
A Reconfiguration Approach for
Fault-Tolerant FlexRay Networks

Kay Klobedanz, Andreas Koenig, Wolfgang Mueller
University of Paderborn/C-LAB

Faculty of Electrical Engineering, Computer Science and Mathematics
33102 Paderborn, Germany

Email: kay@c-lab.de, andreask@upb.de, wolfgang@c-lab.de

Abstract—In this paper we present an approach for the con-
figuration and reconfiguration of FlexRay networks to increase
their fault tolerance. To guarantee a correct and deterministic
system behavior, the FlexRay specification does not allow a recon-
figuration of the schedule during run time. To avoid the necessity
of a complete bus restart in case of a node failure, we propose
a reconfiguration using redundant slots in the schedule and/or
combine messages in existing frames and slots, to compensate
node failures and increase robustness. Our approach supports the
developer to increase the fault tolerance of the system during the
design phase. It is a heuristic, which, additionally to a determined
initial configuration, calculates possible reconfigurations for the
remaining nodes of the FlexRay network in case of a node failure,
to keep the system working properly. An evaluation by means of
realistic safety-critical automotive real-time systems revealed that
it determines valid reconfigurations for up to 80% of possible
individual node failures. In summary, our approach offers major
support for the developer of FlexRay networks since the results
provide helpful feedback about reconfiguration capabilities. In
an iterative design process these information can be used to
determine and optimize valid reconfigurations.

I. INTRODUCTION

The increasing number of ECUs (Electronic Control Units)
in modern vehicles implies the necessity of reliable communi-
cation between these components. To guarantee a correct sys-
tem behavior, the dependencies between different tasks must
be considered to determine a proper task-to-ECU assignment
and configure an appropriate bus communication. FlexRay is
the emerging standard for safety-critical automotive systems
because of its deterministic behavior, bandwidth capacities and
redundant communication channels, which increase safety of
such networks. Nevertheless, the failure of a single ECU may
result in a malfunction of the whole system. To further increase
the fault tolerance of a FlexRay network, such a node failure
should be compensated by redundancy. Therefore, a replication
and reallocation of tasks is necessary, which implies changes in
the communication dependencies and a reconfiguration of the
system at run time [1], [2]. Current automotive systems usually
consist of ECUs, which host functions and are also hardwired
to their target sensors/actuators. A failure of a hardwired
node cannot be compensated with redundancy because the
connections to the peripherals get lost. Hence, we consider
a modified network topology to improve fault tolerance by
means of redundancy [1], at which we separate between two

types of ECUs: Nodes, we call peripheral interfaces, which
are wired to sensors and actuators, and just read/write values
to/from the bus and dedicated nodes hosting the functional
tasks. Since peripheral interfaces do not execute any complex
task they only require low hardware capacities, which allows
cost-efficient redundancy of these components. However, here
we focus on the distributed functional ECUs, which receive
and provide their data via FlexRay, and can therefore be
considered for redundancy and reconfiguration. Because the
FlexRay specification does not allow changes of the schedule
at run time [3], we propose a reconfiguration using redundant
slots in the schedule and/or combine messages in existing
frames and slots to avoid the necessity of a complete bus restart
in case of a node failure [1], [2]. Here, we present an approach
inspired by a heuristic based on a genetic algorithm (GA) [4],
which determines initial configurations and, based on that,
calculates valid reconfigurations for the remaining nodes of
the FlexRay network in case of a node failure. Finally, the
results of our approach support the developer to determine and
optimize valid reconfigurations in an iterative design process.

In this paper we introduce FlexRay and related work fol-
lowed by a detailed description of our approach in Section IV.
An evaluation is provided in Section V before the final section
concludes with a summary.

