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Abstract—In this paper we present a method for integrating
two complementary solving techniques for QBF formulas, i. e.
variable elimination based on an AIG-framework and search
with DPLL based solving. We develop a sophisticated mechanism
for coupling these techniques, enabling the transfer of partial
results from the variable elimination part to the search part. This
includes the definition of heuristics to (1) determine appropriate
points in time to snapshot the current partial result during
variable elimination (by estimating its quality) and (2) switch
from variable elimination to search-based methods (applied to the
best known snapshot) when the progress of variable elimination
is supposed to be too slow or when representation sizes grow
too fast. We will show in the experimental section that our
combined approach is clearly superior to both individual methods
run in a stand-alone manner. Moreover, our combined approach
significantly outperforms all other state-of-the-art solvers.

I. INTRODUCTION

Quantified Boolean Formulas (QBF) are an extension of
propositional formulas obtained by adding existential and
universal quantifiers. Determining the satisfiability of QBF is
PSPACE complete [1] and is assumed to be harder to solve
than the SAT problem, which is NP complete [2]. On the other
hand QBF allows for a more compact representation of many
problems, e. g., from verification [3], [4], [5] and planning [6].

In recent years a large number of powerful QBF solvers
with different solving techniques have been developed: search-
based approaches [7], [8], [9] which extend the DPLL algo-
rithm known from SAT [10], as well as different solvers based
on eliminating variables, such as resolution and expansion
[11], symbolic skolemization [12], and symbolic quantifier
elimination using AIGs [13].

The recent QBF solver evaluation [14] has shown that until
now there is no dominant solution technique being superior for
all classes of QBF problems. When looking at single classes of
QBF instances, one can observe that the performance of current
QBF solvers often is class specific: one technique works well
in one class, while a different class needs a different approach.
This observation indicates that a combination of different
solution techniques may be beneficial.

Several approaches for combining different QBF solving
techniques have recently been proposed: The multi-solver
engine AQME [15] applies a portfolio approach incorporating
several different back-end solvers. Based on machine-learning
techniques the ‘best’ solver for a given instance is preselected.
The main drawback of AQME is the strict separation of the
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back-end solvers – no information is shared when switching
to a different engine. Another approach has been presented in
[16]. Here the authors modify a search-based solver by dynam-
ically selecting branching heuristics, again based on machine-
learning. The solvers presented in [17], [18] apply online
switching policies to alternate between search and resolution
[19]. The authors prove that such a dynamic combination in
principle works quite well, but they fail to be competitive with
state-of-the-art solvers.

In this paper, we present an integrated approach for com-
bining orthogonal solution techniques, that especially focuses
on exchanging partial solutions between the involved solvers.
In particular, our approach first runs a variable elimination
based solver AIGsolve [13], [20] on a QBF instance, taking
snapshots of the current QBF formula and carefully observing
the solver’s progress. Once a degradation of the progress or
a blowup in representation sizes is observed, the best known
snapshot is handed over to a search-based solver, which then
tries to solve the instance.

As we will show in the experimental section of this paper,
our integrated approach leads to impressive results on the
QBFEVAL data-sets [21], [22], clearly outperforming state-of-
the-art solvers. We will also show that our way of combining
solvers is indeed beneficial: the integration is able to solve
QBFs that cannot be solved by the incorporated solvers alone.

In contrast to previous works, our method on the one hand
uses a stronger coupling than AQME by sharing partial results
between the solvers which allows it to perform better than each
solver for its own, and on the other hand it is able to inherit
the individual power of the employed solving techniques.

The paper is structured as follows: In Sect. II we give a short
introduction to QBF and the representation that is used in our
approach. Furthermore, we outline the algorithmic structure of
AIGsolve. In Sect. III we present the details of our integration.
In particular, we define criteria to decide whether to abort
AIGsolve, and present quality measures for snapshots of the
current solver state. In Sect. IV we discuss the experimental
results obtained by our prototype implementation, comparing
our approach to other approaches for combining solvers as
well as other state-of-the-art solvers. Finally, we summarize
our results in Sect. V and briefly discuss future work.

