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Abstract—Detecting and reacting to faults is an indispensable ca-
pability for many wireless sensor network applications. Unfortunately,
implementing fault detection and error correction algorithms is chal-
lenging. Programming languages and fault tolerance mechanisms for
sensor networks have historically been designed in isolation. This is
the first work to combine them. Our goal is to simplify the design
of fault-tolerant sensor networks. We describe a system that makes
it unnecessary for sensor network application developers and users to
understand the intricate implementation details of fault detection and
tolerance techniques, while still using their domain knowledge to support
fault detection, error correction, and error estimation mechanisms. Our
FACTS system translates low-level faults into their consequences for
application-level data quality, i.e., consequences domain experts can
appreciate and understand. FACTS is an extension of an existing sensor
network programming language; its compiler and runtime libraries have
been modified to support automatic generation of code for on-line fault
detection and tolerance. This code determines the impacts of faults on
the accuracies of the results of potentially complex data aggregation and
analysis expressions. We evaluate the overhead of the proposed system on
code size, memory use, and the accuracy improvements for data analysis
expressions using a small experimental testbed and simulations of large-
scale networks.

I. INTRODUCTION

This work is part of a project that aims to develop easy-to-use pro-
gramming languages for novice programmers in order to open sensor
network design to application experts, such as geologists, biologists,
and farmers, who generally have little programming experience.

Programming a wireless sensor network is essentially the design
of a resource-constrained distributed software system operating on
fault-prone sensor nodes and wireless links. It can therefore require
expertise in distributed embedded system design. High-level sensor
network programming languages [1]–[6] can simplify the design of
sensor networks; programmers can ignore low-level implementation
details and focus on application-level logic. Our previous study has
demonstrated that with a compact and high-level language, even
novice programmers can specify real sensor network applications
correctly and efficiently [7], [8]. Although many sensor network
programming languages spare designers from explicitly describing
low-level details such as data transmission and network topology
management, support for fault detection and error correction is
seldom considered.

It is important for a sensor network program to be capable of
detecting and reacting to faults. Sensor nodes are composed of fault-
prone components and they often operate in harsh environments.
Experience from prior deployments [9]–[11] has demonstrated that
deployed nodes can fail or produce erroneous results. A fault is an
incorrect state of hardware or software resulting from failures of
components, physical interference from the environment, or incorrect
design. For example, a sensor node may experience a fault when
water leaks through its package and damages sensors. A system
failure occurs when faults prevent the system from providing a
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required service. Embedding fault detection, fault recovery, and
error estimation functionalities in a program makes it more robust
and allows more accurate interpretation of data gathered by the
application.

Many researchers have proposed methods for fault detection and
fault correction for sensor networks [12]–[17]. These technologies
may be readily used by experienced sensor network developers.
However, it requires tremendous efforts for novice programmers to
learn and use these techniques, especially in the context of wireless
sensor network design.

I.A. Goals and Contributions

Reliability is a central concern for wireless sensor networks,
and developing fault-tolerant distributed applications is challenging,
especially for those with professions other than software engineering,
i.e., most people with a need for distributed sensing. Our goal is
to combine high-level programming languages and automatic fault-
aware code transformation techniques to empower novice program-
mers to develop sensor networks that can operate reliably, potentially
in harsh environments. Our work is based on three insights. (1)
Novice programmers tend to assume a fault-free system during pro-
gramming. (2) Application experts care primarily about application-
level performance; they should be informed about the impact of errors
on the end products of an application, but reporting every detail about
low-level sensor network faults imposes great burden with little value.
(3) The knowledge of application experts about expected behaviors
and environmental conditions can be used to allow more effective
fault detection and correction.

We have designed, implemented, and evaluated a system, called
FACTS (Fault-Aware Code Transformation for Sensor networks), to
simplify programming faulty sensor networks. FACTS hides faults
from programmers but indicates the impact of low-level faults on ap-
plication outputs, i.e., the end results of data processing expressions in
the application specification. We implemented FACTS by extending
an existing high-level programming language for sensor networks.
The current design of FACTS focuses on data-acquisition applica-
tions and sensor data faults. Programmers provide specifications of
application logic as well as of expected environmental conditions.
The compiler automatically generates fault-aware code to which fault
detection, error correction, and error estimation functionalities have
been added. During network operation, sensor faults are detected by
identifying sensor readings that fall outside of application-specific
ranges. In case of sensor faults, the ranges of actual data values
are estimated using temporal and spatial correlation. The ranges of
end results produced via potentially complex expressions are then
computed.

