of new modules, modules without bug history, in the next
release. Whether or not predictors constructed by our approach
can be employed to predict the bug occurrence of evolving
modules should be validated by further experiments. To extend
our approach, we may import changing rate of the code as
a metric to predict bugs. The intuition is that module that
changing a lot is of lower quality. In summary, the above
stated limitations stem from the consideration of a small subset
that affects the bug-proneness of a design. Thus in the future
we try to investigate more factors, such as the qualification
of designers, the time taken to write a module, the quality
of specification and the competence of management, etc.
Therefore, we can determine the weight of each component
contributes to bug occurrence, which is instructive to provide
insights for designers and verification engineers.

VIII. CONCLUSIONS

We propose a novel verification methodology, which is
based on the predictive models on bugs to guide and assess
verification process. It can be treated as a crucial comple-
mentary technique to existing coverage model so as to make
verification more effective and efficient. Such a methodology
is especially suitable for the verification of a series of de-
signs, since the more prior knowledge, the more accurate the
predictive model could be. When enough prior knowledge is
accumulated, the novel verification methodology could even
become the main evaluation technique of verification. Since
there are so many design series in industry, our methodology
may facilitate more industrial practices in the future. As stated,
we hope that our work can open up a large unexplored area
of hardware design that deals with mining all possible factors
that are decisive to the occurrence of bugs.

REFERENCES

[1] C. Bazeghi, F. J. Mesa-Martinez, and J. Renau. μComplexity: estimating
processor design effort. In Proc. MICRO, pages 209–218, 2005.

[2] B. Bentley. Validating the intel pentium 4 microprocessor. In Proc.
DAC, pages 244–248, 2001.

[3] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter. Exploring the
relationship between design measures and software quality in object-
oriented systems. J. Syst. Softw, 51(3):245–273, 2000.

[4] K. Constantinides, O. Mutlu, and T. Austin. Online design bug detection:
RTL analysis, flexible mechanisms, and evaluation. In Proc. MICRO,
pages 282–293, 2008.

[5] A. Gluska. Practical methods in coverage-oriented verification of the
merom microprocessor. In Proc. DAC, pages 332–337, 2006.

[6] J. Greenwald and A. Frank. Data mining static code attributes to learn
defect predictor. IEEE Trans. Softw. Eng., 33(1):2–13, 2007.

[7] Q. Guo, T. Chen, H. Shen, and Y. Chen. Estimating design qulaity of
digital systems via machine learning. In Proc. ICECS, 2010.

[8] W. Hu, F. Zhang, and Z. Li. Microarchitecture of the godson-2 processor.
J. Comput. Sci. Technol., 20(2):243–249, 2005.

[9] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[10] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Predicting the location and

number of faults in large software systems. IEEE Trans. Softw. Eng.,
31(4):340–355, 2005.

[11] D. Protheroe and F. Pessolano. An objective measure of digital system
design quality. In Proc. ISQED, pages 227–233, 2000.

[12] R.A.Johnson and D.W.Wichern. Applied Multivariate Statistical Analy-
sis. Prentice-Hall, 1998.

[13] N. S. Stollon and J. D. Provence. Measures of syntactic complexity for
modeling behavioral vhdl. In Proc. DAC, pages 684–689, 1995.

[14] S. Sudakrishnan, J. Madhavan, E. J. Whitehead, Jr., and J. Renau.
Understanding bug fix patterns in verilog. In Proc. MSR, pages 39–
42, 2008.

[15] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy. Cross-
project defect prediction: a large scale experiment on data vs. domain
vs. process. In Proc. ESEC/SIGSOFT FSE, pages 91–100, 2009.

APPENDIX

Module Observed Buggy Predicted Buggy
UART 16650

uart raminfr false false
uart debug if true true
uart receiver true true

uart regs true true
uart rfifo true true

uart sync flops false false
uart tfifo false true
uart top true true

uart transmitter true true
uart wb true true

Memory Controller
mc adr sel true true
mc cs rf true true

mc cs rf dummy true true
mc dp true true

mc incn r false false
mc mem if true true

mc obct true true
mc obct dummy false false

mc obct top false false
mc rd fifo true false
mc refresh true true

mc rf true true
mc timing true true

mc top true true
mc wb if true true

AC 97 Controller
ac97 cra true true

ac97 dma if false false
ac97 dma req false false
ac97 fifo ctrl false false

ac97 int false false
ac97 in fifo true true
ac97 out fifo true true

ac97 prc false false
ac97 rf false false
ac97 rst false false
ac97 sin false false
ac97 soc true true
ac97 sout false false
ac97 top true true

ac97 wb if true true

