A MILP-based Approach to Path Sensitization of
Embedded Software

José C. Costa

José C. Monteiro

TU Lisbon, IST / INESC-ID
1000-029 Lisboa, Portugal
Email: {jose.costa, jem} @inesc-id.pt

Abstract—We propose a new methodology based on Mixed
Integer Linear Programming (MILP) for determining the input
values that will exercise a specified execution path in a program.
In order to seamlessly handle variable values, pointers and
arrays, and variable aliasing, our method uses memory addresses
for data references. This implies a dynamic methodology where
all decisions are taken as the program executes. During execution,
we gather constraints for the MILP problem, whose solution will
directly yield the input values for the desired path. We present
results that demonstrate the effectiveness of this approach. This
methodology was implemented into a fully functional tool that
is capable of handling medium sized real programs specified in
the C language. Our work is motivated by the complexity of
validating embedded systems and uses a similar approach to an
existing HDL functional vector generation. The joint solution of
the MILP problems will provide a hardware/software co-validation
tool.

I. INTRODUCTION

Embedded systems are used in a growing number of diverse
applications. Examples include consumer electronics, auto-
motive systems and telecommunications, among others. This
prevalence is due to the fact that embedded systems result from
a mix of hardware/software systems. The software part, which
runs on a processor, gives the system the flexibility, since it can
be easily changed depending on the application. The hardware
portion, which executes more specialized functions, is used in
time critical subsystems.

Embedded software testing has become more important
with the dramatic increase of the size and complexity of the
programs. This importance is even more critical since software
programs are error prone. Complete path testing, which would
give a 100% path coverage, is impractical. Testing only a small
set of input values and a small set of paths is the solution. We
are left with two problems: decide which set of paths need
to be tested while guaranteeing a given confidence level; and
determine which inputs need to be applied to the program to
activate the selected paths.

In this paper we address the problem of, given a user-
specified path, obtaining the inputs that allow a software
program to execute this path. Hence, with a judicious choice
of a set of paths, the desired coverage level of the code can
be achieved. We present a solution to this problem that is
applicable to any given high-level language. With the objective
of validating our approach, we have implemented a fully
functional tool for the C language, which has successfully
handled real programs.

978-3-9810801-5-5/DATE09 © 2009 EDAA

By using a similar approach to a hardware method [1] we
are establishing a bridge that will enable the integration of the
hardware and software methods. A program that solves the
joint SAT/MILP program will effectively provide a hardware/
software co-validation tool.

This paper is organized as follows. In Section II, we give an
overview of the automated software testing field. In this same
section, we also review the vector generation technique from
an HDL description. Our method for obtaining the input vectors
for path coverage is presented in Section III. Some examples
are presented in Section IV. Finally, some conclusions and
future work are presented in Section V.

II. RELATED WORK

Generating test patterns for a given program path is a
difficult task posing many complex problems. Several methods
exist to automatically compute input test data. The existing
generation methods are based on symbolic execution [2], on
dynamic methods [3], or a combination of both [4], [5].

A. Input Vector Generation

Symbolic execution consists in replacing input parameters
by symbolic values and in statically evaluating the statements
along a control flow path. A method based on symbolic
execution was proposed by Gotlieb et al [2].

Dynamic methods are based on actual executions of pro-
grams. A dynamic method based on relaxation techniques
was proposed by Gupta et al [6]. In this method test data
generation is initiated with an arbitrarily chosen input from a
given domain. This input is then iteratively refined to obtain
an input on which all the branch predicates on the given path
evaluate to the desired outcome.

The DART project [7] developed an approach for generating
test cases from symbolic inputs based on both symbolic execu-
tion and dynamic methods. Nevertheless DART only handles
constraints on integers and does not handle pointer constraints
and arrays indexed by variables. The CUTE project [4] extends
the DART approach by tracking symbolic pointer constraints.
But it still can not handle symbolic pointer offsets and arrays
indexed by variables.

EXE [5] also uses symbolic execution and dynamic meth-
ods. Due to the solver being used, floating point arithmetic is
not possible. Also, all pointer manipulation must be converted
into arrays, thus limiting the use of pointer arithmetic (e.g.,



1: function(int i) {
2 int al[2];
3:
4: all] = 0;
5: ali] = 1;
6: if (a[l] >= 1)
7 END OF PATH SPECIFICATION;
8: }
9: }
Fig. 1. Simple example with arrays.

it can not handle a variable that can be reached by double
pointer indirection).

None of these methods is able to fully handle pointers and
arrays. Furthermore, none of these methods was envisioned to
be integrated into a hardware/software test vector generation
tool. With the goal of integrating software and hardware
test generation methods, we propose a solution based not on
software methods but on a hardware testing approach.