II. PRELIMINARIES
A. Quantified Boolean Formulas

A quantified boolean formula ψ in prenex conjunctive nor-
mal form (PCNF) is a formula Q1x1 . . . Qnxn.φ(x1, . . . , xn)
where Qi ∈ {∃,∀} are existential and universal quantifiers
and φ(x1, . . . , xn) is a propositional formula over the boolean
variables x1, . . . , xn represented as a CNF. Q1x1 . . . Qnxn is
called the prefix and φ is called the matrix of ψ.



A less restrictive form of QBFs are quantifier trees [23]
which in contrast to PCNF allow for tree shaped quantifier
structures but are still based on CNF representations, i. e. the
matrix parts are in clausal form. We extend this concept
to generalized quantifier trees, which instead of clauses use
arbitrary propositional formulas for representing the matrix
parts of the QBFs:

A generalized quantifier tree (QTREE) over a set of boolean
variables V is a tree, where each node n

1) is labelled with a variable varn ∈ V and a quantifier
Qn ∈ {∃,∀},

2) is annotated with a propositional formula fn over the
variables occurring in the labels of nodes on the path
from the root to the node n.

We additionally require that each variable occurs with a unique
quantifier, on each path a variable occurs at most once, and
for any path p the order ≤p of variables induced by the path
is a subset of a linear order ≤ on V .

The interpretation of a node n as a QBF formula can be
defined inductively:

qbf(n) := Qnvarn.(fn ∧ qbf(c1n) ∧ . . . ∧ qbf(cmn ))

where c1n, . . . , c
m
n are the children of n.

Note that a QBF in PCNF can be trivially transformed into
an equivalent QTREE, while the transformation of a QTREE
into PCNF format requires a transformation of the embedded
propositional formulas to CNF, which may be accomplished
by Tseitin encoding [24] with the help of additional existential
variables.

Example 1 Consider the following PCNF:

∀x∃a∀y∃b∃c.(a ∨ c) ∧ (c ∨ x ∨ y) ∧ (a ∨ b ∨ x)

Fig. 1(a) shows a QTREE with linear structure directly de-
rived from the formula. From this graph we can extract an
equivalent QTREE which is shown in Fig. 1(b). Note, that
each path is consistent with the linear order induced by the
quantifier prefix. Instead of clauses we are allowed to use other
representations of propositional formulas, e. g. AIGs, which are
briefly introduced in the next section.

∀x

∃a

∀y

∃b

∃c
a ∨ c

c ∨ x ∨ y
a ∨ b ∨ x

(a) QTREE with linear structure

∀x

∃a

∀y∃b

∃c
a ∨ c

c ∨ x ∨ y

a ∨ b ∨ x

(b) Equivalent QTREE

Fig. 1. Two equivalent QTREEs

B. Variable elimination with AIGsolve

AIGsolve [13], [20] is a QBF solver for instances in PCNF
format that is based on variable elimination.

After preprocessing the initial QBF instance with a number
of techniques (see [20] for details), AIGsolve scans the QBF for
sets of clauses establishing functional definitions of variables,
e. g. (y∨x1), . . . , (y∨xn), (y∨x1∨. . .∨xn), which defines y to
be equivalent to x1∧ . . .∧xn. Instead of substituting variables
(e.g. y) with definitions in the QBF by their corresponding
definitions (e.g. x1 ∧ . . . ∧ xn) and applying the distributive
law to produce a flat PCNF representation, AIGsolve creates a
circuit-like, non-CNF representation of the QBF [13]. Next,
quantifiers from the linear prefix are distributed into the
non-CNF representation of the QBF, reducing the scope of
the individual quantifiers and producing a QTREE. For the
internal representation of the QTREE, AIGsolve uses And-
Inverter Graphs (AIGs) [25] which basically are boolean cir-
cuits composed solely of two-input AND gates and inverters,
and thus can be used for representing arbitrary propositional
formulas. In contrast to BDDs [26], AIGs are non-canonical –
for each propositional formula there exist structurally different
AIG representations – which allows them to be potentially
more compact than BDDs.

In its main phase, AIGsolve traverses the QTREE in a depth-
first manner, removing leaf nodes from the tree by eliminat-
ing the corresponding quantifiers using AIG operations. The
procedure terminates once all nodes are removed from the
QTREE and thus all quantifiers are eliminated from the QBF,
leading either to an AIG which is constant 0 (unsatisfiable) or
1 (satisfiable).

For quantifier elimination, AIGsolve uses a sophisticated
algorithm [20], which heuristically combines cofactor-based
quantifier elimination with quantification using BDDs and thus
benefits from the strengths of both data structures.

