Adaptive Idleness Distribution for Non-Uniform

Aging Tolerance in MultiProcessor
Systems-on-Chip

Francesco Paterna and Luca Benini
DEIS - University of Bologna
V.le Risorgimento 2, Bologna, Italy

Email: [francesco.paterna@unibo.it[luca.benini] @unibo.it

Francesco Papariello and Giuseppe Desoli
ST Microelectronics
Agrate, Italy
Email: [francesco.papariello|giuseppe.desoli] @st.com

Abstract—In deep submicron designs of MultiProcessor
Systems-on-Chip (MPSoC) architectures, uncompensated within-
die process variations and aging effects will lead to an increasing
uncertainty and unbalancing of expected core lifetimes. In this
paper we present an adaptive workload allocation strategy
for run-time compensation of variations- and aging-induced
unbalanced core lifetimes by means of core activity duty cycling.
The proposed techniques regulates the percentage of idle time
on short-expected-life cores to meet the platform lifetime target
with minimum performance degradation.

Experiments have been conducted on a multiprocessor sim-
ulator of a next-generation industrial MPSoC platform for
multimedia applications made of a general purpose processor
and programmable accelerators.

I. INTRODUCTION

Technology process variations in next generation Multipro-
cessor Systems-on-Chip cause performance uncertainty and
unbalancing. To cope with this effect, countermeasures at
various levels have been developed, ranging from transis-
tor level, architectural and system software level. Software
approaches can be very effective because they can adapt
to wear-out and temperature dependency. There are several
hardware techniques that can be used to make software aware
of chip degradation, namely sampling based detection [3], [1],
periodic testing, error correction and detection circuitry [5].
Once this information is made available at the software level,
a common purpose of various approaches recently proposed is
to provide wanted performance and match real-time constraints
through statistical scheduling [6] or learning algorithms [7].

The main challenge of these techniques in a multiproces-
sor systems is to cope with the non-uniform distribution of
critical path delay variations. To handle this heterogeneous
delay distribution, each core can be clocked with a different
frequency, thus increasing the need of synchronization for
intra-core communication. A more conservative approach is
to run all the cores at the same clock frequency dictated by
the slowest core [4]. In both cases the aging effect will deviate
the system from the starting condition, affecting the expected
lifetime and its distribution between the cores. In this scenario,
some cores will have a lower lifetime expectation than others,
thus decreasing reliability and predictability of the system.

The objective of the work presented in this paper is to
mitigate the impact on lifetime uncertainty and unbalancing

Research activity supported by the European project REALITY FP7-2008-
IST-1-216537

978-3-9810801-5-5/DATE09 © 2009 EDAA

Andrea Acquaviva
DAUIN - Politecnico di Torino
Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
Email: andrea.acquaviva@polito.it

Mauro Olivieri
DIE - Universit "La Sapienza” di Roma
Roma, Italy
Email: olivieri@die.uniromal .it

among the cores. To this purpose, we developed an idleness
distribution policy that increases core expected lifetimes by
duty cycling their activity. The idleness is distributed to
equalize the expected lifetime of each core to a target value,
imposed by the system designer or by the user. Since the actual
impact on performance depends on the task model running on
the target multicore system, in this work we consider three
representative task models, namely batch execution, playout
and streaming, for which we evaluate the impact of the policy
on the performance level. The proposed approach is based on
variability information that can be provided at run time by
variability monitors, that are likely to be embedded in next
generation MPSoC designs.

The contributions of this paper can be summarized as
follows. First, we propose an on-line adaptive strategy for
increasing MPSoC tolerance to non-uniform wear-out due to
variations. The methodology is innovative as it is focused
on aging tolerance to improve system lifetime rather than on
recovery of performance lost because of wear-out. Moreover,
it is not based on static task characterization, but on on-line
execution time and wear-out monitoring. Second, we propose
an efficient implementation based on a look-up table that
directly correlates target lifetime with idleness distribution.
Third, we studied the impact of the aging tolerance policy on
performance for various representative task models, demon-
strating its negligible overhead and adaptation to different
workload characteristics.

