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Abstract—Increasingly intelligent energy-management and
safety systems are developed to realize safe and economic
automobiles. The realization of these systems is only possible
with complex and distributed software. This development poses a
challenge for verification and validation. Upcoming standards like
ISO 26262 provide requirements for verification and validation
during development phases. Advanced test methods are requested
for safety critical functions. Formal specification of requirements
and appropriate testing strategies in different stages of the devel-
opment cycle are part of it. In this paper we present our approach
to formalize the requirements specification by test models. These
models serve as basis for the following testing activities, including
the automated derivation of executable test cases from it. Test
cases can be derived statistically, randomly on the basis of
operational profiles, and deterministically in order to perform
different testing strategies. We have applied our approach with a
large German OEM in different development stages of active
safety and energy management functionalities. The test cases
were executed in model-in-the-loop and in hardware-in-the-loop
simulation. Errors were identified with our approach both in the
requirement specification and in the implementation that were
not discovered before.
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ACRONYMS & ABBREVIATIONS

(A)SIL (Automotive) safety integrity level
AUTOSAR  AUTomotive Open System ARchitecture
TDD Test Driven Development

FMEA Failure modes and effects analysis

HIL Hardware-in-the-loop

MCUM Markov-Chain Usage Model

MIL Model-in-the-loop

MISRA Motor Industry Software Reliability Association
SIL Software-in-the-loop

SUT System-under-test

TUM Timed Usage Model

I. INTRODUCTION

Software is increasingly contributing to the functionality of
embedded systems in modern vehicles. The verification and
validation of these increasingly complex systems requires
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methods that cope with this development. Forthcoming stan-
dards like ISO-26262 [1] state requirements on the meth-
ods applied in the design, implementation, verification and
validation of safety critical embedded systems. The MISRA
guidelines [2] substantiate this by prescribing the use of
models for safety critical software and hardware. A process
that follows the ideas of test driven development (TDD) [3]
and model-based testing could satisfy these requirements to a
large extent. Although in industry there is often still a lack of
formal requirement specification and model-based testing. The
reasons are that specifications are often informal and therefore
there is no basis for an automated generation of test cases.
On account of this often they are, moreover, incomplete and
ambiguous. Other reasons are that often there is no adequate
tool support or available modeling languages are too general.
The contribution of this paper is how formal specification
and model-based testing could be applied in industry. The
remainder is organized as follows: In section II an overview of
related work is given. The established processes and methods
in the implementation and integration phases at the OEM
are described in section III. Following in section IV our
approach and the enhancement of the existing methods are
presented. A selection and results of projects that we have
conducted following our approach in the development phases
of MIL- and HIL testing is described in section V. The
requirements for an active safety pre-sensing function and
energy-management were formally described by models which
served as basis for the following testing activities. The results
were compared with those of the traditional method. We
present our conclusions in section VL.

II. RELATED WORK

The idea of test-driven development [3] is to specify the test
cases for the system consequently before the implementation
of the system-under-test (SUT). Benefits of this approach
are that it is less likely to forget about test cases because of
possible knowledge of the implementation or of a lack of
time. Typically the same language is used in TDD for the
specification of the test cases as well as for the implementation
of the system. This way it should be avoided that developers
have to learn an additional programming language. Tools such
as slunit [4] or SystemTest [5] follow this principle. However,



this procedure is not feasible in practice w.r.t. the maintanance
and enhancement of existing test cases. Especially in the case
of changing input- and output-signals and reuse of common
aspects in between test cases this principle of TDD is
hardly practical in industry. AUTOSAR [6] does not provide
neither suitable tools nor a method to verify models in early
stages of the development [7]. It provides only guidelines to
check the conformance of the models w.r.t. the AUTOSAR
standard. Also when it comes to integration testing on HILs,
AUTOSAR does not provide tools or methods to verify the
systems.

ISO-26262 itself requires methods according to the automotive
safety integrity level (ASIL) in which the functionality is
classified [1]. It also does not prescribe concrete tools and
methods to fulfill the stated requirements.

