
Time Redundant Parity for Low-Cost
Transient Error Detection
David J. Palframan, Nam Sung Kim, Mikko H. Lipasti

Department of Electrical and Computer Engineering
University of Wisconsin–Madison

palframan@wisc.edu, nskim3@wisc.edu, mikko@engr.wisc.edu

Abstract—With shrinking transistor sizes and supply voltages,
errors in combinational logic due to radiation particle strikes
are on the rise. A broad range of applications will soon require
protection from this type of error, requiring an effective and
inexpensive solution. Many previously proposed logic protection
techniques rely on duplicate logic or latches, incurring high
overheads. In this paper, we present a technique for transient
error detection using parity trees for power and area efficiency.
This approach is highly customizable, allowing adjustment of a
number of parameters for optimal error coverage and overhead.
We present simulation results comparing our scheme to latch
duplication, showing on average greater than 55% savings in
area and power overhead for the same error coverage. We also
demonstrate adding protection to reach a target logic soft error
rate, constituting at best a 59X reduction in the error rate with
under 2% power and area overhead.

I. INTRODUCTION

As technology progresses, susceptibility to particle-induced
“soft” errors has become a key concern, since smaller device
sizes and lower supply voltages dramatically decrease the
amount of charge stored per node. Soft errors occur when
an alpha or neutron particle passes through a semiconductor
device, creating electron-hole pairs. If this generated charge is
collected by a transistor source or drain, it can interfere with
correct circuit operation [1]. Much previous work focuses on
protecting storage elements, where particle strikes can cause
bit flips known as single-event upsets (SEUs). Memories are
particularly susceptible to these errors and are commonly pro-
tected using error-correcting codes (ECC). More recent work
also proposes methods for extending protection to pipeline
storage elements [2], [3], [4]. It is also possible for soft errors
to affect combinational logic in what are known as single-event
transients (SETs). In these cases, a transient pulse is created
and propagates through the circuit, potentially being latched
at the output.

SEUs have received the most attention since they are
generally more likely to cause errors than SETs. For instance,
a transient may not be present during the flip-flop latching
window (timing window masking) or may be attenuated as
it propagates through logic gates (electrical masking). Due to
these masking effects and the higher soft error resilience of
older processes, yesterday’s designers could overlook transient
faults. Recent estimates, however, indicate that the soft error
rate (SER) of combinational logic will soon equal that of
memory [5]. Therefore, even non-critical consumer devices

978-3-9810801-7-9/DATE11/ c©2011 EDAA

will need to address the logic soft error problem to guarantee
a basic level of operation. Since moderate levels of fault
tolerance are acceptable for these applications, while cost
(in terms of die area and power consumption) is paramount,
the conventional balance between these design objectives has
shifted. This new balance, emphasizing reasonable reliability
at a low cost, has only recently begun to be explored.

Reducing the cost of many SET mitigation schemes often
involves protecting fewer elements, sacrificing error coverage.
Some of these elements (e.g. flip-flops or latches) may be more
prone to errors and therefore more worthwhile to protect than
others. Based on this insight, Hill et al. present a method for
flip-flop selection to maximize SET protection [6].

Instead of simply sacrificing the number of protected ele-
ments to reduce cost, we propose a SET protection technique
that relies on parity-based compaction of circuit outputs for
power and area reduction. Our method is orthogonal to Hill’s,
since both can be applied independently to minimize cost. We
note that using parity for concurrent error detection (CED) is
not a new idea. Many previously proposed applications are
capable of detecting stuck-at-faults [7], [8], and do so by
employing complex parity prediction logic. Our approach is
quite different, since it targets transient faults and does not
rely on expensive prediction circuitry. Our work includes the
following significant contributions:

1) a novel low-cost, time redundant technique using parity
for SET detection;

2) discussion of methods for avoiding undetected even
errors due to parity;

3) analysis comparing our technique to a latch duplication
approach in terms of area overhead, power overhead,
and error coverage;

4) demonstrated compatibility with Hill’s flip-flop selection
scheme for tunable error coverage.

The reminder of this paper is organized as follows: Sec-
tion II explores previous SET protection techniques and mo-
tivates our proposal. Section III introduces and discusses our
SET detection scheme. Section IV presents results for protec-
tion with our method and with latch duplication, comparing
these in terms of error coverage, area overhead, and power
overhead. Our results show an average of over 55% savings
in power and area overhead while maintaining error coverage.
Finally, Section V concludes the paper.