III. INTEGRATION

A. Motivation and Overview

It can be observed that the elimination of variables with
AIGsolve may result in an exponential blow up of the AIG
structure due to the cofactor-based method. In the worst
case the AIG doubles with each elimination of a quantified
variable and thus the evaluation of the following operations
on the structure may be slowed down resulting in violation of
memory or timing constraints. However, even if this worst case
occurs, there are also intermediate results within this process
which could be beneficial to other solvers as long as there is
no extreme blowup of the AIG structure.

Consequently, in our approach we run AIGsolve as a front-
end solver until it solves the formula or until we observe an
undesired behavior. During the solving process we save partial
results and – in contrast to pure portfolio approaches – reuse
them by handing them over to a back-end solver, if we have
to abort the front-end solver.

As we will show in the experimental results this approach
works with different search-based back-end solvers. We are
using search-based solvers since experimental results show
that this technique is highly orthogonal to AIGsolve w. r. t. the
solved instances.



To do so, we have to find an appropriate point in time during
the solving process of AIGsolve when we expect that AIGsolve
will not be able to solve the QBF instance efficiently.

Furthermore, have to save QTREEs during the solving pro-
cess (‘snapshots’) and keep them for the back-end solver.

Of course, we also need to find good moments to take such
snapshots. As a naı̈ve approach we could hand over the result
in the moment the solver aborts. As we will show in our
experimental results, in most cases this is not a good idea,
since the resulting PCNF is harder to solve than the original
instance.

In the following subsections we give more details of our
approach.

B. Translation
First of all we describe how to take a snapshot of a QTREE

t. We have to compute the quantifier prefix of the remaining
QBF formula as well as we have to consider all propositional
formulas fn of t represented as AIGs and convert them into a
suitable format for other solvers, i. e. in PCNF.

As mentioned before, the transformation of the AIGs fn can
be done with the Tseitin encoding technique by introducing
propositional variables for every node in the AIG. The resulting
CNF consists of three clauses per AIG node.

The prefix can be computed by traversing t in a breadth-first
search manner from the root node to the leaves collecting the
variables varn and quantifiers Qn for each node n in t. Due
to the properties of the orders ≤p of paths in t this induces
a linear quantifier prefix which is consistent with the original
one. The additional variables from the Tseitin encoding are
appended to the end of the quantifier prefix.

C. Handover
We have to identify whether the solving process will prob-

ably be successful, and if not, we hand over an intermediate
result. On the one hand we would like to notice as soon as
possible when a instance cannot be solved within an adequate
time, on the other hand we do not want to hand over, if
AIGsolve is actually able to return a result later on.

We make two main observations:
(1) AIGsolve is suffering from large AIG structures, since

quantifications and compaction methods then need much more
time. If the quantification routine shows an exponential growth
of AIG nodes in addition, we suppose that the solver is not
able to eliminate the remaining quantifiers within the given
time bounds.

(2) In some cases the mere number of quantifications cannot
be processed within a given time limit although the amount
of AIG nodes remains small and no exponential growth is
observed.

We summarize how we heuristically cover (1) and (2) in
our approach:

For (1) we define a empirically specified value indicating
an upper bound for the size of the AIG structure. If the AIG
size exceeds this value we start watching the increase of the
AIG after each quantification. If we notice a significant blowup
(i. e. doubling of the size in one step or ‘almost’ a doubling per
step over two consecutive steps), we stop AIGsolve. For (2) we
carefully monitor the process, i. e. the number of eliminated
nodes of the QTREE per time unit and compare this with the

remaining nodes and time. We estimate whether the remaining
time will be insufficient for solving the problem (hereby, we
make the assumption, that the progress will stay more or less
constant).1

If one of these cases occurs, the AIGsolve routine will stop
and hand over a snapshot to a back-end solver. We check these
criteria after each elimination step.

