
Reliability-aware Thermal Management for Hard
Real-time Applications on Multi-core Processors

Vinay Hanumaiah
Electrical Engineering Department

Arizona State University, Tempe, USA
Email: vinayh@asu.edu

Sarma Vrudhula
Computer Science Engineering Department

Arizona State University, Tempe, USA
Email: vrudhula@asu.edu

Abstract—Advances in chip-multiprocessor processing capabil-
ities have led to an increased power consumption and tempera-
ture hotspots. Reducing the on-die peak temperature is important
from the power reduction and reliability considerations. However,
the presence of task deadlines constrain the reduction of peak
temperature and thus complicates the determination of optimal
speeds for minimizing the peak temperature. We formulate
the determination of optimal speeds for minimizing the peak
temperature of execution with task deadlines as a quasiconvex
optimization problem. This formulation includes accurate power
and thermal models with the leakage power dependency on
temperature. Experiments demonstrate that our approach is
very flexible in adapting to various scenarios of workload and
deadline specifications. We obtained an 8 ◦C reduction in peak
temperature for a sample execution of benchmarks.

I. INTRODUCTION

To boost performance without a drastic increase in power
consumption, the microprocessor industry has adopted the
multicore strategy. The idea is to increase performance by
parallelizing computation over multiple cores, while operating
each core at a lower power dissipation. The lower power
dissipation of each core is achieved by reducing the complexity
and functionality of each core, and/or operating each core at a
lower frequency and voltage. With continued miniaturization,
industry projects processors with many hundreds of cores in
the near future. The multicore strategy is even being applied
to mobile and handheld battery powered devices.

With hundreds or even tens of cores, it will neither be
practically feasible nor economical to design a package that
will dissipate the maximum possible heat generated by all the
cores running at the maximum frequency. Realistically, the
package will be designed to dissipate close to the average
power dissipation. This has led to investigation of dynamic
thermal management (DTM) techniques, such as dynamic
voltage and frequency scaling (DVFS) [1], [2] and dynamic
thread migration [1], [3]. Since DTM techniques will be used
much more often in multicore than in single core processors,
optimal DTM techniques are critically important to reduce
performance degradation.

This work was supported in part by NSF grant CSR-EHS 0509540, NSF-
IUCRC on embedded systems, and by a grant from Science Foundation
Arizona (SFAz) and Stardust Foundation.

The recent work on DTM for multicores has focused on
optimizing performance (throughput or makespan) [4], [5],
design of closed loop DTM controllers [2] and design space
exploration [6] in the presence of thermal constraints. How-
ever a more critical issue with high performance multicores
will be reliability due to increasing die temperatures. A 10-
15 ◦C increase in temperature can reduce the lifespan of a
device by half [7]. The ITRS has predicted a rapid onset of
significant lifetime reliability problems. It is expected in the
future, processor cost and performance specifications will be
significantly affected by the lifetime reliability and will take
over as the primary factor in the processor design, superseding
performance requirements.

Several researchers have recently focused on DTM targeting
reliability. References [8], [9] proposed models for reliability
estimation at the chip-level and showed that the reliability
can be traded with performance. The authors of [10] pro-
vided an analysis on the trade-off of power consumption
with performance and reliability through the use of various
power management techniques. In [1], a mixed-integer linear
program was used to determine the optimal task schedule to
reduce the peak temperature with task deadlines. A heuristic
was developed in [11] to sequence the tasks on a single-
core processor to minimize the peak temperature with timing
constraints. The authors of [12] evaluated a large number of
techniques to study the effect of job scheduling and power
management techniques on the system reliability.

