
SecBus: Operating System Controlled Hierarchical
Page-Based Memory Bus Protection

Lifeng Su∗, Stephan Courcambeck∗, Pierre Guillemin∗, Christian Schwarz∗, Renaud Pacalet†
∗STMicroelectronics, 13106 Rousset, France. Email: firstname.lastname@st.com

†Institut TELECOM ; TELECOM ParisTech ; CNRS LTCI, 06904 Sophia Antipolis, France.
Email: renaud.pacalet@telecom-paristech.fr

Abstract—This paper presents a new two-levels page-based
memory bus protection scheme. A trusted Operating System
drives a hardware cryptographic unit and manages security
contexts for each protected memory page. The hardware unit
is located between the internal system bus and the memory
controller. It protects the integrity and confidentiality of selected
memory pages. For better acceptability the processor (CPU)
architecture and the software application level are unmodified.
The impact of the security on cost and performance is optimized
by several algorithmic and hardware techniques and by a
differentiated handling of memory pages, depending on their
characteristics.

I. INTRODUCTION

Since the DS5002FP secure microprocessor [1] and the
XBox by Microsoft [2] were successfully invaded in suc-
cession, external memory bus security has become an active
research topic in both industry and academy. Board-level prob-
ing attacks being far less complex and expensive than on-chip
probing, adversaries can acquire confidential data and even
corrupt the execution of critical programs by much simpler
means than what is required for silicon-level attacks. Passive
probing violates the confidentiality of the program while active
probing (injection) threatens its integrity and refines in three
sub-classes: spoofing (substitution of regular memory content
with forged data), splicing (space permutation in memory) and
replay (time permutation).

In the past few years, several important results have been
achieved in the field. Guilmont et al. [3] propose an improved
Memory Management Unit (MMU) to guarantee memory
confidentiality, but not integrity, on a memory page basis.
The AEGIS project [4] aims at building a secure execution
environment to protect software processes from memory bus
attacks and from each other. eXecute Only Memory (XOM)
[5], [6] proposes a secure process environment resistant against
physical and software attacks. Integrity protection is based
on addressed Message Authentication Code (MAC) but does
not prevent replay attacks. CryptoPage [7] secures processes
execution environments with hardware and software support.
It even includes features from the HIDE project [8] to prevent
information leakage through the address bus. All these projects
require significant modifications of the processor and of the
software tool chain. Ref. [9] is a notable exception as it
presents an Operating System (OS) controlled bus enciphering
technique without any hardware modification. However, it
does not provide integrity protection. The architecture also

relies on several strong hypotheses like, for instance, on-chip
random generation, large embedded memories allowing on-
chip execution of parts of the OS, secure startup phases, etc.

The typical target platform of the SecBus scheme is a
medium-to-low cost mass market device, embedding legacy 32
bits CPUs. Our main goal is to provide a strong confidentiality
and integrity protection of a processor’s external memory bus,
with acceptable cost and performance overhead, compatible
with existing microprocessors and without any modifications
of the CPU subsystem (core, MMU and caches) nor the soft-
ware development tool chain. The acceptability of deep CPU
modifications is low and frequently considered impractical.
Similarly, the acceptability of modifications in the software
design tool chain is low, software reuse without redesign being
an important concern in many cases.

The cost and performance constraints lead to a careful
selection of the cryptographic primitives but also to their
selective and differentiated application, depending on the
specific process security requirements and on the Read-Write
(RW) or Read-Only (RO) nature of their memory pages. This,
in turn, leads to the implication of the OS in the security
policy management. The OS must therefore be trusted. Under
this strong assumption, micro-kernels, hypervisors or isolated
memory managers are preferred over large legacy OSes. A
typical SecBus enhanced platform will run legacy OSes and
other applications on top of a formally verified micro-kernel.

The rest of the paper is organized as follows: section 2
describes the main functional features of the SecBus scheme.
Section 3 details the OS role in the security management.
Section 4 presents some aspects of the hardware unit and
discuss performance improvement.

