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Abstract—Complex signal processing algorithms are often
specified in floating point precision. Thus, a type conversion is
needed when the targeted platform requires fixed-point precision.
In this work we proposed a new method to evaluate the final
impact of finite precision processing in wireless applications. The
latter combines analytical analysis with simulations. This extends
previous work including the effect of the decision-making errors
resulting from quantization. Thereby efficient dimensioning of
the minimum bit-widths that satisfy a given accuracy constraint
can be deployed. The method is validated with two representative
case studies, namely an OFDM inner receiver and a Near-ML
MIMO (Multiple Inputs, Multiple Outputs) detector.

I. INTRODUCTION

Many modern signal processing algorithms, such as wireless
communications, are specified in floating point precision.
However, these algorithms are often implemented in fixed-
point architectures when high processing efficiency is targeted.
Such implementation introduces errors due to the effect of
finite bit-widths.
There are two different classes of errors derived from

finite bit-widths: overflow and quantization error. Overflow
errors occur when the data dynamic range grows over the
maximum value that can be represented by the given bit-
width. State-of-the-art techniques, such as [1], are shown to
be effective avoiding overflow errors. Instead, quantization
errors are the result of mapping a continuous-amplitude signal
onto a countable number of possible output levels. Notice
that this quantization error is unavoidable, as opposite to the
previous overflow error. This work focuses on quantization
errors assuming no overflow occurs.
A quantizer operator Q[·], when acting on input signal x,

adds a quantization noise e to the signal, e = Q[x] − x. The
behavior of the quantizer is uniquely described by its fractional
bit-width, δ, and its quantization mode. Typical quantization
modes are truncation and rounding.
In this paper a new method to evaluate the impact of

quantization errors in wireless applications is proposed. The
latter combines analytical analysis with simulations to extend
previous work by including the effect of the decision-making
errors resulting from quantization. The method can be used to
derive efficient fixed-point representations of the digital signal
processing algorithms involve in wireless applications under a
given accuracy constraint. This is applied and validated with
two representative case studies, namely an OFDM receiver and
a MIMO detector.
The rest of the paper is organized as follows: In Section

2 the related work and the motivation for this work are
presented. The proposed method to evaluate quantization noise

is introduced in Section 3. Its validity is illustrated in Section 4
with two representative case studies. Finally, Section 5 draws
conclusions.

II. PROBLEM DESCRIPTION AND RELATED WORK

Exact analyses of the statistics of e are extremely complex
and are usually limited to simple linear systems, such as the
FIR filters described in [3]. Alternatively, [4] proposes a more
general strategy based on a statistical approach where the
following assumption is made:
Assumption A.1: Constant signals have constant quantiza-

tion noise. Instead, variable signals have uniformly distributed
quantization noise which is uncorrelated with the signal, other
quantization noise, and itself over time.
[5] demonstrates that for considering A.1, it is empirically

sufficient to have input signals of much greater variance than
the quantization noise and of reasonably wide spreads in fre-
quency spectrum. In complex communication and multimedia
signal processing systems, both conditions are generally sat-
isfied. Based on A.1, statistical quantization effects of linear-
time-invariant systems have been studied with impressively
high precision (see [5]). However, this assumption is still not
sufficient when targeting general non-linear systems.
[6] applies perturbation theory to extend the statistical

approach also to general non-linear systems by considering
two extra assumptions:
Assumption A.2: In a causal discrete system, every operator

has its arithmetic inputs sitting in the smooth region of the
operator.
The smooth region contains those arithmetic inputs that,

when adding some infinitesimal perturbation, produces an
infinitesimal perturbation at the output. For example, the slicer
that determines the sign of an input arithmetic signal has an
unsmooth region at zero. A.2 infers:
Assumption A.3: The quantization noises need to be suffi-

ciently small not to cause any decision-making error.
Based on the A.1-3, [6] derives the expected Mean-Square

Error (MSE), E[e2
o], between outputs of the Finite Precision

(FP) and the Infinite Precision (IP) version of an arbitrary
digital system

E[e2
o] =

L∑

k,j=1

bk,jμkμj +
L∑

k=1

ckσk
2 (1)

where L is the number of quantizers, μk and σk are mean
and standard deviation of the noise power introduced by a
quantizer k, and b and c are scalar coefficients.
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However, algorithms with decision-making operators and
arithmetic inputs sitting in its unsmooth region, can not be
analyzed using perturbation theory as such. Even the smallest
quantization error can cause decision-making errors which im-
pact application performance. These errors often dominate the
output quantization noise power. Important DSP functionalities
of digital communication, audio and vision domains fall in
this category. Therefore, this work proposes a new modeling
approach which extends this previous work to also include the
decision-making errors fruit of quantization noise.