B. HDL Functional Vector Generation

Sensitization of a program path is not very different from
that of a circuit path. In software, sensitizing a path means that
the value at the input of the path will permit the execution of
every statement in that path. In hardware, sensitizing a path
implies that the value at the input of the path should affect the
value at the output of the path.

One algorithm to circuit path sensitization was proposed
by Fallah et al [1]. It is a hybrid algorithm for satisfiability
checking that seamlessly integrates linear programming (LP)
feasibility and satisfiability checking. This integration is nec-
essary due to the correlation between word-level variables and
boolean variables.

The algorithm takes as input a circuit described in some
high-level language and writes for every module in the circuit
a set of input-output relationships. In the case of logical gates,
SAT clauses are written. In the case of word-level operators, LP
constraints are written. The algorithm then performs a satisfi-
ability search on the SAT clauses where boolean variables are
set to {0,1}. A search is also done on the LP constraints. The
constraints and the SAT clauses are then modified accordingly
and a new search begins.

Applying a similar method to software test data generation
we will have for each expression in the source program a set
of LP constraints.

III. PROPOSED METHODOLOGY

One of the main differences between a hardware high
level description language and a software programming lan-
guage is that in the former the variables can be easily matched
with registers or signals. In software, due to the use of pointers,
the matching of a variable with its register (in the case of a
program the register is a memory position) is not straight-
forward. Thus, while in hardware we can perform symbolic
simulation easily, in software a symbolic simulation will miss
some of the aspects of a program (e.g., use of pointers and
indirection). Therefore, the method we propose is based on a

combination of symbolic (we match the variable name with
its memory reference) and dynamic testing (we execute the
program to get the memory reference of the variables). Since
we actually run the program, all types of data structures can
be handled.

In our method, the program is first automatically instru-
mentalized and compiled, now including routines that track
the usage of each variable in the program. The MILP problem
is constructed as the program executes, representing all the
assignments and conditions that were executed so far. When
the program execution reaches the end of the specified path,
the solution of the MILP problem defines the values for all of
the variables necessary for that path to be executed. Hence,
the desired input variables are obtained in a single execution
of the given path in the code.

A. Mixed Integer Linear Programming

In our work we use Mixed Integer Linear Programming
(MILP) to obtain the input values that allow for the execution
of a specified path. That is done by mapping every program
variable into a MILP variable. We use Mixed Integer Linear
Programming instead of just Linear Programming in order to
handle both integers and floating point variables.

While the program is running, each time an assignment
statement is executed we add constraints to the MILP problem.
When a decision point is reached, we add different constraints
to guarantee that the desired branch is taken. At the end of the
specified path, we solve the obtained MILP problem. If it is
feasible then the solution includes the set of input values that
cause the path to be followed. If it is infeasible, then either
it is not possible to execute that path, or a backtracking must
be made because a wrong value was assumed for some index
variable, as discussed next.

B. Backtracking

Backtracking is needed each time we get an infeasible
problem to ascertain that that situation was caused by a wrong
choice of some array index. Take for instance an array variable.
Since each array position maps to a MILP variable, the choice
of which MILP variable is being used is made by the value of
the index. Thus if we have a[i] and i = 1 then the variable that
we will be using is a[1]. If the use of variable a[1] renders the
problem infeasible, this does not mean that there is no input
vector for the path chosen. It could be that ¢ must be different
from 1 and consequently the wrong variable is being used.

Consider the program in Figure 1. Assume that we want to
know the value of ¢ necessary for the program execution to
reach line 7. Observing the program code we can readily see
that the value of 7+ must be 1. But when the program is running
and it reaches line 5 a decision on the value of ¢ has already
been made. If the value of 7 is 1 then the final MILP problem
is feasible. Otherwise, we are indexing another position of the
array a that is not 1 and when we reach the line 6 we can
never make the condition true.

The way we solve this issue is by, each time the problem is
MILP infeasible, backtracking to the beginning of the program



function (int i) {
int al[2];

AddLPConstraint(‘“# = 07, &a[l]);
all] = 0;

AddBacktrack(&a, &i);
AddDependency(&ali], &i);
SolveLP(&ali]);
AddLPConstraint(‘“# = 17, &al[i]);
afil = 1;

if (GetBranch()) {
AddLPConstraint(“% >= 17, &a[l]);
} else {
AddLPConstraint(“% < 17, &a[1]);

I T T o I = e gy S g S gy S
N OW®IOU ™ WN R OO X0 UE W

}
SolveLP(&a[1]);
if (a[l] >= 1)
CheckBranch(TRUE);
END OF PATH SPECIFICATION;
: } else {
23: CheckBranch(FALSE);
24:  }
25: }
Fig. 2. Instrumenting a program.

and force different values into the array indexes. This is done
by adding new MILP constraints that force the array indexes
to have values that were not tried before.