The above works attempted to address the issue of system
reliability from the DTM perspective and proposed techniques
for optimal task scheduling and sequencing. However, these
previous works do not address the important transient optimal
control of frequencies of the processor. The determination of
these frequencies are complicated by the non-linear cyclic
relation between the leakage power and the temperature. This
determination of frequencies gets even more complicated with
the addition of task deadlines. In this paper, we present the
first quasiconvex programming solution for determining the
speeds of a multi-core processor to ensure that all tasks meet
their deadlines with minimum peak temperature. Experimental
results demonstrate that our approach helps in improving
the lifetime of devices by reducing the peak temperature by
8 ◦C for a sample execution of tasks from SPEC benchmarks.
We also show a practical implementation of our approach with978-3-9810801-7-9/DATE11/ c©2011 EDAA



Ti,b

Package

CpRp

Bl
oc

k 
b

Core 1

T1,1

Pi,b

Core 2
Core n

T1,n

R1,b

Ri,b

R1,n

Fig. 1. Simplified high-level multi-core thermal model.

discrete speed states.

II. THERMAL AND RELIABILITY MODELS

Consider an n core processor with each core executing
a single task (no SMT). Task i begins at time ts,i and
should finish its execution before deadline td,i. Without loss of
generality ts,i ≤ ts,i+1 is assumed. The speed si of core i is
continuous and normalized over [0,1]. Every task is assumed to
run for atleast the die-thermal time constant (few ms). Majority
of scientific workload falls under this case.

Reliability of a core is given by the reliability of the weakest
interconnect in the core. The granularity of our thermal and
reliability analysis is at the level of functional blocks of cores.
Every core has a block which remains the hottest irrespective
of the frequency of operation, called the hottest block. Hence
the reliability of a core can be computed by calculating the
reliability of the hottest block alone. Electromigration (EM)
plays a major role in the interconnect breakdown, thereby
reducing the lifetime of a processor. The mean time to failure
(MTTF) tf,i of core i caused due to EM is given by Black’s
equation [8].

tf,i =
A

jn
i,h

e
Q

kTi,h , (1)

where A is a constant based on interconnect structure, Q is the
activation energy (0.6 ev for Aluminum), ji,h and Ti,h are the
current density and the temperature of the hottest functional
block h in core i. k is Boltzmann’s constant. n = 1 or n = 2
depending on the failure mode. The only issue of relevance of
(1) is that the MTTF decreases exponentially with increase in
the temperature. Thus to maximize the lifetime of a device,
the peak temperature of operation has to be minimized.

HotSpot [13] is used to model the thermal behavior of
processors. HotSpot uses circuit-thermal analogy to model the
heat spreading and storage behavior of processors. Each core
is divided into m thermal block in the die and the thermal
interface material (TIM) according to their functionality, fol-
lowed by spreader and heat sink layers in the package.

It has been observed that the heat conducting ability of
lateral resistances between the thermal blocks are approxi-
mately four times lower than the vertical resistances in the

t

Task 3

Task 2
Task 1

0

Task 4

td,1 td,4 td,2 td,3

1 2 3 4

ts,4ts,2 ts,3

5 6 7

Fig. 2. Creation of slots based on start and end times of tasks.

die and the TIM layers [5]. Based on this observation, the
lateral resistances can be ignored to simplify the analysis
without significant loss in accuracy. Also since our tasks run
longer than the die thermal time constants, the die capacitances
can be neglected. This simplified high-level thermal model is
described in Fig. 1 with Pi,b, Ri,b and Ti,b representing the
power source, the vertical resistance and the temperature of
block b in core i. Rp and Cp represent the lumped package
resistance and capacitance respectively.

The important power and temperature relations of the sim-
plified thermal model are described here [5]. The temperature
Ti,b depends linearly on its dynamic power Pi,b,d and exponen-
tially on its leakage power Pi,b,l. In order to keep the analysis
tractable, the exponential relationship has to be linearized.
This is achieved with the use of piece-wise linearization. Let
ζi,b , (1− ki,bRi,b)−1 be the leakage coefficient, where ki,b

is the slope of the leakage power vs the temperature of block
b in core i. It can be shown that

Ti,b(t) = ζi,b[Tp(t) + (Pl,i,b + si(t)Pd,i,b)Ri,b], (2)

where Tp is the lumped package temperature. The correspond-
ing power consumption of the block is given by

Pi,b(t) = ζi,b(Pl,i,b + si(t)Pd,i,b) + (ζi,b− 1)Tp(t)/Ri,b. (3)

The package temperature Tp is computed by solving the
following ordinary differential equation.

dTp(t)
dt

= −Tp(t)
τp

+
PT (t)
Cp

. (4)

PT (t) =
n∑

i=0

m∑
b=0

Pi,b(t) is the total power consumption of all

blocks in all cores. τp is the package thermal time constant.