Our work makes three main contributions.
1) We describe an approach to simplify programming of poten-

tially faulty sensor networks by automatically generating code
for fault detection, error correction, and error estimation.

2) We develop an error estimation technique to calculate the error
bounds for application data as a result of faults.



Fig. 1. Overview of FACTS system.

3) We implement this approach in a real system by modifying the
compiler and runtime library for a high-level sensor network
programming language.

We evaluate the overhead of our system on code size, memory
use, and improvement in end result accuracy using a small-scale
testbed and simulation of larger-scale networks. The average code
size overhead is 15% and the average memory overhead is 3.6%.
The resulting intervals produced by FACTS always contain the
actual value, while the fault-unaware program can produce substantial
errors. Interested readers can learn more about FACTS at our project
website [18].

I.B. Related Work

Numerous high-level programming languages have been proposed
for wireless sensor networks to ease their development process.
These languages share a common strategy: they provide appropriate
abstractions to hide low-level implementation details from program-
mers. For example, macro-programming languages let programmers
treat the whole network as a single machine, thus hiding node-level
communication details from programmers [1]–[4]. Domain-specific
languages target a certain type of application and provide commonly
used algorithms in their libraries [19]. Other languages [5], [6] based
on commercial data processing tools let programmers describe how
data are processed without concerning themselves with the details of
data gathering. Though these languages have reduced programming
complexity compared to node-level programming languages, none
provide support for fault detection and error correction. Even if
programmers are willing to deal with greatly increased implementa-
tion complexity, some macroprogramming languages do not provide
node-level communication primitives, making it intractable for the
programmer to implement fault detection and correction techniques.
To the best of our knowledge, only one sensor network language
explicitly supports fault tolerance [20]. It provides declarative anno-
tations to specify checkpointing recovery strategies. In contrast, our
system (FACTS) does not require programmers to explicitly deal with
faults, making it accessible even to sensing application experts with
limited programming experience. The approach used in FACTS can
also be applied to other languages.

Bai et al. developed a language called WASP that allows novice
programmers to specify periodic data collection applications [7].
The application implementation success rates and development times
of novice programmers using this, and alternative sensor network
programming languages have been experimentally evaluated. Un-
fortunately, WASP did not support fault modeling or management.
Faulty sensor readings have the potential to distort aggregated results.
Worse yet, allowing users to concern themselves with only the
end results of data processing makes it less likely that sensor-level
faults will be noticed. We implemented FACTS by extending WASP,
as well as its compilation and runtime system, to support code
transformations for fault tolerance.

Researchers have identified and classified various types of faults in
sensor networks and proposed numerous approaches for fault detec-

TABLE I
EXAMPLE OF FAULT CORRECTION

Node 1 Node 2 Node 3 Average
True value (◦C) 10 12 14 12

Sensor reading (◦C) 10 12 0 7.3
Corrected reading (◦C) 10 12 [10, 16] [10.7, 12.7]

tion [12], tolerance [13], [14], diagnosis [15], [16], and recovery [17],
[20]. These papers concentrate on minimizing the impact of faults on
system performance and availability. Our goal is to support reliability
management techniques without requiring programmers to understand
the their implementation details. We also propose an error estimation
technique to provide application experts with a more accurate and
informative view of data gathered from a network.

II. FAULT-AWARE CODE TRANSFORMATION FOR SENSOR
NETWORKS (FACTS)

We now describe the FACTS architecture.

II.A. FACTS System Architecture
The purpose of FACTS is to shift responsibility for the mechanical

aspects of fault management from programmers to the programming
language, compiler, and run-time libraries. In this paper, we focus on
data acquisition applications. The left hand side of Figure 1 illustrates
how application experts use our system. An application expert speci-
fies application functionality and expected environmental conditions.
FACTS uses this information to generate an implementation that
is capable of fault detection, fault recovery, and error estimation.
The application expert then deploys a network running the generated
code. FACTS indicates the application-level impact of faults, i.e., the
error range for the end results of potentially complex data processing
expressions, while hiding component-level implementation and fault
details from the application expert.