The rest of the paper is organized as follows. Section
2 discusses the variability model considered in this work.
Section 3 presents the hardware and software infrastructure.
Section 4 describes the proposed policy and Section 5 presents
experimental results.

II. VARIABILITY MODEL AND IDLENESS CONSTRAINTS

In this work we consider intra-die variations in multiproces-
sor systems on chip that are not compensated at fabrication
time. These variations together with wear-out effects that are
likely to be distributed in a non homogeneous way, lead to un-
balanced performance levels. In particular we consider a non-
uniform distribution of critical path delays. A conventional
design approach is to assume that system clock frequency has
been set to some conservative value, dictated by the slowest
core [2]. Not only this impact performance, but also each core
has a different expected lifetime depending on how close is
the critical path delay to the clock time.

The typical behavior of core lifetime is qualitatively ex-
pressed by the well-known bathtub curve, which provides the
probability of failure over time. We assume to operate in
the middle region of the curve. The relationship between the
variability of the critical path delay and actual lifetime for each
core depends on two factors. First, an aging function which
expresses the delay critical path degradation as a function of
time. We assume that the aging function is modulated by
core activity. This means that the delay critical path does
not degrades when the core is idle. This means that we can
increase the expected system core lifetime by putting it in
some standby state when idle, which is a realistic assumption
for state of the art SoCs. The second factor is the effectiveness
of the error correction circuitry that is possibly embedded
in the architecture. The wear-out effect causes more and
more severe timing violations and an increasing number of
paths violating them as the time elapses, thus increasing the
percentage of corrected errors.

The error correction circuitry is able to correct up to a
certain error rate. If this rate is reached, the core cannot be
recovered and thus it fails. For this reason, the expected life-
time can be computed as the time to reach this maximum error
rate. An error correction systems can be exploited as monitor
of the aging process. Using an aging model, it is possible
to determine the expected lifetime based on the amount of
corrected errors. In this way, our policy can directly use the
lifetime information to know how much idleness is needed to
match a given target lifetime requirement. This opportunity is
depicted in Figure 1. Starting from an initial expected lifetime
(tmaz) Which is achieved with 100% core activity, by playing
with idleness it is possible to increase the lifetime up to a target
value ¢;¢. The dashed line represents the activity duty cycling
performed by inserting idle periods between task executions.
We assume that the system is required to match a lifetime
requirement for the whole system and we play on idleness
distribution of each core in order to increase the expected
lifetime to match the target one.

. Typical bathtub curve
failure

rate

t>t :

‘max

(>duty cycling)

1 < Lo tmax

(->100% active)

Fig. 1. Relationship between idleness and core lifetime.

IIT. HARDWARE AND SOFTWARE PLATFORMS

A. MPSoC Simulation Platform

The target platform used to validate the policy presented
in this work is a Multi-Processors System-on-Chip simulator
provided by ST Microelectronics. The simulation model is at
TLM level added with timing support. Its accuracy allows
to model low level architectural details such as memory
contention. The simulation platform has a configurable number
of VLIW accelerators and a master processor of the st231
family. Memories can be configurable to be either local or
shared. In the considered configuration, each processors has
also a local memory for data and program. A shared memory
between master and accelerators has been also instantiated.
The interconnect is an ST-NoC.

B. Software Infrastructure and Task Models

The software organization of our system is composed by
support functions for task loading, data communication and
synchronization, statistic collection. All the cores load the
same program, following a SPMD (Single Program Multiple
Data) approach, where each core executes a different portion
of the program depending on its identifier. The accelerator
code contains all the possible tasks to be executed. Currently,
dynamic loading of tasks is not supported. As such, to
execute a certain task, cores have to jump to the related
code portion, which is identified by a pointer. To control the
execution on the accelerators, the master core changes the
pointer depending on which task the accelerator has to run.
Shared memory is used to exchange data among cores.