II. RELATED WORK

Several publications like [5] and [6] describe heuristics to
determine proper configurations and parameterizations for the
static segment of FlexRay. The presented approaches assume
that the task-to-ECU assignment is statically defined, which
significantly decreases the configuration flexibility. Moreover,
the authors do not consider reconfigurations and redundancy
to increase fault tolerance. In [7] the authors propose a
replication of tasks to compensate node failures. Therefore,
they determine the reconfiguration capabilities of FlexRay
based on these assumptions. This publication also assumes
a quite strict predefined task-to-ECU and slot assignment,
whereas we maximize flexibility in the configuration. In [4]
the authors present a GA for the configuration of FlexRay
networks. The publication describes the representation of con-
figurations (task-to-ECU, message-to-frame, and frame-to-slot
assignments) as individuals, which are coded as strings. The
approach evaluates these individuals with several weighted pa-978-3-9810801-7-9/DATE11/ c©2011 EDAA

rameters and determines an optimized configuration by means
of selection, crossover and mutation functions. Our approach
is inspired by this GA-based heuristic, but we extended it by
an optimized analytical methodology, which, additionally to a
initial configuration, calculates valid reconfigurations for the
remaining nodes of the FlexRay network in case of a node
failure.

III. FLEXRAY FUNDAMENTALS

FlexRay was introduced to implement deterministic and
fault-tolerant communication systems for safety-critical dis-
tributed real-time systems. The protocol makes use of recur-
ring communication cycles as shown in Figure 1. It is com-
posed of a static and an optional dynamic segment. The time-
triggered static segment is based on the TDMA (Time Division
Multiple Access) protocol. Therefore, the transmission slots of
the segment are assigned to a sender node by a globally known
synchronously incremented slot-counter. The static segment
consist of a fixed initially defined number of equally sized
static slots (2 – 1023). The event-triggered dynamic segment
of the FlexRay communication cycle is optional. Because we
focus on the static segment, the reader is referred to [3] for
further details. The size of slots and frames, the cycle length,
and several other parameters are defined by an initial setup of
the FlexRay schedule, which cannot be changed during run
time. The payload segment of a FlexRay frame is composed

optional
static segment

communication cycle

dynamic segment

slot 2 ... slot nslot 1

symbolic window NIT

Fig. 1. Components of the FlexRay communication cycle.

of data bytes, which are numbered in ascending order. One or
multiple data bytes can be combined to a PDU (Protocol Data
Unit), whose data can be accessed by means of a unique ID.
This can be used for frame packing, which allows different
tasks to send their data combined in one frame. For a more
detailed description of the FlexRay protocol and components,
the reader is referred to [3].

IV. APPROACH

In this section we present our approach for the configuration
and reconfiguration of FlexRay networks based on the static
segment.

A. Overview

Our approach determines a capable initial system configura-
tion based on a Directed Acyclic Graph (DAG) (see part B of
this section) derived from the task dependencies, the given
network topology and the parametrization of the FlexRay
network. Here, several sub-steps have to be performed:

• Task-to-ECU assignment,
• Consideration of task dependencies,
• Message-to-frame and frame-to-slot assignment,
• Scheduling and validation for each ECU.

Based on the determined initial configuration our approach
also calculates possible reconfigurations for the remaining
nodes of the FlexRay network to increase the fault tolerance
of such systems in case of a node failure. Figure 2 gives a

Generating an
initial configuration

Backup-node(s)

Mirrored task setReconfiguration of
task set

T3 T4

T7
T5

T1 T2

T6

ECU 1 ECU 2

ECU 3

Evaluating the
effort & overhead
of reconfiguration

1 2 3 4 5 n

Communication cycle

ECU failure
Alternatives:

Reallocation of
task set

• Configuration of communication system without failure
• Reconfigured system after ECU failure
• Effort and overhead of reconfiguration

Fig. 2. Overview of the (re-)configuration approach.

functional overview of our approach. By means of a predefined
FlexRay communication cycle, a given network topology and
a DAG representing the dependencies between the distributed
tasks it calculates an initial configuration for the system with
an appropriate task-to-ECU, message-to-frame and frame-to-
slot assignment resulting in a valid schedule. Based on the
determined initial setup, we simulate the failure of each
separate ECU. To compensate the failure of an arbitrary node,
we consider several possible strategies. We already described
the migration and activation of redundant task instances on
dedicated backup node(s) in [2] and [1]. Here we focus on the
reallocation of tasks on the remaining ECUs. The main objec-
tive of our approach is to retrieve valid reconfigurations for the
remaining system to compensate ECU failures. Therefore, it
calculates and validates reconfigurations for the system – i. e.
reallocations of the task set on the ECUs and messages on the
FlexRay bus – considering the resulting effort and overhead to
provide these information as feedback to the system developer.