The right hand side of Figure 1 shows the system components
and their purposes. The original compiler generates node-level code
that implements sensing, data transmission, and data aggregation
algorithms. FACTS provides a runtime library to detect faults and
estimate errors. The FACTS compiler modifies and augments the
original compiler in the following ways to generate fault-aware code.
(1) It changes the types of some variables in the program to include
extra information about error estimates. (2) It transforms arithmetic
expressions to interval arithmetic expressions so the implications of
faults can be propagated to the end results. (3) It inserts calls to fault
detection and error estimation functions.

We now use an example to demonstrate the key ideas of our
approach. Consider the application that monitors redwood tree mi-
croclimates [21]. Biologists deploy sensor nodes on a redwood tree
to gather temperature and humidity data. The application periodically
samples temperature and humidity, averages readings from nodes at
similar heights, and sends the results to a base station. Assume at
one height, there are three nodes with identifiers 1, 2, and 3. Table I
shows an example of data gathered during one sampling cycle. The
second row shows the ground truth values for each node. The third
row shows the sensor readings. Node 3 is faulty: the fault results
in an erroneous sensor reading of 0 ◦C. Without any fault tolerance
mechanisms, the average of the three values in the second row, 7.3 ◦C,
is returned to the user. Unfortunately, the user is unaware that 7.3 ◦C
is an erroneous result that underestimates the average temperature by
4.7 ◦C.

With FACTS, the expert designing the application provides some
information about the environment in a simple format. For example,
the expected temperature range is 10–30 ◦C. The code generated by
FACTS uses this information to detect the fault at node 3. Instead
of using the incorrect value of 0 ◦C, it indicates that the value is in



the range 10–16 ◦C based on historical readings and readings from
other nearby nodes. FACTS then propagates this interval through the
expressions to produce the value of interest for the network (i.e.,
the average), indicating that it is in the range 10.7–12.7 ◦C. The
user is made aware of the system-level implications of the low-
level fault. This error information can be further used by application
experts during their data analysis and help them draw more accurate
scientific conclusions. The actual techniques used in FACTS are more
sophisticated than those considered in this explanatory example. For
example, FACTS considers the influence of spatial and temporal
correlation as well as the impact of expressions predicated on faulty
variables.

Our approach has the following features.
1) Application experts do not need to understand the intricacies

of sensor network faults or explicitly manage them.
2) The domain knowledge of application experts is used to allow

fault detection and error estimation, without imposing much
additional specification burden.

3) System-level error bounds are provided to application experts
to allow more thorough understanding of data.

II.B. Specification of Environmental Conditions

Application experts’ knowledge of environmental conditions can
be used for two purposes: detecting sensor faults and correcting for
faulty sensor readings. Sensed data characteristics can be determined
based on sensor specifications and environmental conditions such
as data value range, temporal gradient (change in value per time
unit), temporal correlation, spatial variance (change in value per
distance unit), and spatial correlation. In this work we use range,
maximum temporal gradient, and maximum spatial gradient to de-
scribe the environmental conditions; however, these concepts can be
extended to use other parameters. We extend WASP programming
language to let programmers specify an expected range and maximum
temporal/spatial gradient for each environmental parameter. After
the programmer provides the application specification, a list of
relevant physical parameters is extracted to produce a template for the
programmer to input information about their expected behaviors. The
programmer need only read the template and enter a few numbers.

II.C. Fault Detection and Sensor Error Estimation

In this work, we focus on methods that can be implemented
efficiently in software and detect a commonly occurring class of
faults. Although the proposed error estimation technique will work
with any hardware or software fault detection mechanism, we use
the following detection criteria in our FACTS system prototype:
(1) are the sensor data within the expected range? and (2) are the
environmental conditions within the operating range of the sensors?

It is common for faulty sensor nodes to produce abnormal readings.
For example, developers of a habitat monitoring network observed
abnormally large or small sensor readings (light, temperature, and
humidity) when water penetrated the enclosure of the sensor node
and affected the power supply [10]. Developers of a redwood tree
macroclimate monitoring network associated out-of-range sensor
readings with node faults caused by a drop in battery voltage [21].
Such faults can be detected via range checking.