II. BACKGROUND AND MOTIVATION

This section presents prior proposals for countering the SET
problem. We also discuss the tradeoffs between error detection
and error correction, and explain time redundancy.

A. Overview of SET Protection Schemes

Methods for SET mitigation can be applied at the process,
circuit, or architecture level [1]. Silicon-on-insulator (SOI) is
an example of a process technology that can somewhat reduce
the logic SER. Circuit-level approaches often involve harden-
ing certain nodes against errors through local duplication [9]
or gate resizing [10]. While these techniques reduce the logic
SER, they can have limited effectiveness and often require
substantial area overheads. Architectural techniques, on the
other hand, usually add external protection circuitry, leaving
the original circuit mostly unmodified. Such techniques are
flexible, have low overhead, and can be tailored to the archi-
tectural definition of an error.

Architectural solutions can either be error-detecting or error-
correcting. Since processors often include a mechanism for re-
playing instructions to recover from misspeculations, a method
for soft error detection could also employ this framework.
Omitting local correction logic can reduce overhead and
allows the processor to determine whether a replay is actually
necessary. For a duplication-based protection scheme, having
two copies of a circuit enables error detection via result
comparison, but not correction. For correction, the circuit
could be triplicated with the correct output selected by a
majority vote. Though this choice between 100% and 200%
overhead is extreme, the tradeoff generally holds. For the
remainder of this work, we only consider methods that detect
errors due to SETs. One might think that reliance on replay for
correction could reduce the number of instructions per cycle
(IPC), but soft errors are infrequent enough that this difference
is insignificant.

Instead of complete duplication, another class of SET de-
tection techniques adds dedicated error-detection logic. For
example, this logic could duplicate only part of a circuit [11],
or check the validity of the circuit output based on a set of rules
governing output characteristics. These characteristics can be
predetermined [12] or predicted in real time [8].

B. Time Redundancy

A third type of SET detection technique exploits time redun-
dancy. In this paper, time redundancy does not imply replaying
each instruction multiple times, though this is possible. We use
the term in a context similar to [13] and [14], where it has
a much lower performance impact. In this version, a circuit
output is guaranteed to be stable during a certain period, so that
any perturbation indicates the presence of a transient error. To
create this window of stability, additional setup or hold time
constraints are imposed. In addition, some circuitry is required
to check for transients during this time.

One often proposed solution involves double sampling. An
additional “shadow” latch is added to sample at a different
time than the main latch, but during the stable window. If the

Master

Q

CK

D

Slave

Q

CK

D

Shadow

Q

CK

Dτ Error

In

Clk

Out

Fig. 1. Flip-flop augmented for SET detection using a shadow latch and
delayed data.

two samples are taken sufficiently far apart, the shadow latch
will capture the correct value, even if the main latch captures
an erroneous value. One way to implement this when imposing
a hold time constraint is through a technique such as Razor,
which was originally intended to detect timing violations due
to dynamic voltage scaling [15]. Razor uses a delayed clock
to trigger shadow latches.

The opposite approach is proposed by Mitra et al., in
which shadow latches sample early [16]. The same effect
can be accomplished in one of two ways: either by using
an early clock for shadow latches, or by introducing a data
delay, as shown in Figure 1. Here, the XOR gate acts as a
comparator to detect discrepancies between the main latch
and the shadow latch. This signal is ORed with the outputs
of other comparators. Using delayed data has the advantage
of not requiring an additional skewed clock. Finally, another
possibility is to use two additional latches to sample both
before and after the main latch [14].

C. Tradeoffs of Time Redundant Techniques

Regardless of the specific time redundant technique chosen,
additional setup or hold constraints must be specifically en-
forced (if not already met). Doing so may require additional
area or cycle time. For instance, a Razor-style technique can
require extra logic to pad short paths, ensuring that a new value
cannot propagate through the combinational logic in time to
be erroneously captured by a shadow latch. Other techniques
that rely on post-sampling but not shadow latches have been
proposed [17], but the benefit of using compact detector
circuitry can be quickly overshadowed by padding overhead
as the detection window is lengthened. To ensure additional
setup time for the pre-sampling variant, the clock period can
be extended. This extra slack determines the allowed skew
between samples and therefore the maximum pulse length that
can be detected. Slack time can be adjusted by the designer
to select a desired level of reliability. Though this approach
does slightly degrade performance, we consider it the better
option for the multicore era, as reducing power consumption
takes precedence over individual core performance.