III. QUANTIZATION NOISE MODELING

A. Decision-making errors

In case that A.2-3 are violated, the extra decision-making
errors need to be added to quantization noise power of Eq 1

E[e2
o] =

L∑

k,j=1

bk,jμkμj +
L∑

k=1

ckσk
2 +

N∑

n=1

punΨn (2)

pun corresponds to the probability that the inputs of decision
making operator n sit in the unsmooth region and depends on
the statistics of the input signals. Ψn represents the system
output error power due to decision-making errors produced
by quantization noise. Analytical expressions for pun and Ψn

are extremely difficult for complex systems. A characterization
purely based on simulation is an alternative. However, this can
be very time consuming and therefore a hybrid approach is
introduced in the following subsections.

B. Quantization noise propagation model

Equation 1 describes the output quantization noise power
of a digital system which respects A.1-3. The latter depends
on two different types of parameters:
- Quantization noise statistic parameters: Define the statis-

tical distribution of the noise injected by a quantizer k: μk and
σk in Eq 1.
- Scalar coefficients: Summarize the statistics of the input

signals, and the algorithmic and architectural information of
the system: b and c in Eq 1.
Considering the quantization noise statistic parameters of

rounding quantization as defined in [4], μk = 0 and σ2
k =

2−2δk

12 , Eq 1 becomes

E[e2
o] =

L∑

k=1

ck
2−2δk

12
=

L∑

k=1

c’k2−2δk (3)

The quantization noise power at the output of the system
is the weighted sum of the noise power introduced by every
quantizer. The later can be interpreted as the backward prop-
agation of the quantization noise sources towards the output
of the system. Accordingly, Figure 1a models a FP system as
the IP digital system plus an additive noise on its outputs.
Equivalently, the quantization noise power can also be

forward propagated to the inputs as shown in Figure 1b. In this
case the noise produced by the internal quantizers is assumed
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Fig. 1. Quantization error propagation models: (a) backwards propagation
and (b) forward propagation

to belong to the input signals. Thus, the new input noise power
is

E[e2
i ] =

L∑

k=1

αk2−2δk (4)

αk is the scaled forward propagation coefficient of the noise
produced in the quantizer k.

C. SNR-sensitive applications

Some applications, such as wireless communications, are
designed to tolerate noise in their inputs. They are functional as
long as a certain level of input Signal to Noise Ratio (SNRi)
is guaranteed. Some of them include multiple modes which
implement different trade offs between noise robustness and
data rate [7]. Performance of such applications degrades as
SNR decreases. For instance, a Bit Error Rate (BER) curve
relates the ratio of erroneous bits received with the receiver’s
SNRi, BER = fIP (SNRi). Where fIP defines the BER
curve of an IP digital system. When the latter is quantized
and the model of Figure 1a is assumed, the new BER can be
expressed as

BER = fIP (SNRi) + fq(eo
2) (5)

fq relates the output quantization error noise power, eo
2,

which also includes decision-making errors, with the ratio
of erroneous bits. Unfortunately, the calculation of eo

2 is
not straight (see Subsection III.A). Alternatively, the noise
propagation model of Figure 1b can be considered. If so, the
BER of the quantized system can be expressed as BER =
fIP (SNRq). Where SNRq includes SNRi and the forward
propagated quantization noise sources and is defined as

SNRq = −10 log10 (10
−SNRi

10 +
L∑

k=1

αk2−2δk) (6)

In this way, the BER of a FP receiver working at SNRi

is assumed to be the same as for an IP receiver working
at SNRq. This is validated in Subsection IV.A with an
experiment.
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D. Calculation of αk propagation coefficients

To calculate of the αk forward propagation coefficients the
system is simulated in IP but for the quantizer of interest, k,
at SNRi. This quantizer injects a quantization noise power
which is controlled by δk as described in [4]. δk has to be
big enough to avoid flooring of the BER curve. As shown in
Figure 2, the noise of the quantizer k degrades performance
from P1 up to the BER of P2. SNRq can now be derived out
of a pre-computed BER curve of the IP system. Then, αk can
be computed as

αk = 22δk(10
−SNRq

10 − 10
−SNRi

10 ) (7)

Interestingly, by considering rounding quantization, the
number of estimations needed becomes a linear function of
the number of quantizers, L. Moreover, the impact of the
decision-making errors due to quantization is estimated based
on Equation 6 and a pre-computed BER curve of the IP
system. This two properties make the proposed approach
scalable for complex systems.
In the case of truncation, the number of estimations needed

grows quadratically with L since the quantization noise power
mean term is not zero.