II. THE SECBUS SCHEME

Our main concerns are performance and cost. Using dif-
ferent cryptographic primitives to protect RW and RO pages
is a way to optimize both. As is now well known, integrity
protection schemes against replay attacks are the most ex-
pensive (see, for instance, [10] for a comprehensive survey
on memory integrity). They rely either on Merkle hash trees
[11], [12] or on data permutations between two consecutive
write [8], [7]. Both are expensive in terms of extra memory
accesses, increased latency (performance) and memory usage
(cost). We apply a Merkle hash tree based integrity protection
to RW memory pages only. RO pages are written once and

 

978-3-9810801-5-5/DATE09 © 2009 EDAA 

 



read many times, so they are not sensitive to replay attacks
and their integrity protection relies on addressed Message
Authentication Codes (MACs)1.

We use the same mechanism also for the memory page
confidentiality. A strong symmetric block cipher is needed to
protect RW pages. This increases the memory latency both
on reads and writes and impacts the performance. We use
block ciphers to protect the confidentiality of RW memory
pages only. The chosen mode is Electronic Code Book (ECB)
because it avoids inter-blocks dependency. RO pages are
protected with a block cipher in counter mode used as One
Time Pad (OTP). The read and OTP computation can be
parallelized, thus the performance overhead is reduced and
even completely avoided as soon as the memory latency
exceeds the OTP computation time. Code pages, most critical
to a typical system’s performance, are RO pages and thus
protected by the lightest techniques and thus SecBus does not
have a strong negative impact.

The second mean by which the performance and cost
overheads are limited as much as possible is the selective
application of security policies. Processes requiring no pro-
tection at all have their memory pages unprotected. Security
requirements are defined in a very flexible way, on a process
and even program segment basis. Confidentiality and integrity
are handled separately. Requirements can be expressed by
applications if they are SecBus aware or by the OS. They are
finally translated into 3 confidentiality modes (None, Block
Cipher, One Time Pad) and 3 integrity modes (None, MAC,
Hash Tree) per physical memory page. Together with the secret
keys, the 2 modes form a Security Policy (SP). Different
sections of different processes are assigned different SPs with
different secret keys to avoid several weaknesses such as OTP
re-use, known plain text attacks, . . .

The cryptographic operations are performed by a dedicated
hardware module, SecBus, located between the on-chip bus
and the memory controller, as depicted in Fig. 1. In the
following SecBus refers to this hardware module or to the
global scheme, depending on the context.

SecBus operates on physical addresses and has no knowl-
edge of the virtual address space. It is configured by the
OS through a set of memory mapped control and interface
registers. Note that the OS is trusted and so fully responsible
for processes isolation. The goal of SecBus is limited to
protecting the memory bus against probing attacks; inter-
process isolation must be guaranteed by the OS. The next
section presents the OS role in this security chain.

III. MEMORY ORGANIZATION AND OS SUPPORT

Note: keeping in mind the way an OS controls a MMU
and its page tables will help understanding the following:
there are many commonalities with the control of SecBus. The
discussion is kept as generic as possible but, when concrete
examples are given, they are based on a 32 bits CPU with two

1Addressed MACs protect against splicing attacks by blending the memory
address with the data

CPU Secure SoC

Config. SecBus

memory controller

Insecure

I/O

on-chip bus

Fig. 1. System Architecture

physical page sizes (4 KBytes and 4 MBytes), 4-ary MACs
and hash trees; MACs and hashes are 64 bits and protect four
64 bits double words.

The physical memory page is chosen as the finest protection
grain. This eases the implementation, brings security man-
agement closer to regular memory management and offers
simple solutions to shared memory issues that would other-
wise be very complex to deal with. Thanks to this, sharing
memory pages between processes usually requires no special
processing, unless the process that allocated the page has no
or lower security requirements than the sharing one. In this
situation, the two SPs are combined to create a new one with
sufficient security modes for both processes and the shared
page is mutated accordingly.

When a program is loaded by the OS or when a process is
created, the OS creates SPs for its different sections. A random
generator in SecBus is requested to generate the secret keys.
All the memory pages that form a section share the same SP.
SPs are stationary and not modified during process execution.
An example of SP definition is given below:

typedef enum {None, BC, OTP} confidentialityMode;
typedef enum {None, MAC, HT} integrityMode;
typedef struct {

confidentialityMode CM; // 2 bits
integrityMode IM; // 2 bits
secretKey SK; // 124 bits

} securityPolicy;

When the OS allocates physical memory pages it also asso-
ciates them a second structure: the Page Security Parameter
Entry (PSPE). The primary goal of the PSPE is to map
physical addresses to a given SP index. PSPEs are arranged
in a hierarchy of tables, as are the page tables of a MMU. As
the page tables entries are used by a MMU to translate virtual
addresses, PSPEs are used by SecBus to translate physical
addresses to SP indexes.