C. Implementation

As mentioned before, in order for the program to build MILP
problems and solve them during execution, we instrument the
original program code. The parser used was c2c [8] which is a
public-domain software program. c2c works by constructing
an Abstract Syntax Tree (AST) of a C program. The AST can
then be manipulated in several ways such as adding or deleting
nodes in it. In our case we add, for each statement in the code,
one of a set of functions to the code.

As an illustrative example, consider again the code in
Figure 1. When we instrument the program code we get the
code in Figure 2. When we run the program we go through
all the original statements plus the added ones. Assume in
this example that variable i is the input variable and that we
want to know its value that allows the execution of the path
that reaches the END OF PATH SPECIFICATION. The modified
program is then compiled and linked with our library of
functions.

When we run this program we start by adding a MILP con-
straint stating that the position one of the array has value zero.
This is done by stating the MILP expression (the characters ’#’
and *%’ are used to indicate that they are to be replaced by
a variable that is on the left hand side of the statement or
by a variable that is on the right hand side of the statement
respectively) and by specifying the memory addresses of the
statement variables in the order by which they appear in the
MILP expression. Then we execute the actual statement. The
next statement has a variable that is an array. So, first we add
this array a with index i to the list of arrays and add MILP

TABLE I
PROGRAM STATISTICS.

[ Program [ lines [ input [ decision points | statements ]
FIBONACCI 24 | integer 3 14
LUDCMP 87 array 17 154
DIJKSTRA 141 | integer 15 99
HUFFMAN 203 text 17 193
ELEVATOR1 455 bit 40 363
ELEVATOR2 531 bit 80 419

constraints limiting the index value to the size of the array.
After that we state the dependencies (the position of the array
depends on 1) and solve the MILP problem. The variables are
updated and we have a value for the array index. Assuming
the value of i obtained is zero then we are indexing the first
position of the array. Then we add another MILP constraint.
Next, we reach the if condition, so first we have to know
which branch we will be taking. If it is the true branch then
the constraint a[1]>=1 is added. Then we will solve the
MILP problem if the if expression depends on the inputs. In
this case the variable a[1] depends on i. Since constraints
a[1]1=0and a[1]>=1 make the problem infeasible, we must
backtrack. So, we restart the program only this time at line 7
we add a constraint stating that 1 can not be zero. Hence, this
time we reach the branch that we wanted. When we solve the
last MILP problem we obtain the value of i that allow the
execution of the specified path.

IV. RESULTS

Our method to obtain the test inputs when given a program
and an execution path was implemented into a framework.

In Table I we have the statistics of the programs that we used
as examples. In it we show the size of the programs in number
of lines, the type of input, the number of decision points and
the number of statements. DIJKSTRA belongs to MiBench [9],
a commercially representative embedded benchmark suite. The
implementation of HUFFMAN CODING, LU DECOMPOSITION
and FIBONACCI NUMBER are found in Numerical Recipes in
C [10].

In order to test several aspects of our framework, the exam-
ples above were selected due to their properties: multiplication
and division in LUDCMP and HUFFMAN; arrays in DIJKSTRA,
HUFFMAN, ELEVATOR and LUDCMP; pointers manipulation
and memory allocation in DIUKSTRA and HUFFMAN; multiple
functions in DIJKSTRA and HUFFMAN; function recursivity in
HUFFMAN; input from the command line in FIBONACCT; input
from a file in DIJKSTRA and HUFFMAN.

The examples were submitted to our framework to ob-
tain the instrumentalized code and the obtained code was
compiled with our framework. The machine where we run
the tests was an Intel(R) Pentium(R) 4 running at 3.2GHz
with 1GB of physical memory. The MILP solver we used
was lp_solve [11] which is based on the Simplex algo-
rithm [12]. In Table II we have the results that we obtained
when we tried to obtain an input vector for a certain path and
for each of the example programs. The paths were manually



TABLE I
RESULTS OF THE TESTS.