D. Snapshot moments
We want to determine a suitable moment for taking a

snapshot of the current QTREE in a way that it is beneficial
for the subsequent back-end solver. The solving process should
be rewarded for eliminating (especially universally) quantified
variables, since in general solving techniques benefit from
fewer (universal) variables. As a result of eliminating these
variables the AIG can blow up exponentially during elimina-
tion operations. This behavior has to be punished in a suitable
way, given that the AIG size is directly related to the number
of resulting clauses in the PCNF. We define a measure of the
cost m(t) of a QTREE t, which can basically described as
follows:

m(t) = u weight(u) · e weight(e) · size
where u weight(u) and e weight(e) define weighting factors
w. r. t. the number u (e) of current universal (existential)
quantifications of t. size corresponds to the number of clauses
and additional variables of the resulting PCNF due to the
Tseitin encoding on the basis of the AIG nodes. Since the
elimination of universally quantified variables is in general
more beneficial, we choose u weight and e weight such that
for the same parameters u weight results in a higher factor
than e weight. The particular values are based on empirical
results and will be specified in the experimental results.

It is essential to do this calculation after any quantification
in the solving process. Once the current QTREE has smaller
costs according to our cost measure compared to the cost of
the latest snapshot, we translate the current state as described
in Sect. III-B and store it as the latest snapshot.

Note that we only have one snapshot at any point in time
– the one which is estimated as best. As a reference point we
take a first snapshot right after the preprocessing but before
the solving process.

E. Final comparison
We observe that there are QBF instances in which any (even

the initial) snapshot is worse than the original problem for
a specific back-end solver. Other solvers do not necessarily
benefit from the AIGsolve preprocessor since the techniques
specifically focus on AIG (but not PCNF) simplification. On
the other hand, elimination of variables and quantifications
may compensate this.

Thus we consider a second cost measure to heuristically
determine whether a (given) search-based solver will really
benefit from a snapshot. For this purpose we need a measure
that evaluates the PCNF result for a snapshot of a QTREE and
compare its ‘quality’ to the original PCNF.

We use a QBF preprocessor both on the taken snapshot and
the original formula and compare the resulting PCNFs. For

1Of course, if we do not have a given time limit, the second criterion will
never take effect.



the comparison we basically use the measure m we defined
before, but with a different definition for the value size.
Here, that value contains the actual number of literals, i. e.
the sum of all clause sizes, after QBF preprocessing. This
final comparison takes place only once with the last snapshot
taken by AIGsolve; in order to save runtime we refrain from
performing comparisons with all snapshots taken during the
run of AIGsolve.

F. Tuning AIGsolve for the integration
We experimented with heuristics for processing the QTREE

in various orders within AIGsolve. Different options for choos-
ing the next node to process are: Choosing the node whose
variable has the largest (smallest) quantification level / the
node with the smallest (largest) number of AIG nodes / the
node with the largest (smallest) depth within the QTREE,
choosing the node according to a depth-first traversal of the
QTREE, or any combination of these heuristics. We observe
no significant influence of these heuristics on solving with
AIGsolve alone, but it turned out that the integration benefits
from several heuristics – especially from choosing a variable
with the largest quantification level, because this strategy fa-
vors complete eliminations of (universally quantified) variables
early in the solution process before the AIG blows up.

Furthermore, we want to decrease the number of newly
introduced variables. Therefore, we take advantage of the AIG
structure by detecting multi-input and-structures, i. e. multiple
nodes that correspond to one logical AND with more than
two inputs. For these structures we only have to introduce one
additional variable instead of one variable per node and instead
of receiving three clauses per node we get i+1 clauses, where
i is the number of inputs of the multi-input and-structure. In
many cases the number of introduced variables and clauses
can be reduced significantly with this technique. Of course,
we have to take account of this with regard to our measure m
(see Sect. III-D).

G. Algorithm
Algorithm 1 describes the basic routine of the integration

technique. extractQTREE() generates a QTREE from a PCNF
as described in Sect. II-A. estm() either calculates our cost
measure for a QTREE or PCNF. handoverResult() checks the
handover criteria as stated in Sect. III-C. The eliminateNodes()
method eliminates variables by symbolic quantification on
the AIG structure and takeSnapshot() translates the current
QTREE as described in Sect. III-B. If every node of t could
be eliminated, we can return the result of t given by the
remaining AIG. Finally, preprocess and solve can be arbitrary
QBF preprocessors and solvers, respectively.