III. PROBLEM STATEMENT AND APPROACH

A. Problem Description

Consider an n core processor with each core i executing a
task starting at time ts,i with Ni instructions to be executed
within deadline td,i. Fig. 2 shows an example of a four-core
processor executing four tasks starting and ending at various
times. The slots are numbered in an increasing fashion. Given
this, the problem is to determine the optimal transient speeds
of cores such that the deadline constraints for the tasks are



satisfied while minimizing the peak temperature of operation
Tmax. The problem is formulated as

min
s(t),Tmax

Tmax, (5)

s.t.
dn(t)
dt

= s(t), ∀t, (6)

n(ts) = 0, n(td) = N, (7)
Ti,b(t) = ζi,b[Tp(t) + (Pl,i,b + si(t)Pd,i,b)Ri,b], ∀t, (8)

T(t) ≤ Tmax, ∀t, T(0) = T0. (9)

In the above formulation, the objective is to minimize the
peak temperature of execution while satisfying the deadline
constraints specified by (7), where ni(t) is the number of
instructions completed by task i in time t. The relationship
between the instructions completed n and the core speeds s
is given by (6). ts and td are the vector notations of the start
and the end times respectively. The core speeds s and the peak
temperature Tmax are the variables of optimization. Note that
the cores i vary from 1 to n and the blocks b from 1 to m.
Hence the dimensions of n and s are n×1, while the dimension
of T is nm× 1.

The above optimization is a very challenging problem in op-
timal control theory due to the presence of the boundary con-
ditions and the non-linear constraints. However, the optimal
policy can be determined analytically, whereas the parameters
of the analytical solution must determined numerically. In the
following section we present an outline of how the solution is
constructed.

B. Solution Outline

The entire duration of execution is partitioned into several
time slots based on the task deadlines (see Fig. 2), and the
above optimization problem is solved for each time slot in
three steps.

1) Determine the optimal speed profiles of the multi-core
processor to maximize the throughput (sum of speeds)
for given tasks under a fixed maximum temperature and
no deadline constraints.

2) Solve the unknown parameters of the above speed pro-
files to satisfy the boundary conditions imposed by the
start and the end times of tasks.

3) Find the minimum peak temperature under which Step 2
is still satisfied.

The above steps lead to an optimal solution for the following
reasons. The first step yields a parametric solution which
represents the set of all possible optimal solutions over the
space of all its parameters. The second step finds the subset
of the solutions (characterized by a set of parameters) that
satisfy the boundary conditions. One of those parameters is
Tmax. Among the solutions found in Step 2, the third step
finds the solution that corresponds to the minimum Tmax.

It will be shown later in Section IV-B that the solution
of Step 2 requires the knowledge of the initial package
temperature of the slot in consideration and either the final
temperature of the slot or the number of instructions to be

si(t)

0 ttd,i

1
Ti(t)Tmax

Fig. 3. Typical speed and temperature plots for the optimal makespan
minimization.

completed within the slot. Since the final package temperature
of a slot is also the initial package temperature of the next
slot, knowing one of them is sufficient. It will also be shown
later in Section IV-C that Step 2 is a quasiconvex function
of the initial package temperature of the slot and the peak
temperature Tmax. By quasiconvex, we mean that the function
is unimodal and a unique minimum value. Thus a quasiconvex
optimization problem can be solved to determine the minimum
Tmax. Each of these steps will be explained in detail in the
following sections.

IV. OPTIMAL SOLUTION

A. Optimal Speed Profile for Tasks with no Deadlines and
Constant Maximum Temperature

Here we summarize the results for speed control of tasks in
a multi-core processor to minimize the latest task completion
time (which also maximizes the overall throughput) under a
constant maximum temperature constraint [4]. Note that we
are neglecting all the tasks deadlines, and the maximum speed
is constrained by the maximum temperature alone.