In our approach we introduce a Timed Usage Model (TUM).
TUMs are based on Markov-Chain Usage Models (MCUM),
extended by distributions of time. Our approach, which over-
comes the drawbacks of TDD, bases on the idea of [8] and is
further described in section IV.

III. EXISTING PROCESSES

In the following the established methods and tools for the
verification of implementation models and integration testing
are presented.

A. MIL-testing

The tool chain ASTunit with TSdsl, which is used in the early
development phase of MIL-testing, consists of two parts. The
first is the application TSdsl which allows the processing of
instances of the test specification language TSdsl. The second
is the tool ASTunit, which is a further development of slunit.
TSdsl is a platform independent test specification language. It
is the basis to generate platform dependent test environments.
The language and the tool were developed with MontiCore [9].
The following aspects were especially considered in the design
of the language:

« platform independent representation of test specifications.
Hence it is applicable in different phases of the develop-
ment cycle.

o changing data types for inputs and outputs during the
design phase.

« traceability between different versions of test specifica-
tions.

« modeling of variability to support software product lines.

An instance of a test specification comprises four parts. The
first part specifies the ports of the SUT. The second part can
be used to declare variables that are used in the third part,
which is the abstract test specification. The forth and last
part are concrete test specifications. In figure 2 an example
test specification in TSdsl is given. As regards content a seat
belt warning system in a standard- and premium variant shall
be tested. The system should warn the car passengers if a
velocity of 3kmph is exceeded and the driver or codriver has

not fastened his seatbelt. In the premium variant this should
be signaled in addition accoustically.
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Fig. 1. Test Process ASTUnit

Based on the instances platform dependent code is gener-
ated (cp. figure 1). Therefore it is possible in early phases
of the development cycle to generate executable scripts in
MATLAB from the .ts-files. The generated scripts contain
all information to generate the graphical test environment
in MATLAB/Simulink for all test cases containted in the
test specification. The graphical test environment is executed
with the tool ASTunit, which enables the automation of
continuous integration systems. With ASTunit the developer
can interactively execute the test cases in MATLAB/Simulink
and monitor the stimulation of the SUT and evaluate it;
alternatively the test specification can be executed completely
automatically without interaction. In this case the results are
available in an XML-file, which can be viewed in a web-
browser. The automation is depicted in the yellow box in
figure 1.

The textual test specification (cp. figure 2) can be put under
version control. Thus, different versions can be compared and
if needed manually changed or extended.

B. HIL-testing

In the following the test automation Extended Automation
Method (EXAM) is introduced. EXAM is applied within the
Volkswagen AG in the development phase of integration
testing on HIL-simulators.

a) EXAM Testing Process: — Test automation in the
scope of EXAM means the automated generation of platform
dependent code and the execution of the derived test suite
without human interaction. The EXAM testing methodol-
ogy [10] defines a process, roles, and tools used to

1) model test cases graphically and platform independently
in UML. Sequence diagrams are used for this task and
build the formal basis for test case specifications.



testsuite "SimpleTestSpecification" {
system—under-test "MySUT" {
model = "BeltLockWarning.mdl";
duration = 0 - 20.0;
step = 0.01;

sysin(l, "BeltLockDriver");
sysin (2, "BeltLockPassenger");
sysin (3, "EgoSpeed");

sysout (1, "WarningLEDBeltsUnlocked");
variant "Premium" {
sysout (2, "WarningGongBeltsUnlocked");
}
}
constants {
UNLOCKED = 0;
LOCKED = 1;
}
testcasetemplate "NoWarningTemplate" ({
description = "No warning if both belts are locked.";
out ("BeltLockDriver", LOCKED) ;
out ("BeltLockPassenger", LOCKED);
out ("EgoSpeed",

[0;10): O,

[10;15): linear(0;5),

[15;%): 5);

assert ("WarningLEDBeltsUnlocked",
[0;%): signal == 0);

variant "Premium" {
assert ("WarningGongBeltsUnlocked",
[0;%): signal == 0);
}
}

testcase "NoWarn" bases on "NoWarningTemplate" {

description = "Realization of the template.";
}
testcase "DriverNotLocked"
bases on "NoWarningTemplate" {
description = "Warning when driver is not locked.";
tags = "shorttest", "releasetest";

out ("BeltLockDriver", UNLOCKED) ;
assert ("WarningLEDBeltsUnlocked",
[0;13]: signal == 0,
(13;*): signal == 1);
variant "Premium" {
assert ("WarningGongBeltsUnlocked",

[0;13]: signal == 0,
(13; %) : signal == 1);
}
}
}
Fig. 2. Test Specification in TSdsl

2) generate platform dependent test scripts automatically
from the formal description in UML.