Program test branch max MILP | max MILP | problems | backtracks | CPU time(s) | memory(kB)
coverage | constraints variables solved
F_A 16.7% 1 3 1 0 0.00 1896
FIBONACCI F_B 33.3% 18 10 2 0 0.01 1888
F_C 66.7% 27 24 4 0 0.02 1896
LUDCMP L_A 97.0% 2445 2041 37 0 31.10 3652
L_B 17.6% 129 123 4 0 0.04 2984
D_A 93.3% 186 174 35 0 0.27 2060
DUKSTRA =D B [ 100% a3 363 7 0 1.00 2200
H_A 97.1% 6532 7048 28 0 45.77 7572
HUFFMAN H_B 97.1% 6534 7020 201 25 78.44 23532
H_C 100% 7362 7969 312 25 310.90 24328
ELEVATOR1 E1_A 75% 1023 1139 7217 299 147.15 16028
ELEVATOR2 || E2_A 80% 1867 2289 76033 5158 4359.70 238960

specified with the purpose of obtaining several branch cover-
ages. For each of the tests we have: the coverage obtained; the
number of MILP constraints and MILP variables of the most
complex MILP problem solved in that test; the number of MILP
problems that were solved; and the number of backtrackings
necessary to obtain the input values. Finally, for each test we
have the CPU time and the memory used.

The results obtained confirm the feasibility of this method.
To validate our method we instrumented all programs with
a simple function call in each decision point to identify the
path being executed. All tests were then validated by using
the obtained input values into this modified program, where
we computed the branch coverage and asserted that the path
being followed was the one specified. In all test cases this was
true.

The number of problems solved is directly related to the
length of the executed path. It may be greater than the number
of decision points of the program if it iterates through some
loop. It may be less, if not all of the decision points of the
program need to be exercised. The number of problems solved
is also related to the number of backtracks.

Some of the tests did not required backtracks to obtain the
input vector because they did not have arrays (FIBONACCI)
or the array indexes did not depend on the inputs (LUDCMP
and DIJKSTRA) or because the first solution found was the
feasible one (first test of HUFFMAN). Note also that despite
the fact that the programs ELEVATOR1 and ELEVATOR?2 have
almost the same number of lines in fact the number of decision
points is twice as much in ELEVATOR2.

The results for CPU time and memory used are very low
even for the larger examples. This gives us confidence that
this method is scalable to larger software programs.

V. CONCLUSIONS

We proposed a new methodology based on Mixed Integer
Linear Programming (MILP) for determining the input values
of a software program that will exercise a specified execution
path in the program. Since the MILP constraints are obtained
at runtime we can use as identifiers the memory references of
the variables. Thus, we can handle every type of variable of a

high level programming languge. The test programs we used
cover most of the aspects of a high level language and thus
show the feasibility of our approach.

In our approach the input vectors are obtained for a specified
path. We are currently working on, given a specified coverage
value of a coverage metric, obtaining the input vectors that al-
low for that coverage. With that step completed we can achieve
a hardware/software co-validation tool. This can be done either
by integrating in our method the hardware functional vector
generation or by applying our method to an embedded systems
high-level language.

REFERENCES

[1] F. Fallah, S. Devadas, and K. Keutzer, “Functional vector generation
for HDL models using linear programming and 3-satisfiability,”
in Procs. of DAC, 1998, pp. 528-533. [Online]. Available:
citeseer.nj.nec.com/article/fallah98functional.html

[2] A. Gotlieb, B. Botella, and M. Rueher, “Automatic test data generation
using constraint solving techniques,” in International Symposium on
Software Testing and Analysis, 1998.

[3] B. Korel, “A Dynamic Approach of Test Data Generation,” in Conf. on
Software Maintenance, Nov 1990, pp. 311-317.

[4] K. Sen, D. Marinov, and G. Agha, “Cute: a concolic unit testing
engine for ¢,” in Proceedings of the 10th European software engineering
conference. New York, NY, USA: ACM Press, 2005, pp. 263-272.

[5] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“Exe: automatically generating inputs of death,” in CCS ’06: Proceed-
ings of the 13th ACM conference on Computer and communications
security. New York, NY, USA: ACM Press, 2006, pp. 322-335.

[6] N. Gupta, A. P. Mathur, and M.Soffa, “Automated test data generation
using an iterative relaxation method,” in Procs. of the 6th ACM SIGSOFT
international symposium on Foundations of software engineering, Lake
Buena Vista, Florida, United States, November 1998, pp. 231-244.

[7] P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed automated
random testing,” in PLDI ’05: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation. New
York, NY, USA: ACM Press, 2005, pp. 213-223.

[8] C2C, “ftp://theory.lcs.mit.edu/pub/c2c.”

[91 M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,

and R. B. Brown, “Mibench: A free, commercially representative

embedded benchmark suite,” in IEEE 4th Annual Workshop on Workload

Characterization, 2001.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,

Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.

Cambridge University Press, 1993.

Ipsolve, “http://lpsolve.sourceforge.net.”

G. B. Dantzig, “Application of the Simplex Method to a Transportation

Problem,” Activity Analysis and Production and Allocation, pp. 359—

373, 1951.

[10]

[11]
[12]



	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index