The optimal speed of core i for minimizing the makespan is
the one which maintains the temperature of the hottest block at
the maximum temperature. It can be shown that such a speed
will have the following parametric exponential form.

si(t) = si,0e
− t
τp + si,ss

(
1− e−

t
τp

)
, (10)

where si,0 is the initial speed of core i determined by setting
the temperature of its hottest block (h) Ti,h = Tmax in (2) and
solving for speed si. si,ss is the final steady state temperature
which can be computed by equating the R.H.S of (4) to zero.

This speed curve is shown in Fig. 3. We refer to this policy
as the max-throughput policy.

B. Optimal Speed Profile Satisfying Task Deadlines under
Constant Maximum Temperature

If the speed function in (10) satisfies the task deadlines,
then it is the optimal solution for the problem with deadlines.
In general, the speed function of the max-throughput solution
need not be optimal in the presence of deadlines. This is
demonstrated with the aid of Fig. 4. Consider a sample
execution of the four tasks, where task 2 has its deadline
at end of the slot and dissipates higher power than task 1.
Fig. 4(a) shows the max-throughput execution of four tasks
within a slot. Task 1 executes at a higher frequency than task
2 due to its lower power dissipation and thus maximizing
the throughput while satisfying the constraints on the peak



(a) (b)

1
2

3
4

1

2
3

4

s s

TT

Fig. 4. Comparison of (a) max-throughput policy with (b) the optimal policy
in meeting the tasks deadlines within a slot.

temperature. However, due to slower execution of task 2, task
2 deadline is violated. This can be avoided by selectively
executing task 2 faster as shown in Fig. 4(b). The problem is
to determine the core speeds optimally such that the deadlines
are satisfied. Note that this modification in speed of task 2
affects the speeds of other tasks. We call the task with nearest
deadline as the critical task (task 2) and the rest of the tasks
as non-critical tasks.

1) Speed of the critical task: Since the critical task i
requires the maximum execution speed, its speed function is
determined by the max-throughput policy as given by (10).
In (10), the initial speed si,0 is fixed by the initial package
temperature. Hence we only need to determine the steady-state
speed si,ss such that the task i meets its deadline.

Let l be the current slot, which extends from time tl−1 to
tl. Let N ′i be the remaining number of instructions of the
critical task i to be completed in the duration of the slot.
Integrating si over the slot duration gives N ′i , i.e N ′i = Ni −∫ tl−1

0
si(t)dt, where Ni is the original number of instructions

to be completed. Substituting si from (10),

(si,ss−si,0)τi

(
e
− tl,iτi − e−

tl−1,i
τi

)
+si,ss(tl,i− tl,i−1) = N ′i .

(11)
The above equation is solved for si,ss and substituted in (10) to
obtain the critical task speed. The non-critical tasks speeds are
determined from the remaining total power budget (total power
budget - critical task power). Note that the total power budget
is fixed due to the bounds on the maximum temperature.

2) Speeds of non-critical tasks: Since the critical core runs
at the maximum thermally feasible speed, the temperature of
its hottest block will be at Tmax. Substituting Ti,h = Tmax in
(2), where h denotes the hottest block, gives the corresponding
package temperature for every instant of time.

Tp(t) = [Tmax/ζi,h − (Pl,i,h + si(t)Pd,i,h)Ri,h], ∀t. (12)

The differential equation (4) must now be solved with Tp

given by (12). This is solved numerically by partitioning the
current slot l into small scheduling intervals of length tsched.
The length of these scheduling intervals are of the order of
the die thermal time constant (few ms). Note that the speed
is assumed to be constant in these small intervals. Taking the

Input: Tp0, Tmax, td or Tpf (final pkg. temp)
Output: Core speeds s
begin

Run max-throughput policy;
if deadline constraint for critical task i is met then

Accept s returned by the policy;
else

Determine si with constraint td,i from (11);
Obtain Tp(t) from (12);
for every tsched do

Find approx. dTp(t)
dt over tsched;