III. SET DETECTION USING PARITY

Parity is an effective data compaction technique for detect-
ing single bit flips in pipeline storage elements. In the simplest
pipeline application, a parity tree can be connected to flip-flop



inputs, with a duplicate tree connected to flip-flop outputs. On
each rising clock edge, parity is captured for the current (old)
data as well as the incoming (new) data. Comparing parity of
data immediately before it is latched and after it has been held
for one or more cycles can detect flip-flop upsets. This check
can also be performed with only a single parity tree using a
method similar to [3], in which parity trees are connected to
flip-flop outputs, and parity bits are latched as soon as possible
after flip-flops are updated. These stored parity bits are then
continuously compared against current parity to detect flips.

While the low overhead of parity is attractive, it has not
been widely considered as a technique for detecting transient
faults in combinational logic. The reasoning is simple: SETs
are capable of fanning out to corrupt multiple flip-flops. If an
even number of bits in a parity group is flipped, the parity bit
will retain its original value, and the error may go undetected.

A solution to the even-flip problem is to exploit asymmetric
delays in the circuit being protected. Consider the case in
which a single strike corrupts multiple flip-flops. For this to
occur, the incorrect transient value must be present at the
inputs of all corrupted flip-flops during the latching window.
Though these pulses overlap during the latching window, they
are not necessarily perfectly aligned. With longer pulse widths,
it becomes increasingly possible for skewed transients to be
captured by multiple flip-flops. A key observation is that logic
faults corrupting an even number of flip-flops in a group may
still cause the parity bit to fluctuate if the pulses are skewed
in time.

A. Detector Circuitry and Basic Operation

Instead of discretely sampling parity bits, we propose the
use of a transition detector, such as the one in [18]. Figure 2a
illustrates our SET detection setup. As shown, XOR trees
are connected between the master and slave latches of each
protected flip-flop. This design choice isolates the parity and
detector circuits when the clock is high and master latches are
opaque. The benefits of this isolation are twofold: 1) assuming
that most output glitching occurs during the high clock phase,
less power is consumed, and 2) these early transitions are
prevented from triggering an error. Parity is monitored by a
transition detector, which is connected to a dynamic OR gate.
This gate can be used collect the outputs of multiple transition
detectors, each having its own parity tree. The error signal
from the dynamic logic can be captured by a set-dominant
latch, as discussed in [18].

Operation is analogous to the pre-sampling scheme in [16]
that uses a padded datapath for shadow latches, requiring
only a single clock. Likewise, the parity trees in our scheme
provide a delay as well as signal compaction. Our approach
also allows the use of a single clock for the main circuit and
error detection logic. Figure 2b shows an example scenario
in which a transient pulse corrupts a flip-flop and triggers an
error. This example shows only one signal connected from
a master-slave flip-flop to a parity tree. For simplicity, it is
assumed that the correct value of this signal is low, and that all
other signals to the parity tree remain low. The transient pulse

M
Q

CK

D

S
Q

CK

D
Error

Clk

Flip-flop Parity tree
Transition
detector Dynamic OR
(a)

Clock Signal

Master Latch Input

Slave Latch Input

Parity Tree Output

Transition Detector

Error

(b)

Fig. 2. (a) Parity-based SET detection circuit; (b) Timing diagram demon-
strating SET detection.

at the master latch input spans the latching window, meaning
that the master latch captures and holds the erroneous value
for the first half of the cycle. The signal labeled “Slave Latch
Input” is also the input to the parity tree. Though the master
latch is opaque when the clock is high, the first edge of the
transient has already entered the parity tree before the clock’s
rising edge. The output of the transition detector is normally
low. Because of the delay introduced by the inverter buffer,
it produces a brief pulse in response to any rising or falling
edge at the input. As the example shows, if this pulse is created
while the dynamic OR gate is active (Clk high), the “Error”
signal will remain high until the next time its internal node is
precharged (Clk low).

Concurrent work by Rossi et al. proposes a parity-based
mechanism similar to ours but primarily intended to count
occurrences of SETs [19]. This approach connects a parity tree
to flip-flop inputs, making transients vulnerable to electrical
filtering. For our application, such filtering is not as tolerable.
By connecting the parity tree between flip-flop latches, only
the first edge of an error-causing transient will propagate
through the tree, making our design less vulnerable to this
electrical effect.