E. Constraint for quantization degradation

In wireless communications, the signal to noise implemen-
tation loss is a common metric to characterize the degradation
due to the non-idealities of real implementations. The latter
specifies the increase in SNR required by the real implemen-
tation to deliver the same performance as the ideal receiver.
Accordingly, we define the fixed-point degradation, Δ, as the
difference in the SNR required by the IP and the FP system
to provide a certain performance.

Δ = SNRi

∣∣∣
10−4

− SNRq

∣∣∣
10−4

(8)

In this work a BER of 10−4 is considered. Notice that this
is system dependent and needs to be carefully dimensioned for
the different applications. Figure 2 plots the BER curve of both
the IP and FP version of a receiver. At SNRi, an IP receiver
would work in P1. However, due to the quantization noise, the
actual performance is the one of P2, with an equivalent SNR
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Fig. 3. QAM-64 BER curve.

of SNRq. Thus, the FP receiver working point is P3. Δ is the
difference in SNR between P2 and P3.

IV. EXPERIMENTS

A. Case Study 1: FFT in a QAM-64 OFDM receiver

FFTs are a key functionality in Orthogonal Frequency Di-
vision Multiplexing (OFDM) -based wireless standards, such
as WLAN 802.11 n, Mobile WiMAX, 3GPP LTE, etc.
In the transmitter considered in this work, a QAM-64 Map-

per translates random bits into constellation symbols which
are then operated by a 256-points Inverse Fourier Trans-
form (IFFT). The addition of Additive White Gaussian Noise
(AWGN) models the channel noise. The receiver performs
the inverse operations, FFT and Demapper, to recover the
original transmitted bits. The IP BER curve of such OFDM
receiver is plotted in Figure 3. A FP 256-points radix-2 FFT
is implemented. The latter is constituted by 8 butterfly stages
of 128 radix-2 butterflies each. For illustration purposes, a
single quantizer,Qk, is inserted at the output of every butterfly
belonging to the butterfly stage k. Despite the FFT in isolation
is a linear-time-invariant system, in the receiver chain it is
followed by non-linear operations. These are affected by the
quantization noise of a FP FFT. The slicer operators involved
in the Demapper block are a clear example. A slicer is a
decision-making operator with an unsmooth region at the exact
threshold. Due to the additive channel noise, the input of this
slicer has a non-zero probability of sitting in its unsmooth
region. In this case, the smallest quantization noise introduced
in the FFT can provoke a decision-making error. A.2-3 are
violated and perturbation theory fails on predicting the impact
of finite precision processing on the final wireless receiver
performance.
The FP system is simulated with 28 dB SNRi and the

effect of different decimal bit-widths, δ, on different quantizer
is exposed. By using Equation 6, the equivalent SNRq is
calculated. Figure 3 shows the working points of the receiver
depending on the bit-widths applied in the quantizers. Interest-
ingly, those working points perfectly match the IP BER curve.
Therefore the validity of the forward propagation model of
Figure 1b is substantiated.
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Fig. 4. SSFE data-flow graph.

B. Case Study 2: SSFE near-ML MIMO detector

In most recent standards the drastic increase in through-
put comes at the expense of complex MIMO detectors. Al-
though linear detectors are mostly implemented so far, its
performance significantly degrades with the growth of the
modulation scheme. Thus, many implementations of near-ML
detectors have recently been published. Concretely, the SSFE
(Selective Spanning with Fast Enumeration) [9] is a near-
ML MIMO detector designed to provide a deterministic and
regular data-flow, which enables efficient mappings on parallel
programmable architectures.
Figure 4 show the data-flow graph of the SSFE algorithm.

The signals to be quantized are rounded in black. The SSFE
algorithm considered can be configured to evaluate a varying
number of constellation symbols around the first estimate for
the different antennas. Accordingly, SSFE [1 1 2 4] evaluates
1 constellation symbol at the first antenna, 1 at the second, 2 at
the third and 4 at the last one, ordered from stronger to weaker.
The group of constellation symbols that are selected to be
evaluated depends on the sliced initial estimate. Quantization
noise can clearly modify this initial estimate, conditioning also
the subsequent selection of constellation symbols. Unlike the
propose method, perturbation theory fails on capturing such
effects derived from the injected quantization noise.
Two 3GPP-LTE modulation modes, namely the 4 antennas