Substitute dTp(t)
dt in (4) to get PT (tsched);

Compute Pi(tsched) from (3);
P ′T (tsched) = PT (tsched)− Pi(tsched);
for task c from i+ 1 to n do

Find Pc(tsched) with Tc,h = Tmax in (3);
P ′T (tsched) = P ′T (tsched)− Pc(tsched);
if P ′T (tsched) ≤ 0 then

sc, . . . , sn = 0; break;
end

end
end

end
end

Procedure find_spd_slot

difference of the package temperature between adjacent time
intervals in (12) gives an approximation to dTp(t)

dt , which can
then be substituted in (4) to get the total power consumption
PT (tsched) over that time interval.

Let P ′T (tsched) = PT (tsched)−Pi(tsched) be the remaining
total power budget, where Pi is the power consumption of
the critical task i determined from (3). This remaining power
budget needs to be allocated among the remaining tasks i+ 1
to n in such a way that the tasks with earlier deadlines are
allocated the maximum share. To allocate this power budget,
we first determine the maximum thermally feasible speed for
task i + 1 - the next critical task. This is obtained by setting
Ti+1,h = Tmax and solving for si+1 in (2). This will dissipate
Pi+1 amount of power which is computed from (3). This
power is now subtracted from P ′T (tsched) and the remaining
total power is allocated to the remaining tasks by repeating
the above steps for task i + 2 and so on. This procedure is
continued until all the power budget has been allocated. It is
possible that a task may not be allocated any power, in which
case that task does not execute in that interval.

The above procedure is applicable even in the case of multi-
ple tasks with same deadline. In this case, the speed function
curve is derived for only one of the critical tasks and the
resultant total power is distributed among the remaining tasks
including the other critical tasks, as explained before for non-
critical tasks. The overall procedure of determining the feasible
speeds satisfying both thermal and deadline constraints within
a slot is summarized in Procedure find_spd_slot.



t

Task 1
Task 2

0 td,1 td,2

1 2 3

ts,2
Tp1

Fig. 5. Two task example to demonstrate the quasiconvexity of (14).

C. Quasiconvex Programming Solution for Minimizing Peak
Temperature

From the previous section we know how to determine
the optimal core speeds to satisfy task deadlines within a
slot. We now need to determine the global minimum peak
temperature such that all tasks satisfy their deadlines. We note
that in order to determine the minimum peak temperature, the
initial package temperature of each slot has to be determined
optimally. This is necessary as the optimal core speeds in each
slot are guided by the initial package temperatures. We for-
mulate the problem of determining the optimal initial package
temperatures of slots and the minimum peak temperature as a
quasiconvex optimization problem.

max
Tp,Tmax

Tmax, (13)

s.t. s = find_spd_slot(Tp,l, Tmax), ∀l, (14)
Tp ≤ Tmax, Tp(0) = Tp0. (15)

Here Tp,l is the initial package temperature of slot l. In
the interest of clarity and lack of space, the proof of the
quasiconvexity of the above formulation is omitted.. It is
trivial to show that the objective (13) is quasiconvex. Proce-
dure find_spd_slot finds a feasible solution for Formu-
lation (6) – (9) for a slot l. We give an intuitive explanation
for the quasiconvexity of Procedure find_spd_slot in
(14) by considering a two task scenario with start and end
times as shown in Fig. 5. In this case, there is only one
package temperature Tp1 to be determined. Let the optimal
T ∗p1 ∈ [Tp1,min, Tp1,max]. Consider Tp1 = Tp1,max + ε, where
ε is any small value, violates the deadlines in either slot 2 or
3. This can be due to the lower initial speed in slots 2 and
3 caused by higher Tp1, which affects the completion times
of task 1 and 2. Increasing ε to any higher value will only
reduce the initial speed in slot 2 and 3 further. Similarly on
the other hand, consider Tp1 = Tp1,min−ε leading to deadline
violation of task 1 due to lower final speed of task 1 in slot 1.
Increasing ε to any higher value will only decrease the speed
of task 1 in slot 1. Thus there is a single continuous range of
satisfiable values for Tp1. Hence (14) is quasiconvex over Tp1.