As sensors cannot work properly in certain environmental condi-
tions, sensor faults can also be detected by checking whether the
current environmental conditions are within the sensor’s operating
range. If either requirement is violated, the sensor reading is deemed
incorrect. Consider an application that gathers light level readings
using TelosB sensor nodes. The S1087 light sensor on TelosB nodes
has an operating temperature range of -10–60 ◦C. Both the light and
temperature sensor readings are checked to detect light sensor data

Fig. 2. Design options for error estimation based on spatial data.

faults. A fault is likely to occur if either the light sensor reading is
out of the expected range or the temperature sensor reading is out
of the -10–60 ◦C range. Note that when an undetected fault occurs
in the temperature sensor, we may (conservatively but sometimes
mistakenly) deem the light sensor to be faulty. Faults in sensors on the
same node may be correlated because they share many hardware and
software components; the developers of the habitat monitoring sensor
network observed this correlation [10]. Therefore, the false positive
rate due to faults in the sensor monitoring the operating environment
is likely to be lower than would be the case in the absence of sensor
fault correlation.

Local error estimation is used to indicate the intervals of actual
data elements and expressions when faults are detected. Faulty sensor
readings are estimated based on bounds on environmental parameters
and their spatial and temporal gradients. Data gathered from a sensor
network often change gradually with time and location. Temporal and
spatial variations can be bounded for many applications. We use such
bounds to replace erroneous values with ranges. For example, given a
maximum temporal gradient for temperature of 1 ◦C per minute, the
range of a faulty temperature reading can be estimated as 19–21 ◦C
if the most recent correct reading of 20 ◦C was taken one minute
ago. In other words, in case of an erroneous reading, the possible
temperature range is estimated based on other data. The FACTS
compiler creates data buffers to store historical data. The buffer size is
determined based on the user-specified bounds and sampling periods.
For example, if the temporal variation of temperature is at most 5 ◦C
over one hour and the temperature sampling period is 10 minutes,
then a buffer of size 6 is used.

A bound on spatial gradient indicates the maximum change per
meter. Error estimation using spatial gradients requires knowledge
of distances between sensor nodes. If node locations are known at
design time, the locations of nearby nodes can be stored in a table and
used for error estimation at runtime. If node locations are unknown
until deployment, distances between nodes can be estimated using
node localization algorithms [22].

Error estimation using spatial gradients requires data from other
nodes and may therefore introduce communication overhead. The
locations where the implications of faults are estimated and the
amount of spatial data used impact energy overhead and the tightness
of the resulting error bounds. Figure 2 shows examples of three
design options for a network composed of six nodes. A dotted arrow
represents a communication link in the routing tree, originating from
a child node and ending at a parent node. F indicates where a fault
occurs and C indicates where the error resulting from this faulty
reading is estimated. The center node has a faulty sensor reading. To
simplify explanation, we ignore error estimation based on temporal
changes in this example. Sensor data from the shaded nodes are used
to estimate the interval for incorrect readings gathered by the faulty
sensor. A solid arrow indicates the links on which the corresponding
design option produces communication overhead.

In design (a) (in Figure 2), the parent node estimates the value
interval for the faulty node by based on the parent node’s sensor
value. In design (b), the value interval at the faulty node is estimated



using its children’s readings. In design (c), the value interval at the
faulty node is estimated using all its neighbors’ readings. Design (a)
uses only one neighboring node (parent node) for estimation, design
(b) uses all children nodes, and design (c) uses all neighboring nodes.
Design (a) imposes communication overhead on the link from a faulty
node to its parent, design (b) requires every node to always send its
own raw sensor readings to its parent, design (c) requires the faulty
node to broadcast requests to which its neighbor nodes reply with
their sensor readings. The more information used in estimating an
interval, the tighter the bound is; design (a) provides the loosest bound
with the lowest communication overhead and design (c) provides the
tightest bound with the highest communication overhead. We choose
design (b) in the FACTS system implementation. This option requires
the least modification to the network protocol, and supports the use
of multiple spatial readings for error estimation. Specifically, each
node sends the aggregated results of the subtree it is the root for and
its own raw sensor reading.

II.D. Error Propagation

The WASP programming language supports node-level data pro-
cessing functions and network-level aggregation functions. FACTS
computes the errors in expression results based on the sensor read-
ings they depend on. Specifically, FACTS returns estimated ranges
associated with each requested datum, i.e., every data element in the
COLLECT statement for network-level data gathering and aggregation
in a WASP program. As described in Section II-C, faulty sensor
readings are replaced with estimated ranges. The errors are then
propagated to final results using interval arithmetic. Error estimation
for network-level aggregation results can occur either in the network
or at the base station. The former approach aggregates correct and
faulty variables in the network and estimates the associated error. The
latter approach aggregates only correct variables in the network and
forwards faulty variables to the base station, where the error of the
final results are computed. We adopt the former approach in FACTS
because it implies smaller data transmission overhead and scales with
network size and fault rate.