3) to use sharable test automation functionalities from a
structured database.

The majority of test cases is automatically executed on
Hardware-in-the-loop (HIL) systems.

C. Drawbacks of existing processes

In both existing processes each single test case must be
invented, developed, and specified by an engineer. This pro-
cedure has many drawbacks, e.g., the estimation of the test
coverage proves to be a very hard task. Moreover, it is
unavoidable that one or more important test scenarios remain
undiscovered and it is hardly possible to systematically derive
test suites that meet the requirements in the automotive domain
in an optimal manner.

As test cases have been manually created and selected for
automated execution by test designers until now, the decision
which test cases to create and execute within time constraints

remained in the hands of the engineer. Thus, this decision has
not been done systematically on the basis of an unambiguous
model. Furthermore, as the requirement specification is not
formalized, it is hard to reflect the impact of changes in the
requirements to the existing test cases.

To overcome these drawbacks we introduced our model-driven
approach which is presented in section IV.

IV. MODEL BASED APPROACH

We introduce a Timed Usage Model (TUM) which serves as
a formal requirement specification and is the basis for all
following test activities. The model provides the possibility
to describe timing and data dependencies of the system to
be tested [11]. The test planning and test case generation is
supported by the models. The appliance of models allowed the
systematic generation of test cases and the assessment of the
significance of the conducted test activities with respect to the
coverage of requirements, from which they are derived.
TUMs are based on Markov Chain Usage Models (MCUM) as
they are used in the field of software testing [12], [13]. Con-
cepts from the performance analysis of network systems [14]
can be applied to TUMs to derive indicators for the test
planning. Hence, dealing with the increasing time criticality
of functionality is directly supported by the model from which
the test cases are derived.

A. Definition
A TUM consists of:

o A set of states S = {sq,..
usage states.

e A set of arcs A, representing state transitions. An arc
from state s; to state s; is denoted by a;;, multiple arcs
between s; and s; are not allowed.

o Aset of stimuli Y on the SUT. A stimulus y; is assigned
to each arc.

o The transition probability from state ¢ to state j, denoted
by p;; for an existing arc a;;. Otherwise the transition
probability is p;; = 0. The transition probabilities obey
the conditions 0 < p;; < 1 and

., Sn}, that represent possible

> piy=1 Vi=1,...n (1)
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states that the probabilities of all outgoing arcs from a
certain state s; must sum up to one.

e A probability density function (pdf) ¢; to reflect the
sojourn time is assigned to each state s;.

o A pdf of the stimulus time ¢;; is assigned to each arc
ai;. This pdf describes the duration of the execution of a
stimulus on the SUT. The concept provides the possibility
to characterize the stimuli by its typical variation in time,
that can be fix or variable and vary from very small to
large values.

In Figure 3 an example of a TUM as a directed graph is
presented.
Two states have special characteristics, that are:
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Fig. 3. Timed Usage Model

o State sq is the sole initial state (also: start state).

o State s, is the final state (also: end state).
All paths from the start to the final state are valid test
cases. The transition probabilities p;; from state s; to state
s; as well as the values of the timing attributes ¢; and
t;; can be stored and exchanged by means of a matrix
P. This way different user types can be distinguished w.r.t.
the appliance of stimuli and the timing of and between stimuli.

The statistical sampling of test cases can be guided by
different usage profiles, that represent different operational
conditions of the SUT.