B. Model Properties
Our model comprises safety-critical distributed systems,

which are commonly composed of ECUs connected via a
communication bus. The executed task set of an ECU can
be assigned statically or changed dynamically during runtime.
The communication in a distributed system is realized via local
inter-process communication (IPC) or bus communication,
e. g. FlexRay. The scheduling in our model is performed by
means of earliest deadline first (EDF) [8]. The utilization
based schedulability test of EDF for each ECU also validates
determined configurations. Each task τi of a task set Γ is
defined by its execution time Ci and its period Ti as:

Γ = {τi(Ti, Ci), i = 1, . . . , n}.
The mentioned communication dependencies between tasks
can be represented by means of a DAG as shown in Figure

3. Such a graph G = (Γ,M) is composed of vertices (task
set Γ) and edges (set of messages M = {m1, . . . ,mm}).
The dependencies in the example of Figure 3 imply that the
execution of τ1 has to be finished before τ3 gets executed
– τ3 needs input data from τ1 to execute. The tasks and
the whole DAG have a period of 1000µs. Consequently, the
execution of the whole DAG must be finished in this time.
Our model considers different messages sent from one task
[4] – τ1 sending m1 and m2 –, which have to be assigned
to the frames/slots separately and the concept of each task
sending only one message for all receivers (m1 = m2) [9].
For complex systems, a DAG can be composed of several

τ1
150μs

τ3
300μs

τ4
250μs

τ2
175μs

1000μsm1 m2 m3

Fig. 3. Example of a DAG.

subgraphs with different periods. Like in [4] we presume for
all periods Ti and the maximum period Tmax = max(Ti):

Ti · 2xi = Tmax, xi ∈ N0, i = 1, . . . , n.

The resulting hyperperiod Tmax avoids scheduling over mul-
tiple communication cycles. For example, the periods of all
subgraphs are 4ms, 2ms, 1ms, . . . for Tmax = 4ms. Special
messages are transitions between two subgraphs, which we
label as split-messages. Our approach schedules these split-
messages as follows. If Tsend < Trecv, τsend writes messages
with Trecv because τrecv reads with a lower frequency. If
Tsend > Trecv , τsend sends with Tsend. In this case it is
important that τsend provides the message soon enough to
minimize obsolete data.

We define three different types of task sets in a dependency
graph, as proposed in [4]. Γin is the set of tasks, which provide
input data to the system and have no predecessor. Γout defines
the tasks, which provide output data and have no successors.
Γmid are all other nodes of the DAG, which have predecessors
and successors. All tasks in Γmid are incorporated in the
reconfiguration. Furthermore, we assume that Γin and Γout

can also be considered for the reconfiguration, because they
are executed on reconfigurable ECUs and not on peripheral
interfaces (see Section I).

The primary parameters of the modeled FlexRay schedule
are a bandwidth of 10MBit/s a cycle length equal to the
maximum period of the considered tasks (Tcycle = Tmax) [4],
a variable slot length Tslot, and an according number of slots
(#slots = Tcycle/Tslot).

C. Initial Configuration

To calculate a valid initial configuration, we developed a
heuristic based on a genetic algorithm [4]. Because the initial
configuration just has to be valid and not optimal, we omit the

optimizing crossover and mutation functions from [4] in our
resulting pseudo-genetic algorithm.

Using this algorithm we focus on the calculation of indi-
viduals as candidates for the initial configuration. Figure 4
shows the sub-steps of the calculation process. The assignment
of tasks to ECUs is followed by the assignment of messages
to frames in static slots of the communication cycle and the
scheduling of the tasks on each ECU, which also validates the
individual. Finally, each individual gets evaluated by means
of a fitness-function. Based on the input containing the model

Generating an initial configuration

Task-to-ECU
assignment Slot assignment Generating an

EDF-schedule Evaluation

Fig. 4. Process flow for the calculation of an individual.

properties, our approach calculates an initial generation of
individuals as described above. Each calculated individual is
compared to the existing individuals of the current generation
regarding the task-to-ECU assignment to guarantee a hetero-
geneous solution-space. For further calculated generations the
selected individuals are analyzed and compared analog to [4].
After calculating one or more generations, the best individual
of the fitness-based sorted generation will be selected as the
initial configuration for further application. To speed up the
search process, we also realized a method to use the first valid
individual.