Batch execution model. In the batch execution model, the
master core spawns a number of N independent tasks on the
accelerators exploiting a non-blocking round-robin algorithm.
The performance metric associated with this task model is
the execution time, that in this case is defined as the time
between the allocation of the first task and the completion
of the last allocated task. Input and output data are stored in
local memories of accelerators.

Output rate-constrained execution model (playout).
This model is representative of playout activity performed
by audio or video decoders. Also in this case the master
allocates tasks on the accelerators. Accelerators read input
data from their local memories. Output data items are stored
in a common output queue allocated in shared memory with
access regulated by semaphores. A consumer task runs in one
dedicated core which periodically pick one data item from
the output queue. The associated performance metric is the
output throughput. When the output queue becomes empty,
the consumer will experience a deadline miss. As such, the
performance constraint is represented by the output rate.

Input-output rate-constrained execution model (stream-
ing). While in the playout model input data for accelerators
are available on local memories, in streaming task model data
are provided to the accelerators by the master core. This is a
typical model for a videoconferencing application where the
input data are provided by a video camera and accelerators
performs video encoding. Another example is a video decoder
application receiving compressed frame from the network. An
interprocessor communication queue is used as buffer between
master and accelerators. As in the playout model, an output
queue is used to synchronize data communication with the
consumer core. The associated performance metric in this case
is not only the output throughput, but also input throughput.
If the input queue becomes full, this means that accelerators
are not able to handle the input data rate. The constraint on
the output still applies also in this task model.

IV. ADAPTIVE IDLENESS DISTRIBUTION POLICY

The master core is responsible of allocating tasks on the
accelerators. For this reason, it is the most suitable place where
to implement the idleness distribution algorithm. Since the
distribution algorithm depends on the reading of variability
monitors of each core. Our target platform is equipped with
a register accessible from the master and all the cores where
the percentage of corrected errors (also called error rate) can
be read for each core.

Our policy computes a required amount of idleness for each
core. In order to make the policy implementation independent
from the type of runtime information available, the policy

Error s’
rate,

Fig. 2. Implementation scheme of the adaptive idleness distribution policy.

Task dispatching

» 1 Resimmeoe bad core
) I I

 Policy -
manager

N 0.7
/ O uminn
(> /|! ‘
N \ \ good core
G T 1o
Tt o
Fig. 3. Adaptive idleness distribution policy description.

takes as input a required idleness for each core. A conversion
module fills up a table with the idleness values computed
starting from error rate statistics for each core. An aging model
as described in Section II is used to compute the time required
to reach the max_error_rate value assuming zero idleness,
that we call ¢!, ., where 7 indicates the ¢ — th core. For each
core, the target amount of idleness for a generic ¢ — th core
is defined as:

t:naz i
. t tl .
idleness = by U 2 naas

0,25 <t

max

where t; is the system lifetime requirement and idleness is
expressed as a number between 0 and 1, where O indicates
full activity and 1 indicating no activity. Once the wanted
average idleness has been computed it is stored in a table as
shown in Figure 2. Then, the master processor must perform
the task allocation policy accordingly, as depicted in Figure 3.
To achieve the wanted average idleness, our policy allocates
idle periods between task executions for each accelerator. This
implies that the wanted idleness is achieved on a time scale on
the order of task execution times. This is reasonable as long as
the expected lifetime is typically several orders of magnitude
larger than task durations. Indeed, the implementation on a
smaller timescale would imply pre-emption of tasks on the
accelerators, introducing an unnecessary overhead. It must be
noted that the proposed policy does not assume a specific
aging model. The unique assumption is that additional idleness
increases core lifetime.

As a result, the master core exploit hardware timers to
update a data structure where task start and completion times
are stored. After each task completes, its activity interval
is computed. The idle period to be allocated is obtained
by multiplication of the last activity period by the wanted
idleness. After the idle period expires for a core, a new task
is allocated to it.