H. Example
We will demonstrate this approach on a specific benchmark

from QBFEVAL’10:
The Core1108 tbm 21.tex.module.000026 instance from

the ‘Kontchakov’-family [27] contains 359 (105) existentially
(universally) quantified variables and 2555 clauses after pre-
processing. The gray bars in Fig. 2 show the development of
our cost measure m within the solving process. The triangles
indicate a moment when a snapshot is taken, i. e. when the
current value of m is smaller than the last estimated one. On

Input: PCNF F
t← extractQTREE(F ); lastm←∞;
repeat

if estm(t) < lastm then
takeSnapshot(t); lastm ← estm(t);

if handoverResult(t) then
PCNF S ← exportSnapshot();
break;

eliminateNodes(t);
until nodes(t) = ∅ ;
if nodes(t) = ∅ then

return result(t);
F ′ ← preprocess(F ); S′ ← preprocess(S);
if estm(F ′) < estm(S′) then

return solve(F ′);
else

return solve(S′);
Algorithm 1: Integration

the very left the initial snapshot can be seen. On the very
right one can see the last snapshot that is finally made (the
filled green triangle). Right after this snapshot was taken,
m is increasing fast (note, this diagram has a logarithmic
scale) due to an exponential increase of the AIG nodes during
quantification. After eliminating 330 variables we observed
that our first handover criterion took effect whereupon the
solution process was canceled.

Altogether we took 79 snapshots requiring overall 0.11
seconds of CPU time. The last snapshot was taken after 6.62
seconds and we stopped the AIG based solving process after a
total of 153.8 seconds. The last elimination steps needed most
of the time because of the increasing number of AIG nodes.
At the moment of the last snapshot, the number of universal
quantifiers had been decreased substantially from 105 to 50.
Furthermore 236 existential quantifications of the preprocessed
formula had been eliminated. The PCNF that was generated
from the last snapshot had 1306 (50) existential (universal)
quantifiers and 4485 clauses. The increasing number of ex-
istential quantifications originates from the additional Tseitin
variables introduced.2 (This effect is already diminished by

2Note that, if the number of universally quantified variables is small, addi-
tional Tseitin variables at the end of the quantifier prefix are not necessarily
very harmful to the search-based solution process, because after assigning
all universally quantified variables during search the remaining problem turns
into a SAT problem.
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detecting multi-and structures – without this technique we
would introduce 6051 clauses and 1900 (50) existentially
(universally) quantified variables.) After extracting the PCNF
from the last snapshot, a state-of-the-art QBF preprocessor is
able to eliminate several of the new quantifications and clauses,
e. g., sQueezeBF [28] is able to optimize the PCNF such that we
obtain 336 (50) existentially (universally) quantified variables
and 1463 clauses. Since the number of clauses, the number of
existentially quantified variables, and (especially) the number
of universally quantified variables was reduced, we estimate
that the resulting QBF instance is easier to solve for search-
based solvers than the initial problem.

IV. EXPERIMENTAL RESULTS

All experiments were run on a 16-core AMD Opteron with
2.3 GHz and 64 GB of memory. We used a time limit of 1200
CPU seconds and a memory limit of 4 GB.

As preprocessor we used sQueezeBF [28], as front-end
AIGsolve [13], and as search-based back-end solvers QuBE7
[7] (‘QuAIG’) and DepQBF 0.1 [9] (‘DepAIG’). For the ex-
periments the parameters of measure m(t) were assigned to:
u weight(u) = 1.01u and e weight(e) = 1.001e, where
u (e) is the number of remaining existentially (universally)
quantified variables.

We compared our implementation to the QBF solvers we use
in our integrated approach: AIGsolve, QuBE and DepQBF which
all participated in QBFEVAL’10. In addition we used AQME-10
[15], the most successful combined solver so far (winner of
QBFEVAL’10), and a portfolio based approach (‘portfolio’)
with AIGsolve and QuBE, i. e. first AIGsolve gets 600 CPU
seconds for solving the instance and if it fails, QuBE also gets
600 CPU seconds. In this approach no information is shared
between the solvers.

For a first series of experiments we used the benchmark
set of QBFEVAL’10 [22] consisting of 568 benchmarks. Fig. 3
shows the number of solved instances in a certain time for
each solver. The total number of solved instances is indicated
in the top left of the figure. One can see that AQME is able to
solve many instances with a small amount of time due to its
preselection technique. On the other hand, QuAIG (DepAIG) is
clearly superior w. r. t. the number of solved instances for the
given time: 478 (487) vs. 432. The portfolio approach solves
454 instances. All other solvers, which are based on a single
solution strategy, solve less than 400 instances.