SDM (Spatial Division Multiplexing) modulated with QAM-
16 1/2 and QAM-64 2/3, are quantized. Table 1 shows the
minimum bit-widths of the signals quantized for the two
modulation modes. Besides, 3 different SSFE modes, namely
the [1 1 1 1], [1 1 2 4] and [1 2 4 8] are considered. All the
quantizations are constraint by two differentΔ: 0.1 and 1 dBs.
Notice that the different modulation and SSFE modes reach a
BER of 10−4 at different SNRi, ranging from 18 to 37 dBs.
Interestingly, the propose method makes explicit variations

on the minimum bit-widths depending on the different options.
For the different modulation modes, maximum variations of 2
bits are observed. For the different SSFE modes maximum
variations of 1 bit are observed. Finally for the different
accuracy constraints, variations up to 2 bits are observed.
Importantly, wider variations, up to 4 bits, are observed across
the different implementation options.
Implementations on reconfigurable architectures, such as

FPGA or SWP (Sub-Word Parallel) DSPs [7], can take ad-
vantage of these variations in minimum bit-widths to reduce
average energy consumption and execution time.

TABLE I
MINIMUM δ FOR THE QAM-16 1/2 AND QAM-64 2/3 MODES

SSFE mode [1 1 1 1] [1 1 2 4] [1 2 4 8]
SNR @ BER=10−4 23 / 37 19 / 31 18 / 28

Δ signal
y 5 / 6 4 / 6 4 / 5
R 6 / 8 6 / 8 6 / 8

1 dB b 5 / 6 5 / 6 5 / 6
1/b 2 / 2 2 / 3 2 / 3
PED - / - 3 / 4 3 / 4
y 7 / 8 6 / 7 6 / 7
R 8 / 10 8 / 10 8 / 10

0.1 dB b 6 / 7 7 / 8 7 / 7
1/b 3 / 4 3 / 4 3 / 4
PED - / - 5 / 6 5 / 6

V. CONCLUSIONS

A new method to evaluate the final impact of finite precision
processing in wireless applications is proposed. The latter
combines analytical analysis with simulations and extends
previous work to include the effect of decision-making errors
resulting from quantization. The method can be used for ef-
fective dimensioning of minimum bit-widths of wireless DSP
algorithm implementations under a given accuracy constraint.
Finally, the method described in this paper has a wider ambit
than wireless applications. The latter can be applied to any
application domain, such as audio and vision, where only
signal integrity needs to be kept and approximations can be
accommodated without affecting the application performance.

REFERENCES

[1] S. Kim, K. Kum, and S. Wonyong, “Fixed-point optimization utility for
c and c++ based digital signal processing programs,” IEEE Trans. on
Circuits and Systems II, vol. 45, no. 11, pp. 1455–1464, November 1998.

[2] A. Oppenheim and R. Schafer, Digital Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1975.

[3] P. W. Wong, “Quantization and roundoff noises in fixed-point fir digital
filters,” IEEE Trans. on Signal Processing, vol. 39, no. 7, pp. 1552–1563,
1991.

[4] B. Widrow, I. Kollar, and M. Liu, “Statistical theory of quantization,”
IEEE Trans. on Instrumentation and Measurement, vol. 45, no. 6, pp.
353–61, 1995.

[5] L. B. Jackson, Digital filters and signal processing: with MATLAB
exercises, 3rd ed. Boston: Kluwer Academic Publishers, 1996.

[6] S. Changchun and R. Brodersen, “A perturbation theory on statistical
quantization effects in fixed-point dsp with non-stationary inputs,” in Pro-
ceedings of the 2004 International Symposium on Circuits and Systems,
New Jersey, USA, 2004, pp. 373–376.

[7] D. Novo, B. Bougard, A. Lambrechts, L. van der Perre, and F. Cattoor,
“Scenario-based fixed-point data format refinement to enable energy-
scalable software defined radios,” in DATE ’08: Proceedings of the
conference on Design, automation and test in Europe. IEEE Press,
2008.

[8] R. Rocher, D. Menard, N. Herve, and O. Sentieys, “Fixed-point config-
urable hardware components,” EURASIP Journal on Embedded Systems,
Special issue on Signal Processing with High Complexity: Prototyping
and Industrial Design, vol. 2006, pp. 1–13, 2006.

[9] M. Li, B. Bougard, W. Xu, D. Novo, L. van der Perre, and F. Cattoor,
“The optimization of near-ml mimo detector for parallel programmable
architecture,” in DATE ’08: Proceedings of the conference on Design,
automation and test in Europe. IEEE Press, 2008.


	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index