Errors caused by faulty sensor readings can propagate to end results
via mathematical operations such as addition. The error estimation
problem can be defined as follows. Given y = f(x1, x2, · · · , xn)
and the range of each xi, estimate the range of y. Each xi represents
a potentially erroneous variable. y represents the returned result. This
can be solved with interval arithmetic [23], in which arithmetic op-
erations are applied to operand intervals to calculate result intervals.
Interval arithmetic has been applied to rounding error estimation and
circuit timing analysis. In contrast to these uses, maintaining low
overhead is more important for our (on-line) application because
error estimation may execute on energy- and time-constrained sensor
nodes. Fortunately, for the built-in functions supported by the WASP
programming language, it is easy to find the range of an output
given ranges of inputs. For example, the frequently used aggregation
functions such as MAX, MIN, and AVG are all monotonic, allowing
the extremes of an output to be computed directly by applying the
operation on extremes of inputs. The mathematical expressions and
functions used in the majority of published wireless sensor network
deployments can also be efficiently computed following interval
arithmetic rules.

Errors can also propagate to end results via their influence on
control flow. When a faulty variable is used in a predicate expression
and its estimated range spans the predicate threshold, the range of the
result is computed by combining the ranges that would result from
either branch. For non-aggregating data collection applications, the
predicates determine whether data should be sent to the base station.

For applications with in-network spatial data aggregation, the predi-
cates determine whether data should be included in the network-level
aggregation operations. For example, COLLECT AVG(y) WHERE
x > 100 requires the y variable of a particular node to be included
in the averaging operation if that node’s x value is above 100. When
a fault results in the interval for x spanning 100, the range of interval
AVG(y) (the average of all node y values) should span the results
calculated with and without including y from the faulty node. The
error estimation problem can more formally be defined as follows.

Given that y = f(x1, x2, · · · , xn) where f is an aggregation
function for which xi may or may not be included in the argument
list and n is number of variables, compute the range of y. The range
of y can be naı̈vely obtained by computing the ranges for the 2n cases
separately and calculating their union. The computational complexity
may be acceptable for a sparse network since n is bounded by
the maximum number of immediate children nodes. Fortunately,
for the aggregation operations commonly used in wireless sensor
network deployments, the computational complexity is less than
O (n logn). For MAX and MIN operations, including one more
argument only monotonically affects the upper or lower bound of the
result. Therefore, the range of the result can be easily calculated by
iteratively considering each of the n variables. For AVG, adding one
more variable may increase or decrease both lower and upper bounds.
However, the range of the result can still be computed in O (n logn)
time. For example, to get the lower bound of the AVG result, first
order the lower bounds of the intervals associated with the nodes
that may meet the selection requirements (but are not certain to meet
them) in increasing order. Incrementally scan the ordered list, add
each value to the set of values to average, and recompute the result
until the local minimum for the result is reached. To get the upper
bound of the AVG result, use a similar technique, but instead scan
the upper bounds of the intervals in decreasing order. Consider the
expression COLLECT AVG(y) WHERE x > 100 as an example.
Assume a network of five nodes. Their x ranges are [120], [90, 110],
[80, 120], [83, 102], and [130]. Their y values are 2, 4, 6, 3, and
8. To compute the upper bound of AVG(y), we order the y values
except 2 and 8 (they must be involved in computing the average) in
descending order. The average of 2 and 8 is 5. After including 6,
the average becomes 5.3. After including 4, the average becomes 5.
Therefore, the upper bound for AVG(y) is 5.3.

II.E. Automated Code Transformation

We now describe a software implementation to support automatic
online fault detection and error estimation. The following steps will
be used to generate fault-aware code. (1) Replace sensor readings
and the variables that depend upon them with tuples containing two
variables of the same type. (2) Insert calls to fault detection functions
after sensor readings are obtained. The fault detection methods have
been described in Section II-C. (3) Insert calls to temporal gradient-
based error estimation functions after error detection function calls to
calculate ranges for faulty variables. (4) Insert calls to spatial gradient
based error estimation functions before a node aggregates its received
data. (5) Convert mathematical expressions involving possibly faulty
variables to interval arithmetic operations. For example, z = x + y
is converted to z.low = x.low+ y.low; z.high = x.high+ y.high.