V. EXPERIMENTAL RESULTS

We experimentally verify our policy by simulating SPEC
benchmarks on a multi-core version of Alpha 21264.
HotSpot [13] and PTScalar [14] were used for thermal and
power modeling respectively. The dynamic and the leakage
power were limited to 230 W and 60 W respectively. The
scheduling interval was set at 10 ms.

Scenario Parameters bzip gap mcf twolf

1

Instructions (billions) 220 80 296 308
Start times (s) 0 10 24 33
End times (s) 60 45 124 130

Act. end Opt. policy 58.7 34.6 122.2 130
times (s) max-tput. 51.4 31.7 111.3 119.3

2

Instructions (billions) 220 80 296 308
Start times (s) 0 10 24 33
End times (s) 45 30 104 112

Act. end Opt. policy 45 29.4 101.7 109.8
times (s) max-tput. 51.4 31.7 111.3 119.3

TABLE I
CHARACTERISTICS OF TASKS USED IN THE EXPERIMENTS.

A. Optimal Policy vs Max-throughput Policy

Here we compare our proposed optimal policy with the max-
throughput policy [4] for two scenarios listed in Table I. The
tasks, their start times, deadlines and the actual end times
under both the policies are also listed in the table. For the
sake of clarity, only four tasks are used in the experiments,
although our method works for any number of cores and tasks.
Consider the execution of Scenario 1 under both the optimal
procedure and the max-throughput method as shown in Figs. 6
and 7 respectively. We find that both the policies satisfy the
deadlines, but our optimal policy executes the tasks at a lower
temperature of 102 ◦C, while the max-throughput policy exe-
cutes the tasks under the nominal temperature of 110 ◦C until
completion. This reduction in the peak temperature can be
even lower if the task deadlines are relaxed much further. It is
interesting to note that the task gap finishes its execution early
at 34.6 s under the optimal policy when its actual deadline is
45 s. This is because, finishing the task gap any later would
lead to deadline violation of atleast one of the tasks with future
deadlines with 102 ◦Cas the maximum temperature.

Next we execute tasks from Scenario 2 under both the max-
throughput policy and the optimal policy as shown in Fig. 8
and Fig. 7 respectively. Since the max-throughput policy only
tries to maximize the overall completion of instructions it
results in the same core speeds for a given set of instructions
irrespective of any deadlines (for both Scenarios 1 and 2) and
hence the same plots. From the figures, we see that the max-
throughput policy fails to satisfy the deadlines for tasks bzip,
gap and mcf as it is not able to increase the peak execution
temperature beyond 110 ◦C, while our optimal policy executes
the tasks optimally at the peak temperature of 118 ◦C. The
method also selectively, but optimally increases the speeds
of the critical tasks to ensure that their deadlines are met.
This demonstrates the flexibility and also the optimality of
our proposed method in adopting to different tasks scenarios.

Fig. 9 shows the practical speed implementation of the opti-
mal scheduling policy for the workload specified in scenario 2
with eight speed states. The optimal speeds are discretized by
selecting the highest discrete speed state that is feasible under
the temperature constraint at every instant. Note that due to
the discretization of speeds, which is an approximation of the
optimal solution, the peak temperature increases by 4 ◦C.



0 10 24 33 60 130
0

2

4
5

Time (s)

Sp
ee

d
(G

H
z)

bzip gap mcf twolf

0 10 24 35 60 122
35
60
80

102

Time (s)

Te
m

pe
ra

tu
re

(◦
C

)

Fig. 6. Optimal speeds and temperatures for Scenario 1.

0 10 24 33 52 111
0

2

4
5

Time (s)

Sp
ee

d
(G

H
z)

bzip gap mcf twolf

0 10 24 32 52 119
35
60

90
110

Time (s)

Te
m

pe
ra

tu
re

(◦
C

)

Fig. 7. Max-throughput speeds and temperatures for Scenario 1 and 2.