If integrity protection is required for the allocated memory
page, another memory page is also allocated to hold the
corresponding MAC set or hash tree, unless there is already a
free memory area in an existing MAC or hash tree page: with
a 4-ary MAC and hash tree structure, a memory page can store
4 different MAC sets or 3 different hash trees; new pages are
allocated only when needed. The memory space thus contains
4 different types of pages: regular RO or RW pages, MAC
pages and Hash Tree (HT) pages. Each MAC page contains
up to 4 MAC sets protecting one RO page each. Each HT page



contains up to 3 hash trees protecting one RW page each.
The second field of the PSPE is the base address of the

MAC set, of the hash tree or of the next level PSPE table.
The 3 last fields are one bit flags. The valid flag indicates

whether the PSPE is valid or not; during the tables walk,
if SecBus encounters an invalid PSPE, it raises an interrupt
to indicate that a proper SP was not defined for the current
physical address and the OS takes the appropriate actions. The
second flag indicates the table search termination and allows
hierarchical page tables corresponding to different page sizes.
The third flag is a type indicator and is used to identify a
second type of PSPE: the slave PSPE. Regular (or master)
PSPEs are associated regular RO and RW pages while slave
PSPEs are associated HT pages and carry the 3 flags plus the
root hash value of the HT page (that is, of the 3 hash trees
it contains). Fig. 2 depicts the two PSPE structures (in this
example the root hash is truncated to 61 bits to fit in a 64 bits
double word).

The physical addresses issued by the CPU are used by
SecBus to search a valid PSPE in the page tables hierarchy.
HT pages are not supposed to be accessed directly by the
CPU so an interrupt is raised when a slave PSPE is finally
encountered. Else, the found master PSPE is used to fetch
and apply the right SP. MAC and HT pages are allocated by
the OS but accessed only by SecBus when checking integrity
and updating MAC sets or hash trees. When accessing HT
pages, SecBus uses the physical addresses to select the slave
PSPE that holds the root hash value of the page.

The SPs, the slave and master PSPEs are stored in a
dedicated memory area, the Master Block, together with a
main hash tree that protects their integrity. In our concrete
example, assuming a 4 GBytes physical memory space is
protected and only 4 KBytes pages are used, 220 PSPEs at
most will be needed, one per physical page. The ratio of
master/slave PSPEs among them will depend on the amount
of physical memory protected by hash trees. In this example,
a PSPE is 8 bytes (64 bits) long, so 8 MBytes are reserved for
the PSPE memory area. Adding 4 MBytes for the SPs offers a
maximum number of simultaneously active security policies of
4×220/16 = 218 which is far more than actually needed by a
real 32 bits system. The main hash tree is thus (8 + 4)/3 = 4
MBytes. All in all, a 16 MBytes Master Block is sufficient
to store the SPs, PSPEs and main hash Tree of a 4 GBytes
system. The remaining available memory contains fully usable
RO and RW pages, plus some MAC pages and HT pages
whose number depends on the specific security requirements
of the currently running processes2. The confidentiality of the
4 MBytes SP area is protected by block cipher because it
contains sensitive secret keys while the confidentiality of the
8 MBytes PSPE can be left unprotected. Note: this structure
introduces a two-levels hash trees organization: the main hash
tree protects slave PSPEs which contain root hash values of
HT pages (local hash tree). And the HT pages in turn protect

2Integrity protection requires one MAC page for 4 protected RO pages and
one HT page for 3 protected RW pages

18 bits32 bits

ReservedBase address (MAC, HT or next page level)