To confirm these results also for other classes of benchmarks
with even more diversity we enlarged our benchmark set:
we considered the QBFEVAL’08 set [21], containing 3328
instances, and merge it with the QBFEVAL’10 set. To avoid
redundancy, we skipped the benchmarks that are only shuffled
versions of other ones – this results in a total number of
3512 benchmarks. In addition, we evaluated an integration of
AIGsolve and QuBE (‘QuAIG naı̈v’) which makes only restricted
use of the snapshot technique: Only when one of our handover
criteria is fulfilled, we take a snapshot and forward that partial
result directly to sQueezeBF and QuBE.

The results are shown in Table I. For each solver the number
of solved instances per benchmark class is specified as well as
the total solving time in CPU hours. Failed instances (due to
memory or time constraints) are considered to contribute the
time limit of 1200 CPU seconds. For our integration tool we

add the number of instances which are solved by the back-end
solver alone (‘org’), when AIGsolve fails to solve the instance,
but we decide not to use any taken snapshot. Furthermore
we give the number of solved instances which are solved by
the back-end solver using a taken snapshot (‘comb’) and the
number of additionally solved instances w. r. t. the solvers that
are used in the integration (‘additional’).

Again the result of the portfolio variant (2923) shows the
high orthogonality of the different solving techniques. Note
that most instances that can be solved by one of the involved
solvers need less than 600 CPU seconds, so that this result
already comes near to the accumulated number of solved
instances (2970).3

Our naı̈ve approach solves 2658 instances and demonstrates
the importance of the determination of a suitable snapshot
moment. But even without this technique we can solve 179
more instances (mainly from ‘bbox’) than AIGsolve.

Our approach QuAIG, including all introduced techniques
and using QuBE as back-end, is able to solve 2975 instances,
i. e. we can solve more instances than both solvers together
and 496 more than the best stand-alone solver AIGsolve within
the given limits. (However, we do not reach the results of the
front-end solver AIGsolve and the back-end solver QuBE in all
cases – especially in the ‘ev-pr’ and ‘s *’ classes. In most of
these cases AIGsolve behaves well for a long time according
to our handover criteria, so that there remains only a small
amount of time for running the back-end solver.)

In 46 cases the instance is solved by running the back-
end solver on the original formula. In these cases our final
comparison method decides to use the original formula.

Overall 462 instances can be solved by using a snapshot
taken for the back-end solver – mainly in the classes ‘ab-
duction’, ‘bbox’ and ‘kontchakov’ which are also the classes
where QuBE is able to solve significantly more instances than
AIGsolve. This shows that we are able to maintain the power
of the solvers within our integration.

Moreover we can solve 96 instances – mainly in the classes
‘bbox’, ‘kontchakov’, ‘sorting’ and ‘tipfixpoint’ – which can-
not be solved by the involved solvers alone within the given
limits. Altogether we clearly outperform the current state-of-
the-solvers as well as the portfolio-based approach of the two
solvers that participated in the integration.

3This is the number of instances solved by AIGsolve or QuBE within
the full time limit of 1200 CPU seconds.
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TABLE I
COMPARISON WITH OTHER SOLVERS

AIGsolve QuBE DepQBF AQME QuAIG QuAIG QuAIG DepAIG
portfolio naı̈v

cl
as

s

co
un

t

so
lv

ed

tim
e

so
lv

ed

tim
e

so
lv

ed

tim
e

so
lv

ed

tim
e

so
lv

ed

tim
e

so
lv

ed

tim
e

so
lv

ed

tim
e

or
g

co
m

b

ad
di

tio
na

l

so
lv

ed

tim
e

or
g

co
m

b

ad
di

tio
na

l

abduction 303 181 43.7 287 7.6 285 7.9 268 12.2 286 7.8 212 36.8 282 27.2 9 93 1 272 26.1 14 73 3
adder 32 27 2.1 6 8.7 6 8.7 12 7.0 27 5.6 27 2.0 26 2.5 0 0 0 27 2.2 0 0 0
bbox 478 214 88.5 419 22.3 341 51.1 305 60.2 414 23.0 360 51.3 416 40.3 0 199 13 402 35.4 0 189 34

blocks 13 9 1.4 9 1.4 10 1.0 13 0.0 9 1.4 8 1.7 9 1.4 0 0 0 11 1.0 2 1 1
bmc 132 109 8.8 65 25.7 79 18.9 110 8.9 111 17.9 109 8.6 110 8.4 0 0 1 109 8.9 0 0 0