VI. CONCLUSION

High operating temperatures combined with device scaling
have led to dwindling of lifetime reliability. In this paper,
we propose to maximize the lifetime reliability of a many-
core processor executing a set of tasks under hard deadline
constraints. We formulate the problem as a quasiconvex op-
timization problem to minimize the peak temperature. Our
experimental results demonstrate that our method can adopt to
various task scenarios and derive optimal speeds that result in
reduced execution temperature. Our work finds application in
early phase design space exploration, offline optimal frequency
allocation and lifetime reliability optimization.

REFERENCES

[1] T. Chantem, R. P. Dick, and X. S. Hu, “Temperature-aware Scheduling
and Assignment for Hard Real-time Applications on MPSoCs,” in Proc.
DATE, 2008, pp. 288–293.

[2] Y. Wang, K. Ma, and X. Wang, “Temperature-constrained Power Control
for chip Multiprocessors with Online Model Estimation,” SIGARCH
Comput. Archit. News, vol. 37, pp. 314–324, 2009.

[3] M. D. Powell, M. Gomaa, and T. N. Vijaykumar, “Heat-and-run:
Leveraging SMT and CMP to Manage Power Density through the
Operating System,” in Proc. ASPLOS, 2004, pp. 260–270.

0 10 24 33 45 102
0
2
4
6

Time (s)

Sp
ee

d
(G

H
z)

bzip gap mcf twolf

0 10 29 45 112
35
60
90

118

Time (s)

Te
m

pe
ra

tu
re

(◦
C

)

Fig. 8. Optimal speeds and temperatures for Scenario 2.

0 10 24 33 45 102
0
2
4
6

Time (s)
Sp

ee
d

(G
H

z)

bzip gap mcf twolf

0 10 29 45 112
35
60
90

122

Time (s)

Te
m

pe
ra

tu
re

(◦
C

)

Fig. 9. Discretization of Optimal speeds and temperatures for Scenario 2
with eight speeds.

[4] V. Hanumaiah, S. Vrudhula, and K. S. Chatha, “Performance Optimal
Speed Control of Multi-Core Processors under Thermal Constraints,” in
Proc. DATE, 2009, pp. 288–293.

[5] R. Rao and S. Vrudhula, “Performance Optimal Processor Throttling
under Thermal Constraints,” in Proc. CASES, 2007, pp. 257–266.

[6] M. Monchiero, R. Canal, and A. González, “Power/performance/thermal
Design Space Exploration for Multicore Architectures,” IEEE Trans.
Parallel and Distributed Sys., 2008.

[7] R. Viswanath et al., “Thermal Performance Challenges from Silicon to
Systems,” Intel Technology Journal, vol. 4, pp. 1–16, 2000.

[8] J. Srinivasan et al., “The Case for Lifetime Reliability-Aware Micropro-
cessors,” SIGARCH Comput. Archit. News, vol. 32, p. 276, 2004.

[9] E. Karl et al., “Reliability Modeling and Management in Dynamic
Microprocessor-based Systems,” in Proc. DAC, 2006, pp. 1057–1060.

[10] K. Waldschmidt et al., “Reliability-Aware Power Management Of Multi-
Core Systems (MPSoCs),” in Proc. Dynamically Reconfigurable Archi-
tectures, 2006.

[11] R. Jayaseelan and T. Mitra, “Temperature Aware Task Sequencing and
Voltage Scaling,” in Proc. ICCAD, 2008, pp. 618–623.

[12] A. K. Coskun et al., “Evaluating the Impact of Job Scheduling and
Power Management on Processor Lifetime for Chip Multiprocessors,”
in Proc. SIGMETRICS, 2009, pp. 169–180.

[13] W. Huang et al., “HotSpot: A Compact Thermal Modeling Method for
CMOS VLSI Systems,” IEEE Trans. VLSI Sys., vol. 14, pp. 501–513,
2006.

[14] W. Liao, L. He, and K. M. Lepak, “Temperature and Supply Voltage
Aware Performance and Power Modeling at Microarchitecture Level,”
IEEE Trans. Computer-Aided Design, vol. 24, pp. 1042–1053, 2005.