B. Timing

As previously mentioned, pre-sampling time redundant
techniques require additional slack at the end of the clock
cycle. Though our example in Figure 2b shares the clock
between the flip-flop and the detector dynamic OR, this is
not necessarily required. Assuming no errors are masked due
to concurrent transitions in a parity tree, error coverage is
dependent solely on the amount of cycle slack and not the
parity tree size and delay. If the detection delay (parity tree
and transition detector) does not equal the desired cycle time
slack, the clock for the detector dynamic ORs (now Clk′) can
be shifted relative to the main clock by δ. This could be useful
if, for instance, the designer wishes to decrease the cycle time
(sacrificing error coverage) while maintaining parity tree size
for maximum area efficiency. In either case, for maximum



error coverage, Clk′ is shifted to rise immediately after the
output of the transition detector has settled. Equation (1) can
be used to calculate this optimal skew, where a positive δ
indicates a delayed Clk′. MaxDel is the maximum delay of
the circuit only, DetDel is the detection delay, and T is the
cycle time.

δ = (MaxDel +DetDel)− T (1)

(DetDel +OrDel) ≤ T

2
+ δ (2)

Note that for correct fault detection, the error signal output
from the dynamic logic must become high before Clk′ falls
and the dynamic logic is precharged. This constraint is shown
in Equation (2). If not met, transitions occurring at the very
end of the main clock cycle may go undetected. As shown,
increasing δ allows a larger detection delay. Also, consider the
case in which certain parity trees are smaller and have a shorter
delay than the maximum size. The error coverage for flip-
flops connected to such trees may be decreased unless padding
is added to tree outputs to maintain the time delay. Thus,
similarly sized trees are ideal. For trees where the number
of inputs is not a power of two, buffers can also be inserted
balance delays.

C. Flip-Flop Selection

The manner in which flip-flops are chosen for parity groups
is highly dependent on the designer’s intentions and the
characteristics of the circuit to be protected. It is possible to
haphazardly group flip-flops, but doing so may not result in
an optimal error coverage vs. overhead tradeoff. In addition,
some circuits may have very similar delay paths, making
it theoretically possible for simultaneous even transitions to
occur in a parity tree and be masked. To avoid this situation,
extra care can be taken when choosing flip-flop groups.

In the simplest case, we use the following methodology
(adapted from [6]) to rank flip-flops in terms of preference for
protection:

1) An initial simulation experiment is performed, with a
number of faults injected into the combinational logic
of the target circuit.

2) A list is kept to track which flip-flops were corrupted
by each fault causing an error at a primary output.

3) Once the desired number of faults have been simulated,
a total is calculated indicating the number of times each
flip-flop was corrupted.

4) The flip-flop with the highest total is chosen, and all
faults corrupting this flip-flop are removed from the list.

5) Totals are recalculated, and this process is repeated for
each remaining flip-flop.

Note that this is the same procedure used to rank flip-flops for
protection using shadow latches (our comparison baseline).
For parity, the ranked list of flip-flops is divided into groups
depending on the intended parity tree size. Groups are not
formed across pipeline boundaries in pipelined circuits.

If concurrent even transitions impose a significant penalty
in terms of error coverage, we propose two possible solutions.

First, parity group size can be decreased, incurring a slight
increase in power and area overhead due to the cost of
additional transition detectors and OR logic. This decreases the
likelihood of multiple transients propagating through the same
tree. A second option is to purposely create disjoint parity
groups based on the fault injection data used to create flip-
flop rankings. By disjoint, we mean that no two flip-flops in
the group ever latched transients from the same injected fault
in the initial simulation. Disjoint groups are formed using the
following method:

1) From all ungrouped flip-flops, find those that have no
conflicts with the group currently being formed. This is
done by excluding all flip-flops that were ever corrupted
simultaneously with flip-flops in the group being formed.

2) Of the flip-flops with no conflicts, if any, select the one
with the highest fault total.

3) If a flip-flop is found, all faults corrupting it are marked
as detected in the fault list (removed from totals) and
totals are recalculated.

4) If no matches were found, or the maximum group size
is reached, a new group is started.