The first step to calculate an individual is the task-to-ECU
assignment, which is restricted by the model properties and
communication dependencies. Because EDF is used for the
scheduling, the basic restriction is the maximum utilization
(U =

∑n
i=1 Ci/Ti ≤ 1) for n tasks on each ECU. Hence, our

approach supports arbitrary randomized or optimized strategies
to determine the task-to-ECU assignment, we propose an
optimized assignment based on the task dependencies. This
strategy uses the model information about task dependencies
to maximize the local IPC and minimizes the number of
messages over the FlexRay bus to reduce the number of
occupied slots. Figure 5(a) shows an example dependency

τ1 τ2 τ3

τ4 τ5

τ6 τ7

m1 m2 m3 m4

m5 m6

(a) Tasks to assign.

τ1 τ2 τ3

τ4 τ5

τ6 τ7

m1 m2 m3 m4

m5 m6

(b) Assignment to 2 ECUs.

Fig. 5. Example dependency graph for optimized task-to-ECU assignment.

graph of tasks to assign. First of all, our approach checks
Γin = {τ1, τ2, τ3}. Is any of the tasks in this set or the
whole set not assigned to any available ECU the assignment
is performed randomly based on the utilization of each ECU.

By means of this initial assignment the algorithm uses depth
first search to assign succeeding tasks to the same ECU as its
predecessors. If this is not possible because of the utilization
the algorithm chooses another ECU randomly. Figure 5(b)
shows the resulting assignment for 2 ECUs. The tasks in
Γin are randomly assigned – marked lighter and darker blue.
Along the communication path the assignment is proceeded
as described resulting in the assignment shown in Figure 5(b).

Every message mi that is not handled via IPC has to be
assigned to a static slot in the communication cycle. But
not every message needs a dedicated slot, because multiple
messages from one task (node) can be packed in one frame
(see Section III). This significantly increases the flexibility of
the configuration. The determined release times and deadlines
for the tasks must be aligned if they are communicating via
FlexRay. Based on the initial values, they are recalculated
to determine the first and last possible assignable slot for
a transmission. By means of the equations for EDF with
precedence constrains [8], we calculate the release time rm
of a message as rm = max(rsend + Csend) and the deadline
as dm = min(drecv−Crecv). After initializing rm and dm, we
determine available slots for the message. Figure 6 illustrates
the possible delay between the finishing of a task τ1 and
the beginning of a transmission in an available slot. Starting

Slot 1 Slot 2 Slot 3 [m1] Slot nTDMA-cycle

τ1 τ2Dependencies

τ1Schedule

t0

τ2

m1

writing reading

Fig. 6. Example for a valid slot assignment.

the slot-IDs with 1, the first available slot is calculated as
slotfirst = drm/Tslote+1, and the last usable slot is calculated
as slotlast = bdm/Tslotc. The difference between slotlast
and slotfirst is the number of possible slots. Our approach
randomly chooses a slot, which is free or already transmitting
a frame from the same ECU with free capacities. If the period
of a sending task is shorter than the communication cycle,
multiple slots have to be assigned. To avoid multiple tests
per cycle, the tasks are sorted ascending by period length.
Thus, only available slots for the first message instance have
to be analyzed. As shown in Figure 6, the assignment of a
slot changes the release time of the reading task (τ2). To
keep the available slots valid, the values for the release times
and deadlines must be updated after every assignment. The
updated deadline for the sending task (start of assigned slot)
is calculated as d∗ = (slot-ID−1) ·Tslot. The deadlines of the
predecessors are calculated bottom up by means of the DAG.
The updated release times of receiving tasks (end of assigned
slot) are calculated as r∗ = slot-ID ·Tslot. The release times of
the successors are calculated top down. Based on these values
rm and dm are also updated.

After the assignments are determined, the individual is
validated implicitly by a schedule for each ECU. Therefore,
every ECU is scheduled with EDF over the hyperperiod
(communication cycle length) as described in part B of this
section. Hence, tasks with Ti < Tmax have to be instantiated
and scheduled multiple times with corresponding release times
and deadlines whose absolute values are calculated from
relative values. If all deadlines are met and the schedulability
test is positive, the individual is valid. Finally, the evaluation
of the individuals in one generation is performed by means
of a fitness-function based on several weighted parameters.
These parameters are the number of empty slots, which
can be increased by IPC or frame packing, the number of
unused ECUs, and the last assigned slot. Additionally, several
status information for the validity of the task-to-ECU and slot
assignments and the final schedule are included.