B. Creation of the model

The effect of invocation of functionalities depends much on
timing dependencies and there is also a dependency of the
functionality to the previously applied data. So to summarize
purely functional testing is not sufficient. It is necessary to
consider:

o Timing dependencies

« Data dependencies

— Of the same datum
— Between different data

These dependencies may exist in any combination and must
therefore be considered in testing. As it is not reasonable and
possible to test all possible values and dependencies they must
be modeled in a manner that provides the basis to derive
significant test cases. We achieved this by partitioning each
possible input into functional equivalence classes.
A functional equivalence class is specified unambiguously by
the stimulus itself, by the range of the input values, and
by the timing characteristics of the stimulus. Using Timed
Usage Models it is possible to describe timing dependencies
such as not earlier than and not later than [15]. This way
it is possible to classify the possible usage into functional
equivalence classes, including non-functional aspects like data
characteristics and timing. The TUM makes it possible to
describe timing dependencies not only by constant values.
Additionaly the range and shape of the occurence distribution
can be specified.

C. Test Case Generation

Test cases can be sampled from the model via random walk
using the probabilities. It is also possible to take the graph

abstraction of the model and to apply e.g. deterministic al-
gorithms for the sampling of test cases. In the following the
random walk algorithm is presented, that takes the model as
stochastic source for the sampling of test cases. We obtain the
values p;;,t;,1;; from the usage profile P that is assigned to
the model. An overview is given in figure 4.
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Fig. 4. Test Case Generation from Test Model in Combination with Reference
Models

V. PROJECTS

The model-driven approach was introduced in the stages of
MIL and HIL testing to extend the existing processes. In fig-
ure 5 the extension is presented using the example of EXAM.
The first step is to derive the test model from the requirements.
The requirements are stored in a requirement management
system in natural language. Guidelines with design patterns
were elaborated how to formalize the requirements into the
TUM [16]. The resulting test model serves as basis to derive
test suites with different strategies according to different test
aims.

A. MIL - Active Safety System

The test specification language TSdsl is the interface between
the test models and the SUT in MATLAB/Simulink. M-scripts
were called from the test model during test case generation
that wrote the output signal vectors and the reference vectors.
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and Test Stopping Criteria

These vectors were automatically transformed into a test suite
specification in TSdsl.

We applied the presented method in the predevelopment of an
active safety system. The system conditions the passengers in
critical situations w.r.t. the longidutinal dynamics and vertical
dynamics in the seat by applying shortening of the seat belt in
dependence of the occupancy. In doing so the effect of passive
safety systems like window-bags should be optimized.
During the creation of the test model the requirements, which
are stored in DOORS, were analysed. The analysis is done
automatically during the creation of the model, in which the
requirements are put into a unique and formal description.
Two independent behaviour dimensions were identified for
the system and modeled in the state space of the TUM.
Between the states of the model the stimuli are defined, e.g.
increasing or decreasing acceleration and changing of the
braking-pressure. In addition to the stimuli sequences the set
of expected responses was described with the model. For
each possible path through the model and hence each pos-
sible stimulus sequence taking into consideration the timing
dependencies the expected behaviour of the SUT is defined.
In order to be able to obtain an indicator about the quality of
the SUT an executable test environment in MATLAB/Simulink
was automatically generated from the model. We used the
strategies provided by Alldtec Testor for this task. The gener-
ated TSdsl testsuite specification can be used by the developer,
as described in section III, for interactive verification of the
SUT w.r.t. its transitions between states and dataprocessing.
The presented method allowed the systematic analysis of the
requirement specification of the system. Inconsistencies of
parametrizable features of the system could be identified and
clarified during the creation of the model. Furthermore, with
the appliance of the presented approach, four usage scenarios
could be identified that were not tested in the existing test suite
which comprised 127 test cases. The new test cases revealed
a faulty transition in the implementation model of the SUT.
This faulty transition could then be easily identified and fixed.

Because of the extended method the requirements could be
clarified, the test coverage could be increased and a previously
undiscovered error in the implementation could be identified.

B. HIL - Energy Management Function

The energy management monitors the energy consumption
of components and health status of energy supplies. It has to
assure that enough power is available to maintain the operation
of all safety critical functionalities under all conditions. When
the available energy gets critical it requests the start of
generators such as the engine. For this decision the remaining
energy is predicted.