D. SEU Protection

We acknowledge that protecting against upsets in flip-
flops may be as important or more important than protecting
combinational logic. Our scheme, however, may be used to
supplement many methods for flip-flop protection. For in-
stance, a design relying on hardened latches as presented in [2]
could be augmented with our technique for logic protection.
It should also be noted that our design does provide a level of
SEU detection for the master latch, which can be maximized
by increasing the duty cycle of the detector clock so that
detection is disabled just before data reaches the transition
detector from the newly-transparent master latch.

If a SEU occurs in a slave latch near the end of the cycle,
such that the edge from the upset arrives during the slack
period monitored by our detection circuitry in the next stage,
it will be detected exactly as if it were a transient. Also, if
the circuit being protected has a minimum delay greater than
or equal to half of the cycle time minus the slack period,
then a SEU in a slave latch will never be able to reach the
circuit output before the detectors are enabled. Of course, if
the minimum delay is greater than half the cycle time, slave
latches may not be required at all.

IV. EXPERIMENTAL RESULTS

Simulations were performed using an event-driven gate-
level simulator with timing parameters for 65nm technology.
Gate-level simulation is much faster than circuit-level simu-
lation, and allows timely analysis of larger networks using
statistical fault-injection. This method inserts transients into a
circuit randomly in time and space. For each injected fault,
the circuit input vector is randomly generated. A time offset
is chosen at random within the cycle, and a gate to strike
is also randomly selected using an area model based on
the drain areas of all gates. Transient duration is determined



0%

20%

40%

60%

80%

100%

0% 2% 4% 6% 8% 10% 12%

E
rr

o
r 

C
o
v
e
ra

g
e

Area Overhead

c2670
c5315
c7752

S. Latches
T.R. Parity

Fig. 3. Error coverage with respect to area overhead for some ISCAS ’85
benchmarks.

using a probability distribution function generated from SPICE
simulations, as described in [6]. Depending on these param-
eters, an injected fault may 1) be logically masked, 2) be
timing-window masked, or 3) corrupt an output. Note that our
simulator does not model electrical masking. Since electrical
masking is present in protected and unprotected circuits, we
believe the overall SER reduction to be accurate.

Area comparisons of different SET protection techniques
were based on transistor count. Detector dynamic OR gates
had a maximum of 8 inputs, with a larger number of inputs
requiring a tree. We also performed power simulations of pro-
tected and unprotected circuits. Dynamic power was estimated
using the procedure in [20], in which the switching capacitance
for each node is estimated. This allows the calculation of
energy for each transition. Dynamic power was averaged over
1,000 random input vectors. Static power calculation was
based on the assumption that 30% of total power consumption
was due to leakage [21]. Because our power simulations were
performed for normal operating conditions (no transients), a
portion of the detection circuitry used no dynamic power. To
account for this, we computed the static power to device ratio
for the unprotected circuit and used this to calculate the static
power of the additional devices in the protected version.

Table I shows the circuits simulated. All circuits beginning
with “c” are combinational ISCAS ’85 benchmarks. The cir-
cuit labeled “z80” is a 3-stage parallel instruction decoder for
the z80 architecture, as studied in [22]. The circuits “fp-add”
and “fp-mul” are an OpenSPARC [23] combinational floating-
point adder and multiplier. All circuits were augmented with
flip-flops at their primary outputs. The unprotected derating

TABLE I
CIRCUITS SIMULATED

Name PIs POs Transistors Max. Delay
(ps)

Unprotected
Derating

c2670 233 140 8864 1293 0.0254
c5315 178 123 16298 1372 0.0220
c6288 32 32 10752 2614 0.0590
c7752 207 108 19456 1094 0.0271

z80 34 563 49420 755 0.0448
fp-add 162 102 52804 2123 0.0204
fp-mul 164 83 135742 2372 0.0321

0%

2%

4%

6%

8%

10%

12%

14%

16%

c2670 c5315 c6288 c7752 z80 fp-add fp-mul

A
re

a
 O

v
e
rh

e
a
d

S. Latches
Parity: 1
Parity: 4
Parity: 8

Parity: 32

0%

2%

4%

6%

8%

10%

12%

14%

c2670 c5315 c6288 c7752 z80 fp-add fp-mul

P
o
w

e
r 

O
v
e
rh

e
a
d

Fig. 4. Area and power overheads with shadow latches and time redundant
parity, derating ≤ 0.001.

shown refers to the fraction of faults injected into the circuit’s
unprotected combinational logic that caused an error at a
primary output. For instance, the derating for c2670 is 0.0254,
implying that of 60,000 injected faults (the total for each
experiment), 1,524 resulted in errors. The remaining fraction
of faults were either logically or timing-window masked.
In calculating the derating for our simulations of protected
circuits, the only faults considered errors are those that corrupt
a primary output and remain undetected.