D. Reconfiguration in Case of a Node Failure

Our approach uses the results of the initial configuration
to calculate a reconfiguration in case of a node failure. To
avoid a restart of the bus, no new static slots may be assigned
to the nodes. Our approach determines valid reconfigurations
and evaluates their resulting effort and overhead – i. e. how
many additional redundant slots have to be included in the
FlexRay schedule. Several strategies for the compensation of
node failures are supported. Here, we focus on the reallocation
of the tasks on the remaining ECUs. Figure 7 illustrates an

m1 m2 m3 m1 m2 m3 m4

m1 m2 - m1 m2 - -

ECU 1

ECU 2

Γ1

Γ2

R
ec

on
fig

ur
at

io
n

Fig. 7. Reconfiguration for reallocated tasks (Γ2 on ECU1).

example for two ECUs with their assigned task sets Γ1 and Γ2.
After a failure of ECU2 several sub-steps have to be performed
to get an adequate reconfiguration. In the process the effort and
overhead of a reconfiguration by means of additional slots
should be minimized. Therefore, it is desirable that, after a
reallocation of Γ2 on ECU1, the messages m3 and m4 are
transmitted on already used slots. The general sub-steps for a
reconfiguration are:

1) Reallocation of the task set to the remaining ECUs
considering their particular utilization.

2) Reconfiguration based on the initial configuration. Here,
the effort and overhead should be minimized.

Instead of using the presented pseudo-genetic algorithm for the
calculation we propose an optimized analytical methodology
for the reallocation of the task set. Primarily, we have to
assure that the n remaining ECUs (ECUi

ok) provide sufficient
resources to execute the reallocated task set of the failing ECU
(ECUfail). The available resources must be sufficient to handle

the utilization U of the faulty ECU:

U(ECUfail) ≤
n∑

i=1

1− U(ECUi
ok).

If a reallocation is possible, our approach initializes the
assignment of the remaining ECUs and slots. Here, we have to
consider that slots, assigned to the faulty ECU, are not avail-
able anymore. Figure 8(a) shows a failure of ECU1 executing
τ1. The assigned slots for ECU1 are lost and m1 and m2 need
a reassignment. Furthermore, we have to check the received
messages of the reallocated tasks. If – as shown in Figure 8(b)
– a failure of ECU3 occurs, it depends on the reallocation of
τ3 if the reconfiguration must assign a slot to m2 or IPC can be
used. The assignments of all tasks and messages not affected

τ2 τ3

τ1

m1 m2

ECU 1

ECU 3ECU 2

(a) Failure of ECU1.

τ2 τ3

τ1

m1 m2

ECU 1

ECU 3ECU 2

(b) Failure of ECU3.

Fig. 8. Examples for ECUs failures.

by the node failure are retained unchanged. This results in an
initial ”empty” reconfiguration reduced by the faulty ECU with
consistent assignments, release times and deadlines. Based
hereon, our approach calculates an adequate reconfiguration
with appropriate ECU and slot assignments.

The assignment of the reallocated task set Γfail is per-
formed by means of the DAG along the communication paths
analog to the initial configuration. Our approach starts with
an iteration of Γcurrent = Γin. If τcurrent ∈ Γfail, this
task has to be reallocated. The algorithm proceeds with the
updated task set Γ∗

current composed of the successors of
the tasks in Γcurrent until every task in Γfail is processed.
We optimize the reconfiguration by means of determining an
adequate ”best possible” ECU assignment for every task in
Γfail. Figure 9 shows an example DAG for a failure of ECU x
and the resulting reallocation of τx. Because the assignment
is performed top down, it is guaranteed that the predecessors
are already processed. The algorithm maximizes the IPC to
all connected tasks in the DAG, assuming that probably there
will not be determined a proper combination of period, ECU
and slot assignment for the messages m3 and m4 in the
next iterations. Therefore, we determine the hosting ECU for
every predecessor and successor. The ECU executing most
of these tasks is analyzed for an assignment. In Figure 9 τx
is connected to tasks executed on ECU1 and ECU2. Because
ECU1 hosts two of these tasks it is analyzed for a reallocation
of τx. If there is no adequate candidate or the utilization of a
determined ECU is to high, the task is assigned to an ECU,
which offers sufficient capacities and hosts at least one task
τ∗ with the period of T (τ∗) ≤ T (τx). Hereby, it is guaranteed
for a bus communication that there could be at least one more

τ4 τ5

τx

m1 m2

ECU x

ECU 1 ECU 2τ1 τ2

m3 m4

ECU 1 ECU x

Fig. 9. Example for the determination of an adequate ECU.

task, whose slot is possibly usable by τx to send its message
via frame packing.