It must be taken into account that cores must also perform
task management (i.e. loading and completion notification) and
synchronization operations (i.e. waiting on semaphores), as
needed to implement a given task model. When computing

0,070

0,060
0,050

0,040
0,030
0,020 -

error rate [0 to 1]

0,010

0,000

1/4 3/4 116 5/6
fraction of cores with variability
mxpel Expe2 Dxpe3 Exped Hxpe5 Dxpeb

Fig. 4. Variability scenarios. Error rates are mean values of a gaussian
distribution.

the idle period to be allocated to each core, this additional
activity is taken into account by our policy. This is possible
because the master core has full visibility and monitoring
capability of accelerator’s activity. The idleness for each core
is conservatively updated by the master core at each task com-
pletion, depending on monitor readings. However, frequency
of updates can be configured. Experimental results show that
the implementation overhead of this policy is negligible and
that the wanted idleness is obtained with a very high accuracy.

V. EXPERIMENTAL RESULTS

The policy described in Section IV requires software support
mechanism for task activity monitoring and idleness compu-
tation, that could impact the accuracy of idleness distribution.
For our experiments we considered two platform configura-
tions, namely four and six accelerators. For each configuration,
we considered three variability scenarios. Each variability sce-
nario defines the number of cores affected by variability issues
and the mapping of error rates on the cores. In our simulation
platform, error rates are extracted from a gaussian distribution.
In our experiments we considered a static condition where
monitor readings (i.e. variability conditions) are constant over
time. However, we consider a worst case scenario where
the master core reads the variability information at each
task completion. The platform configurations and variability
scenarios considered for our experiments are described in
Figure 4.

It must be noted that minimum and maximum values
of error rates are the same for the four and six core
configurations. Benchmarks used for experiments are matrix
multiplication kernels. To the purpose of characterization
of idleness computation accuracy we measured the actual
idleness and we compared it with the target one. The results
we obtained about idleness accuracy, that are not shown
here for space limitations, highlight that the maximum error
in idleness assignment is within 0.1%, demonstrating the
effectiveness of the proposed software infrastructure.

Batch Execution Results. The matrix multiplication bench-
mark A- B = C is composed by two phases. During the
first one the matrix B is copied from shared memory to local
memory, where A resides. In the second phase the actual
matrix multiplication takes place. Results are stored in the
local matrix C.

Increasing the lifetime may have an impact on performance
depending on the task model. For batch execution,
performance hit lead to an increase of the overall execution

60000

50000

40000

30000 -

20000

execution time [us]

10000

02 m 03 os E i o i

0 0.3

0 0.3

0.4

a)
Fig. 6.

0/4 1/4 3/4 0/6 1/6 5/6
execution
eotier | 40258 | 44715 | 51427 | 26965 | 29404 | 35875
relative
impact [%)] 1" 28 9 33
throughput
rought| 600 | 545 | 470 | 883 | 844 | 681
relative
throughput 9,14 21,67 4,42 22,86

%)

throughput 6,11 5,61

IN [Mbytels] 4,89 8,83 8,44 7,01

relative

throughput 8,24 20,00 4,42 20,59
IN [%]
throughput
5,96 5,45 4,72 8,67 8,29 6,86
Mbyte/s]
relative
throughput 8,57 20,79 4,35 20,86

OUT [%]

Fig. 5. Relative impact of variability on performance for all the scenarios
and configurations

time of NN tasks, where N has been fixed to 60. Results
are shown in Figure 6.a, where associated idleness values
for each core are also reported for clarity. In Figure 5
the relative impact on execution time is shown. For each
platform configuration (i.e. four vs six cores), this has been
computed using the scenario without variations as reference.
By comparing the two platform configurations, it can be
noted that the impact on execution time is proportional to
the fraction of variability-affected cores. For instance, the
execution time of the 5/6 configuration has a larger increase
than for the 3/4 one. However, with the given error rate
distribution this is not enough to make any of the four cores
configuration more performing.