circuits 63 9 18.2 4 19.7 5 19.3 7 18.8 9 19.0 9 18.2 9 18.2 0 0 0 9 18.2 0 0 0
counter 24 16 3.4 9 5.1 10 4.9 12 4.0 13 4.6 16 3.4 16 3.4 0 0 0 16 3.4 0 0 0

debug 38 0 12.7 0 12.7 0 12.7 22 6.9 0 12.7 0 12.7 0 12.7 0 0 0 0 12.7 0 0 0
Ev-pr 38 2 12.0 21 6.5 13 9.2 15 7.9 20 6.6 4 11.8 14 9.9 11 1 0 14 9.8 9 3 0

jmc-quant+sqr 20 16 1.3 6 4.7 0 6.7 0 6.7 16 3.0 16 1.3 16 1.3 0 0 0 16 1.3 0 0 0
k * 378 352 10.6 219 54.7 146 81.4 327 18.2 356 32.1 352 10.8 361 9.4 4 6 5 361 8.8 5 5 5

kontchakov 136 26 38.5 96 19.5 135 4.0 106 15.3 83 20.9 25 38.5 120 18.3 4 91 21 127 15.4 1 102 1
planning 24 9 5.2 8 5.4 10 5.0 14 3.9 10 5.2 10 5.2 10 5.0 1 0 0 11 5.1 1 0 1

Scholl-becker 64 50 4.8 39 8.7 38 9.2 44 7.5 51 6.7 50 4.8 51 4.7 0 2 0 51 4.8 0 2 1
sorting 84 15 23.1 36 16.4 43 15.9 61 8.7 36 16.4 25 20.7 57 14.2 9 34 29 44 16.4 1 25 21

s * 171 102 28.9 72 39.2 1 56.7 16 52.4 98 36.4 82 35.4 80 37.9 1 4 0 87 37.1 0 3 2
stmt 713 694 10.5 618 32.1 11 234.1 307 136.3 701 18.7 686 13.4 703 8.0 4 1 7 698 10.1 8 0 10

szymanski 12 12 0.0 12 0.1 2 3.3 12 0.2 12 0.1 12 0.0 12 0.0 0 0 0 12 0.0 0 0 0
tipdiameter 203 192 4.4 162 15.3 77 42.6 150 18.5 200 9.4 194 3.8 197 3.5 0 7 1 195 4.0 0 4 3
tipfixpoint 446 315 45.7 246 72.5 71 125.1 106 114.7 337 57.6 332 41.5 357 34.7 2 23 18 326 43.0 3 1 21

toilet 46 42 1.3 43 1.1 44 0.7 45 0.4 45 0.8 42 1.3 42 1.3 0 0 0 42 1.3 0 0 0
other 94 87 2.6 85 3.6 76 6.9 89 1.9 89 2.8 87 2.8 87 2.8 1 1 0 86 3.0 0 1 0
total 3512 2479 367.8 2462 382.8 1403 725.4 2041 510.7 2923 308.6 2658 252.5 2975 297.3 46 462 96 2916 302.4 44 409 103

Using DepQBF as back-end solver we are able to solve 2916
benchmarks. The number of accumulated solved instances of
the involved solvers amounts to 2913, i. e. this variant is also
able to solve more instances than these solvers alone (both
with their full time limit of 1200 CPU seconds).

One can observe that AQME can solve more instances than
any other stand-alone solver in QBFEVAL’10, but it fails to be
competitive in our second run, including QBFEVAL’08 bench-
marks. AIGsolve behaves the other way around. In contrast
to this, our integrating approach is robust against different
benchmark sets.

V. CONCLUSIONS

In this paper, we presented an integration of two orthogonal
QBF solving techniques, namely variable elimination and
search. As shown in the experiments, our approach is able to
handover the partial result of the first solution technique and
provide a simpler QBF problem to the back-end solver. This
approach also outperforms existing portfolio-based methods as
well as all other state-of-the-art solvers.

Until now, our integration is one-way in the sense that
AIGsolve transfers results to a DPLL based solver. We are
working on symmetric integrations where the solvers bring
in their own strengths, profit from each other and jointly
contribute to the solution of QBF problems.
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