The determination of valid slots is nearly identical to the ini-
tial configuration, including the updating of release times and
deadlines. But here we distinguish between optimal assign-
ments, where existing frames and slots are occupied (frame
packing), and valid solutions with as less as possible additional
frames and slots. Figure 10 illustrates this distinction. If m4

with T (m4) = Tcycle/2 is transmitted by ECU1 for an optimal
assignment, only slots with ID = 2 + i ·#slots/2 for i ∈ 0, 1
are suitable. In this case slot 2 and 7 (second instance of m4).
If m4 is sent by ECU2 and r(m4) implies slot 4 as earliest
transmission possibility then slot 3 and 8 are omitted due to
release time constraints and only slot 4 and 9 are applicable.
Hence, one additional slot (9) transmitting m4 is necessary.
For the reconfiguration the messages are processed sorted by

m1 m2 m3 m1 m2

1 2 3 4 5 6 7 8 9 10

T(cycle)

ECU 1

ECU 2

m4 ?

Fig. 10. Example for slot assignment: T (m4) = Tcycle/2.

period lengths and release times. The valid slots, determined
by means of release time and deadline of mi, are analyzed
sequentially regarding the following properties: Are the current
and possible subsequent slots for multiple instances of mi

assigned to the same ECU? Do all considered frames offer
enough capacities for the message instances? Candidates are
sorted and finally assigned based on the collective number of
slots needed for all transmitted instances of mi in the period
of one cycle. The validation of the reconfiguration is also
performed by a conclusive EDF scheduling of every ECU,
as described in Part C of this section. If the schedulability test
is positive, our approach determines a valid reconfiguration
with no or a minimal number of additional slots.

V. EVALUATION

We evaluated our approach by means of realistic safety-
critical automotive real-time systems [9]. Figure 11 shows the
DAGs for an EPS (Electric Power Steering), ACC (Adaptive
Cruise Control), and TC (Traction Control) system. For a more

detailed description of theses systems the reader is referred
to [9]. Table I contains the related message information.

τ1
150μs

τ3
300μs

τ4
250μs

τ5
150μs

τ6
100μs

τ2
175μs

1500μs

(a) EPS

τ9
175μs

τ10
300μs

τ13
150μs

τ11
250μs

τ7
300μs

3000μs

τ8
150μs

τ12
200μs

τ14
200μs

(b) ACC

τ15
200μs

τ19
150μs

τ20
300μs

τ23
150μs

τ22
400μs

τ16
200μs

3000μs

τ17
200μs

τ18
200μs

τ21
175μs

τ24
200μs

(c) TC

Fig. 11. Examples for safety-critical automotive real-time systems [9].

The evaluation is performed based on the model properties
described in IV-B. Every task sends only one message to one
or multiple receivers. The presented optimized initial task-to-

TABLE I
MESSAGE INFORMATION FOR THE DAGS IN FIGURE 11.

Msg (Send, Recv) Byte Msg (Send, Recv) Byte
m1 (τ1, τ3),(τ1, τ4) 12 m10 (τ12, τ14) 10
m2 (τ2, τ4) 12 m11 (τ15, τ20) 12
m3 (τ3, τ5) 20 m12 (τ16, τ20) 12
m4 (τ4, τ6) 12 m13 (τ17, τ20) 12
m5 (τ7, τ10) 12 m14 (τ18, τ20) 12
m6 (τ8, τ10) 12 m15 (τ19, τ22) 10
m7 (τ9, τ11) 10 m16 (τ20, τ22) 22
m8 (τ10, τ11),(τ10, τ12) 12 m17 (τ21, τ22) 20
m9 (τ11, τ13) 10 m18 (τ22, τ23),(τ22, τ24) 6