III. EXPERIMENTAL EVALUATION

We evaluated the accuracy of the value estimates provided by
FACTS, as well as its impact on code size and memory use. Our
evaluation uses a small-scale experimental hardware testbed and
simulations of a larger-scale network composed of 74 sensor nodes
with real-world data traces. This section describes the experimental
setup and the results.
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TABLE II
FAULT-AWARE AND UNAWARE IMPLEMENTATIONS

Code size (B) Memory usage (B)
App.1 App.2 App.3 App.1 App.2 App.3

Fault-unaware 32,556 33,060 27,722 2,130 2,134 2,038
Fault-aware 37,358 37,740 32,088 2,212 2,224 2,096

Overhead (%) 14.7 14.2 15.7 3.8 4.2 2.7

III.A. Prototype Evaluation

We implemented a prototype of the proposed system and tested
it in a small-scale sensor network consisting of four TelosB nodes.
Each node samples temperature every 2 s. The average across all
nodes is returned to the base station. The results contain a tuple for
each sampling cycle indicating the upper and lower bounds on the
average temperature. Figure 3 displays the temperature upper and
lower bounds as functions of time. We injected intermittent sensor
faults by shorting the terminals of the thermal sensor to produce
readings of -39.6 ◦C (from a 0 V analog-to-digital converter input),
e.g., at 22 s. In the absence of faults, the upper and lower bounds
in Figure 3 are identical. The estimated bounds become looser over
time when the intermittent fault persists, due to the use of temporal
correlation to calculate the temperature interval. This section serves
primarily to demonstrate that a functioning prototype of the FACTS
system has been implemented, and explain its operation.

III.B. Evaluation of Code Size and Memory Use Overhead

To evaluate the impact of using FACTS on code size and memory
requirements, we compared the code generated with the original
WASP compiler and the extended FACTS compiler. Table II shows
the code size and memory use for the three representative examples
based on deployed sensor network applications [7]. Application 1
periodically gathers temperature and light data. Application 2 pe-
riodically samples light and averages data among nodes at similar
heights. Application 3 periodically samples temperature and sends
data only when the increase in temperature exceeds a threshold. The
average code size overhead across the three applications is 15% and
the average memory overhead is 3.6%.

We compare the lines of code for the high-level specification input
to FACTS as well as the generated node-level code to give some
evidence of its impact on programming complexity. The results are
shown in Table III. The applications are the same as those used for
code size and memory use estimation. FACTS only requires three to
six additional lines of code in the high-level specification, depending
on how many physical parameters are sensed. Note that the syntax of

TABLE III
LINES OF CODE FOR FAULT-AWARE AND UNAWARE IMPLEMENTATIONS

High-level specification Emitted NesC code
App.1 App.2 App.3 App.1 App.2 App.3

Fault-unaware 6 7 7 489 495 484
Fault-aware 12 10 10 621 585 545
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the FACTS specifications is at least as simple as that for functionality.
Therefore, we argue that the programming complexity only increases
slightly. Given that researchers have previously demonstrated via
user studies that novice programmers can use WASP correctly and
efficiently [7], and the additional specifications required by FACTS
have low complexity and length, we believe that the FACTS system
will remain accessible to novice programmers. In contrast, the low-
level NesC code (excluding library code) increases in length by 61,
90, or 132 lines of code depending on application. This implies that
the extra programming efforts required to manually and explicitly
handle sensor faults is potentially high. With FACTS, the increased
implementation complexity is not exposed to programmers.

III.C. Simulation of Large-Scale Network to Evaluate Impact of
Varying Fault Rates

Simulation environment: We use the SIDnet-SWANS simula-
tor [24] and temperature measurement time series from a real
network deployment [9] to model a network of 74 nodes that sample
temperature every 29.3 seconds and aggregate data in the network.
We assume two aggregation expressions: average and minimum.