Simulation included two phases. In the first phase, statistical
fault injection (SFI) was performed on the unprotected circuit.
Based on this simulation, flip-flop rankings and parity groups
were created. In the second phase, the SFI experiment was
repeated with a different random seed to evaluate the protected
circuit. Two cases were simulated. In the first, shadow latches
were added to protect flip-flops through double sampling,
as shown in Figure 1. In the second case, flip-flops were
connected to parity trees in the manner described in this
paper. For each injected fault causing an error, the best-ranked
detector able to detect the fault was noted. This methodology
allowed us to find an accurate relationship between error
coverage and area overhead. Figure 3 shows error coverage
with respect to area overhead using 1) shadow latches and 2)
time-redundant parity for some ISCAS ’85 benchmark circuits.
Sixteen-input parity trees were used for time redundant parity,
and similar results were produced for all circuits.

To compare the overheads of time redundant parity and
shadow latches, we chose a target derating for the circuit
and added just enough detectors (in ranked order) to meet
the target. Figure 4 shows the area and power overheads of
protecting each circuit to reduce its derating to 0.001. This
constitutes an average error coverage of 96% and a maximum
SER reduction of 59X in the case of the c6288 benchmark.
For time redundant parity, the legend indicates the number
of parity tree inputs. “Parity: 1” does not use parity trees and
instead augments individual flip-flops with transition detectors.
All protected circuits use the same cycle slack.



0%

0.05%

0.1%

0.15%

0.2%

10% 12% 14% 16% 18% 20%

U
n
d

e
te

c
te

d
 E

rr
o

rs

Area Overhead

Standard
Disjoint

Fig. 5. Example of using disjoint groupings to protect the c2670 benchmark.

As expected, continued increases in parity tree size result
in diminishing power and area savings. This can be partly
attributed to the very low cost of the dynamic OR gates used.
If this cost were increased, perhaps by further limiting the
number of gate inputs, larger parity trees would be more
advantageous. Also, note that in some cases, larger parity trees
require increased overhead to reach the desired derating. This
is because larger trees increase the possibility of simultaneous
even transients in a parity group, requiring additional trees to
make up for these undetected faults. Of course, the effect is
emphasized because our simulations consider each parity tree
as a whole detector unit. This course-grained approach means
that, especially for larger trees, the indicated area overhead
may actually provide a higher level of protection than required.

Though we found reducing parity tree size to be the most
effective technique for eliminating masked faults to reach an
intermediate derating, this approach is not necessarily the best
when a very high level of reliability is desired. In this case,
when the majority of flip-flops are connected to detectors, our
algorithm for creating disjoint parity groups can be applied.
Figure 5 shows different configurations protecting all flip-flops
from transients in the c2670 benchmark using time redundant
parity. The points marked as “Standard” demonstrate the
expected tradeoff between the undetected percentage of error-
causing faults and area overhead. The configuration with the
most undetected errors and lowest area overhead uses 32-
input parity trees, while using only transition detectors is
at the opposite extreme. Points for intermediate group sizes
are also shown. In addition, the plot includes results for
disjoint groupings with various maximum tree sizes, showing
the effectiveness of this algorithm for eliminating masked
transitions in parity trees while maintaining the area savings
from larger parity groups. Of course, the effectiveness of
the algorithm is highly dependent on the output corruption
patterns of the circuit being protected. It is also possible that
imposing parity grouping constraints could require additional
area overhead due to wiring complexity, but this would be
difficult to estimate at the gate level.

V. CONCLUSION

The logic SER is a growing problem that requires a cost-
effective solution. In this paper, a novel technique for single-
event transient detection is presented to address this problem.

Our technique relies on inexpensive parity trees to compact
combinational output SETs, and requires significantly less
power and area overhead than previously proposed time re-
dundant techniques that rely on shadow latches. Our results
show average savings in power and area overheads of more
than 55% without sacrificing error coverage.

ACKNOWLEDGMENT

This work was supported in part by National Science
Foundation grants (CCF-0702272, CCF-0953603, and CCF-
1016262) and generous gift grants from Microsoft and AMD.