ECU and slot assignments based on task dependencies are
evaluated by means of the parameters described in Section
IV-C. For the evaluation of the initial methods for the task-to-
ECU assignment, we used a complex combined version of the
above described graphs as described in [4]. Here, we define
6 ECUs that are dynamically assigned, whereas Figure 12
compares the optimized methodology to a random assignment
for 10 configurations on an average, using the best individual
out of a generation with 2000 individuals. The optimized

0

250

500

750

1000

1250

1500

0 1 2 3

870

1375

794

1485

Fi
tn

es
s

Methode

0!%

20!%

40!%

60!%

80!%

100!%

Empty ECUs Empty slots IPC Framepacking Last slot

O
p

tim
iz

ed
 a

ss
ig

nm
.

R
an

d
om

 a
ss

ig
nm

.

Fig. 12. Parameter rates for optimized assignments.

methodology was able to generate much more free ECUs.
This leads to more IPC and therefore less communication
over the FlexRay system. Because the number of slots (80
available slots) is high, the use of frame packing is for both
methods not significant. The last occupied slot is further ahead,
because of less communication over the FlexRay system. All
that distinctly increases the flexibility for the reconfiguration.

To evaluate the quality of the reconfigurations, we simulated
ECU failures using the above described use-case from [9] and

calculated reconfigurations based on arbitrary initial configura-
tions. Therefore, we considered several network sizes (number
of ECUs). Figure 13 illustrates the rate of determined optimal
and valid reconfigurations (see Section IV-D) for different
numbers of ECUs. The rate is increasing with a growing
network size as expected, because of the growing flexibility
and capacities for the task-to-ECU assignment. 40% to 60% of
individual ECU failures can be reconfigured optimal without
any additional slots depending on the number of ECUs. The
rate of valid reconfigurations with a minimal addition of 2
slots is up to 80%.

30!%

43!%

55!%

68!%

80!%

4 ECUs 5 ECUs 6 ECUs 7 ECUs

R
at

e
of

 r
ec

on
fig

ur
at

io
ns

O
p

tim
al

 r
ec

on
f.

Va
lid

 r
ec

on
f.

Fig. 13. Rate of reconfigurations depending on number of ECUs.

VI. CONCLUSION

We presented a reconfiguration approach for FlexRay net-
works, which supports the developer to increase the fault
tolerance of the system. Our approach is a heuristic, which
determines initial configurations and based on them calculates
reconfigurations for the remaining ECUs in case of a node
failure. The evaluation showed that our approach determines
valid reconfigurations for the majority of possible individual
node failures. In summary, it provides helpful feedback about
reconfiguration capabilities to determine and optimize valid
reconfigurations and reduce their effort and overhead regarding
additional redundant slots.

ACKNOWLEDGEMENTS

This work was partly funded by the DFG Collaborative
Research Centre 614 and by the German Ministry of Education
and Research (BMBF) through the ITEA2 project VERDE
(01S09012H).

REFERENCES

[1] K. Klobedanz et al., “Distributed Coordination of Task Migration for
Fault-Tolerant FlexRay Networks,” in Proc. of SIES 2010, 2010.

[2] K.Klobedanz et al., “Task Migration for Fault-Tolerant FlexRay Net-
works,” in Proc. of DIPES 2010, 2010.

[3] FlexRayConsortium, “FlexRay Communications System Protocol Speci-
fication Version 2.1 Rev. A,” Dec 2005, www.flexray.com.

[4] S. Ding et al., “An Effective GA-Based Scheduling Algorithm for
FlexRay Systems,” IEICE - Trans. Inf. Syst., 2008.

[5] M. Grenier et al., “Configuring the Communication on FlexRay: the case
of the static segment,” in Proc. of ERTS’08, 2008.

[6] M. Lukasiewycz et al., “FlexRay schedule optimization of the static
segment,” in Proc. of CODES+ISSS ’09, 2009.

[7] R. Brendle et al., “Dynamic Reconfiguration of FlexRay Schedules for
Response Time Reduction in Asynchronous Fault-Tolerant Networks,” in
Proc. of ARCS, 2008.

[8] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, 1997.

[9] N. Kandasamy et al., “Dependable Communication Synthesis for Dis-
tributed Embedded Systems,” in Proc. of SAFECOMP, 2003.