The requirements specification of the energy management was
described in natural language text, drawings, and tables that
were structured in a requirement management system.
Furthermore test cases that had been already specified manu-
ally before the creation of the usage model were available. So
there was a basis to evaluate the manually created test cases
w.r.t. the automatically generated test cases.

1) Creation of the model: During the creation of the
model the requirements were analyzed and brought into an
unambiguous, unique representation. The creation of the
model helped to clarify the requirements. Deficiencies in the
requirements could be identified such as e.g. usage scenarios
in which it was not clearly specified how the system should
behave. Function responsibles were involved to clarify these
issues. In the end, the system was described by the usage
model in a complete and traceably correct manner.
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Fig. 6. Detail of Test Model for Energy Management

The final model consisted of 403 states and 520 transitions.
The expected average length of a test case was 75 transitions.
As the timing information can be stored in the model the
testing time can be estimated for each test case.

In figure 6 a top level detail of the model is presented. Scenar-
ios that affect different aspects of the system are grouped by
macrostates. By means of the hierarchisation the model is kept
well-arranged. Usage scenarios that are of interest at different
usage states can be referenced several times.



The set of existing test cases for the functionality was imported
and taken into the requirements library of the model editor
tool. This way it was possible to associate the existing test
cases with the corresponding paths in the model. Later a test
suite was generated to cover all existing test cases.

2) Generation of test cases: Test cases were automatically
generated from the model.
In addition, previously manually defined test cases were im-
ported into the model. The existing test cases were linked to
the corresponding paths in the model. This way the coverage
of the existing test cases could be assessed w.r.t. the formal
requirement specification, provided by the model.
The existing test suite, which comprises 23 test cases, was
analyzed w.r.t. the coverage of possible usage scenarios. The
figures are presented in table I. Moreover, the existing set of
test cases covered only 46.64% of all possible state transitions.
The existing set of test cases is not sufficient to cover all
requirements, because possible paths derived from the require-
ments are not taken.
We automatically derived a testsuite of 23 test cases in order
to compare them with the 23 manually created test cases. The
results are presented in Table I. The automated generated test
cases achieve a higher coverage w.r.t all model elements. The
coverage of transitions, to which the stimuli are assigned, is
with 57.53% significantly higher than the coverage of 46.64%
that is achieved by the manually created test cases. This result
shows that on the basis of model driven test case generation the
test case generation is optimized in comparison to the manual
creation of test cases.

Coverage of Manual | Automated

23 Test Cases

States 52.70% 63.72%

Transitions 46.64% 57.53%

Inputs 23.96% 33.33%

TABLE I
COVERAGE OF MANUALLY AND AUTOMATICALLY GENERATED TEST
CASES

This is an important aspect, as testing time is scarce in industry
and should be used as efficiently as possible. Flaws could be
already identified during the creation of the model. These flaws
were discovered not until a single test case had been executed.

VI. CONCLUSION

The integration of increasing complex and distributed embed-
ded systems in road vehicles poses new challenges to veri-
fication and validation. Forthcoming standards such as ISO-
26262 explicitly state requirements to the methods applied
during the development of safety critical functions. We applied
Timed Usage Models to enhance the development methods in
the development and integration phase at a German OEM.
An active safety system was verified by our approach. Flaws
in the requirements could be identified. Furthermore, a faulty
transition in the implementation could be identified and fixed
that was not discovered by the test suite that was derived by
the established method.

We applied our approach also in the stage of integration
testing. The energy management functionality for the decision
making of the Start-Stop system was described formally by
the model. The model served as basis for the validation of
the embedded electronics of the energy management and to
control the engine. During the creation of the model the
requirements were clarified. The test suites to be carried out
for the validation of the embedded electronics were improved
by automatically generated test suites. The significance of the
test cases could be assessed. This is hardly possible without a
unique description in form of a model.

Our next steps comprise the evaluation of the appliance of
the presented method through the development stages of the
whole V-model. Our aim is to be able to reuse the models
that we have created in the development phase of MIL-testing
for the integration tests on the HIL simulator. Furthermore
we examine how the presented approach complies with the
requirements of ISO-26262.
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