Environmental data generation: We use the data from the LUCE
deployment at the EPFL campus [9] to provide environmental data for
our simulation. The LUCE deployment contains 97 weather stations
that span a 500 m×300 m area and ran for 6 months. We take the
following steps to generate fault-free data traces from the original
data set. (1) It is important that faults be rare in our input data so
that we can determine the actual ground truth data values with which
our fault correction system ranges and estimates will be compared.
We identified a time interval in which the data drop rate from most
of the nodes is small and eliminated from consideration 23 nodes
that have high drop rates in that time interval. We used a one-
hour trace containing 9,028 data samples from 74 nodes. (2) The
original data set has a period of 29.3 s with small jitter. We parse the
data to produce synchronized periodic time series. Multiple samples
associated with the same period are averaged, while periods without
data are recovered by selecting from the valid data value distribution
for the application. Combined, these faults only affected 3.7% of
the time series data. (3) We determine the lower and upper bounds
based on the histogram of temperature data from the 74 nodes. The
histogram is shown in Figure 4, where 99.4% of the data are in the
5–30 ◦C range. Inspection indicates that data outside this range are
associated with spikes in the time series. We treat data outside this
range as outliers. (4) We analyze the temporal and spatial correlation
ignoring outliers and compute the bounds on temporal and spatial
gradients. The results are 3 ◦C per 29.3 s and 5 ◦C per 50 m. (5)
We replace faulty and missing data (only 3.7% of the original data
traces) with values that are generated based on spatial and temporal
correlation. The resulting data set complies with the bounds on data
range, temporal gradient, and spatial gradient.

Fault injection during evaluation: We model sensor transient faults
using Poisson processes, primarily because many transient fault pro-
cesses are memory-less. This influences only our simulation results,
not the design of the FACTS system, which can handle fault processes
with arbitrary temporal density functions. We use independent but
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Fig. 7. Dependence of error (in
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equal-rate fault processes for different sensor nodes. Faulty sensor
readings are generated by sampling from the set of outliers extracted
from the original data set; this was done so that the simulated and
actual faulty data would have the same distribution, which is shown in
Figure 5. We run simulations with multiple fault rates, ranging from
0.1 to 0.5 per minute, to study the impact of fault rate on accuracy.
The tested fault rates are selected based on a survey on sensor network
data faults by Ramanathan et al. [16]. The sensor fault durations in
the original data are generally less than 29.3 s (one sampling cycle),
supporting the injection of transient faults. For each fault rate, we run
5 simulations with different random seeds and average the results.

Results: Figure 6 shows an example simulated time series for a
fault rate of 0.1 per minute. The shaded area shows the value intervals
produced by FACTS. The curve inside it shows ground truth results
from the original time series. The figure shows that the original fault-
unaware program can produce substantial errors (0.7 ◦C on average
and 2.7 ◦C maximum) and that the intervals produced by FACTS
always contain the actual value.

If the midpoints of the intervals produced by FACTS are used
as value estimates, the error relative to ground truth values can
be computed. Figure 7 shows aggregate error for simulation runs
with different fault rates. The root mean square errors relative to
the ground truth data are computed for the fault-aware and fault-
unaware programs. FACTS min and FACTS avg represent the results
for the minimum expression application and the average expression
application. Orig min and Orig avg represent the results for the
fault-unaware versions of these applications. FACTS results have an
average error of 0.02 ◦C and fault-unaware results have an average
error of 3.86 ◦C. The worst-case errors are 5.95 ◦C and 36.40 ◦C for
FACTS and the fault-unaware systems.

IV. CONCLUSIONS

Detecting and reacting to faults are important capabilities for
many sensor network applications. Requiring application experts to
explicitly program fault detection and error estimation algorithms
imposes implementation burden and increases the probability of intro-
ducing software errors. We have described an approach to simplify
fault detection and management in wireless sensor networks. This
approach, called FACTS, is designed to be accessible to application
experts who may not be expert programmers. Users of FACTS only
need to specify high-level application functionalities and expected
environmental conditions. FACTS is implemented by extending an
existing high-level sensor network language, compiler, and run-time
system. It uses easily specified domain-specific expert knowledge to
support on-line detection of some classes of sensor faults. When faults
are detected, FACTS adjusts the accuracy intervals of data analysis
expressions to make the system-level impact of faults clear to sensor
network users. A small-scale hardware testbed and simulations of a
74-node network using real-world sensor data show that FACTS sub-
stantially increases estimation accuracy and imposes little overhead
compared to fault-unaware programs.
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