Output Rate-Constrained Processing Results. In this
case the metric to be considered is the output throughput. In
order to consider a worst case condition, we set the consumer
frequency corresponding to the maximum throughput that can
be delivered by the six core configuration, which is about
9MBytes/sec. As such, introducing idleness has an immediate
impact on throughput, as it can be observed in Figure 6.b.
Differently from the execution time for the previous task
model, throughput degradation here is less sensitive to the
fraction of variability affected cores. Indeed, in Figure 5

03 0.6
o4 [o7

throughput [MByte/sec]

0o [EH
el 05 05 [05 o5 B 1 1 B
06 idae i
0.6 i 56 G5
o7 o7 BN 18 15
07 o0& o

b) c)

oW

WIiNIN
BN

Impact of variability on the output throughput for a) batch task model; b) playout model; ¢) streaming model.

the 5/6 scenario has a throughput drop of 23% while the
3/4 scenario has a throughput drop of 22%. However, by
comparing 1/4 and 1/6 scenarios, the relative throughput drop
is 9.1% compared to 4.4%.

Input-Output Rate-Constrained Streaming Results. Both
input and output throughput are critical in this case. Figure 6.c
shows variability effects on the input throughput. The same
results have been obtained for the output throughput (not
shown). Interestingly, also for the input throughput the relative
performance drop for high throughput values is similar for 3/4
and 5/6, being around 20% in both cases (see Figure 5).

VI. CONCLUSION

In this work we presented an adaptive idleness distribution
policy aimed at reducing the impact of variations and aging
on the lifetime of MPSoCs. The policy exploits variability
monitors and online task execution statistics to determine the
duration of idle intervals to be distributed to the cores to match
a given lifetime requirement. The proposed strategy has been
implemented on a industrial simulator of a next generation
nanoscale multiprocessor platform.

REFERENCES

[1] Jason Blome, Shuguang Feng, Shantanu Gupta, and Scott Mahlke.
Online timing analysis for wearout detection. In . Second Workshop on
Architectural Reliability (WAR), December 2006.

[2] Keith A. Bowman, Alaa R. Alameldeen, Srikanth T. Srinivasan, and

Chris B. Wilkerson. Impact of die-to-die and within-die parameter

variations on the throughput distribution of multi-core processors. In

ISLPED ’07: Proceedings of the 2007 international symposium on Low

power electronics and design, pages 50-55, New York, NY, USA, 2007.

ACM.

S. Das, Sanjay Pant, D. Roberts, Seokwoo Lee, D. Blaauw, T. Austin,

T. Mudge, and K. Flautner. A self-tuning dvs processor using delay-error

detection and correction. VLSI Circuits, 2005. Digest of Technical Papers.

2005 Symposium on, pages 258-261, June 2005.

David Roberts, Ronald G. Dreslinski, Eric Karl, Trevor Mudge, Dennis

Sylvester, and David Blaauw. When homogeneous becomes heteroge-

neous. In Third workshop on Operating Systems for Heterogeneous

Multiprocessor Architectures (OSHMA), 2007.

Jared Smolens, Brian Gold, James Hoe, Babak Falsafi, and Ken Mai.

T)etP(‘tmu Pmerumu wearout faults. In Thlrd Wnrkvhnn on Silicon Errors

in Logzc April 2007.

[6] Honggang Wang, Wei Wang, Dongming Peng, and Hamid Sharif. A
route-oriented sleep approach in wireless sensor networks. In CS, 2007.

[7]1 J.A. Winter and D.H. Albonesi. Scheduling algorithms for unpredictably
heterogeneous cmp architectures. In 38th International Conference on
Dependable Systems and Networks, pages —, 2008.

[3

—

[4

=

[5

—

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