REFERENCES

[1] S. Mukherjee, J. Emer, and S. Reinhardt, “The soft error problem:
an architectural perspective,” in Proc. Int. Symp. High-Performance
Computer Architecture, 2005, pp. 243–247.

[2] M. Nicolaidis, R. Perez, and D. Alexandrescu, “Low-cost highly-robust
hardened cells using blocking feedback transistors,” in Proc. IEEE VLSI
Test Symposium, 2008, pp. 371–376.

[3] M. Imhof, H.-J. Wunderlich, and C. Zoellin, “Integrating scan design
and soft error correction in low-power applications,” in Proc. Int. On-
Line Testing Symp., 2008, pp. 59–64.

[4] S. Mitra et al., “Robust system design with built-in soft-error resilience,”
Computer, vol. 38, no. 2, pp. 43–52, Feb. 2005.

[5] P. Shivakumar et al., “Modeling the effect of technology trends on the
soft error rate of combinational logic,” in Proc. Dependable Systems and
Networks, 2002, pp. 389–398.

[6] E. L. Hill, M. H. Lipasti, and K. K. Saluja, “An accurate flip-flop
selection technique for reducing logic SER,” in Dependable Systems
and Networks, 2008, pp. 128–136.

[7] S. Mitra and E. McCluskey, “Which concurrent error detection scheme
to choose ?” in Proc. IEEE Int. Test Conf., 2000, pp. 985–994.

[8] A. Dutta and N. A. Touba, “Synthesis of nonintrusive concurrent error
detection using an even error detecting function,” in Proc. Int. Test Conf.,
2005, pp. 1059–1066.

[9] A. Nieuwland, S. Jasarevic, and G. Jerin, “Combinational logic soft error
analysis and protection,” in Int. On-Line Testing Symp., 2006.

[10] R. Rao, D. Blaauw, and D. Sylvester, “Soft error reduction in combi-
national logic using gate resizing and flipflop selection,” in Proc. Int.
Conf. Computer-Aided Design, 2006, pp. 502–509.

[11] K. Mohanram and N. A. Touba, “Cost-effective approach for reducing
soft error failure rate in logic circuits,” in ITC 2003, pp. 893–901.

[12] S. A. Seshia, W. Li, and S. Mitra, “Verification-guided soft error
resilience,” in Design Automation and Test in Europe, 2007, pp. 1–6.

[13] M. Nicolaidis, “Time redundancy based soft-error tolerance to rescue
nanometer technologies,” in Proc. VLSI Test Symp., 1999, pp. 86–94.

[14] P. Elakkumanan, K. Prasad, and R. Sridhar, “Time redundancy based
scan flip-flop reuse to reduce SER of combinational logic,” in Proc. Int.
Symp. Quality Electronic Design, 2006, pp. 619–624.

[15] D. Ernst et al., “Razor: a low-power pipeline based on circuit-level
timing speculation,” in MICRO 2003, pp. 7–18.

[16] S. Mitra et al., “Combinational logic soft error correction,” in Proc.
IEEE Int. Test Conf., 2006, pp. 1–9.

[17] L. Anghel and M. Nicolaidis, “Cost reduction and evaluation of a
temporary faults detecting technique,” in Design Automation and Test
in Europe, 2000, pp. 591–598.

[18] K. Bowman et al., “Energy-efficient and metastability-immune resilient
circuits for dynamic variation tolerance,” IEEE J. Solid-State Circuits,
vol. 44, no. 1, pp. 49–63, Jan. 2009.

[19] D. Rossi, M. O. na, and C. Metra, “Transient fault and soft error on-die
monitoring scheme,” in DFT 2010, pp. 391–398.

[20] N. S. Kim et al., “Microarchitectural power modeling techniques for
deep sub-micron microprocessors,” in Proc. Int. Symp. Low Power
Electronics and Design, 2004, pp. 212–217.

[21] K. Aygün et al., “Power delivery for high-performance microprocessors,”
Intel Technology Journal, vol. 9, no. 4, pp. 273–283, Nov. 2005.

[22] E. L. Hill and M. H. Lipasti, “Logic soft errors in a parallel CISC
decoder,” in Workshop on Silicon Errors in Logic-System Effects, 2010.

[23] I. Parulkar et al., “OpenSPARC: An open platform for hardware relia-
bility experimentation,” in Workshop on Silicon Errors in Logic-System
Effects, 2008.