Root hash

SP index
Valid bit
Search termination bit
Type bit

Valid bit
Search termination bit
Type bit

Slave PSPE

61 bits

Master PSPE

11 bits

Fig. 2. PSPE definition

regular RW pages.
Accesses to the Master Block are controlled by a special

set of parameters in the Master Security Parameters Group
(MSPG). The MSPG is initialized at startup and is stored
and locked in SecBus. It contains the root hash value of
the main hash tree, the base addresses of the 3 areas and a
randomly generated symmetric secret key used to encipher
the SP area. The following code snippset gives an example of
MSPG structure:

typedef struct {
hashValue RHV; // 64 bits
baseAddress PSPE, SP, MHT; // 3x32=96 bits
secretKey SK; // 128 bits

} masterSecurityParametersGroup;

When applications or legacy OSes run on top of the trusted
OS, they may benefit the memory bus protection either in a
monolithic or in a self-managed way. Monolithic protection is
defined globally for the considered application, on a program
segment basis. The application is unmodified and protected
by a cooperation between the trusted OS and the SecBus
hardware accelerator. It is not protected against software
exploits (which is not the purpose of the SecBus scheme) but
its exchanges with the external memory are as safe as required
by the security policies of its segments. Applications requiring
memory bus protection but SecBus-unaware or potentially
vulnerable to software exploits will typically be protected this
way. The performance will be impacted because some pages
will be protected with a more expensive scheme than what
would be actually required, but this is the price to pay to
protect the memory accesses of such applications.

In the self-managed mode, the application is SecBus-aware
and uses the Application Programming Interface (API) ex-
ported by the trusted OS to manage the protection of its own
memory pages. The calls to this API go through the trusted OS
because allowing an untrusted application to directly access
the SecBus hardware module would compromise the security
of the whole platform. In this mode of operation, if an
application is compromised by a software exploit, there is no
guarantee that its memory pages remain confidential and that
their integrity is preserved: the exploit could require protected
pages to be mutated as unprotected and there would be no way
for the trusted OS to detect this situation. As a consequence,
only deeply verified applications should run in this mode.

IV. THE SECBUS HARDWARE MODULE

As explained in the previous section, the OS is responsible
for the high level management of the security policies and



parameters for the allocated memory pages. All the crypto-
graphic operations (enciphering, deciphering, MAC, hash, ran-
dom generation, . . . ) are performed by the dedicated SecBus
hardware accelerator. SecBus is responsible for the low level
management of the master block, the HT pages and the MAC
pages. Every access to these memory areas is performed
by SecBus on behalf of the OS. The OS issues high level
commands to SecBus which implements them as sequences
of low level computations and memory accesses. For instance,
when a new security policy is needed, the OS provides SecBus
with a SP index, an integrity mode and a confidentiality mode
and SecBus generates the key material and stores the new
policy in the master block.

The main functionalities implemented by SecBus are con-
fidentiality and integrity management but it also provides ad-
ditional services like random number generation, initialization
of hash trees and MAC sets, secure storage of the sensitive
cryptographic material, plus some specific services dedicated
to the startup phases. Despite all these capabilities, without any
further optimization, the mechanisms we presented up to now
would lead to significant performance degradation on every
processor cache miss. In order to mitigate the performance
degradation, 4 caches are embedded in SecBus to store re-
cently used SPs, PSPEs, hashes and MACs. Thanks to these 4
caches, the security parameter search is accelerated and many
external memory accesses and cryptographic computations are
avoided. Their design largely relies on performance simula-
tions. A simulation platform, based on a ARM Instruction Set
Simulator, and running various applications, from standalone
processes to applications on top of a Linux kernel, is currently
designed and used to evaluate various cache architectures.

The MAC cache is a very classical one. Its main character-
istics (size, architecture, write and replacement policies) must
be adapted to the specificities of MAC accesses but it needs
no unusual customization.

Hash caches architectures have already been studied in the
literature ([12]). The main issues with hash caches are related
to the relations between nodes of a tree. Write-through caches
are rather straightforward but their efficiency is limited to
shortening the hash tree check operations: the checking stops
at the first cache hit. Write-back hash caches shorten the hash
trees update too but they leave the cache in an inconsistent
state: marking a hash dirty in the cache implies that all the
other nodes depending on it must be considered outdated, in
cache or in external memory. The design of a hash cache
is thus a trade-off between hardware cost, complexity and
efficiency. For performance reasons we are using a write-back
hash cache despite its intrinsic complexity. The hash cache
handles the internal dependencies between cached nodes.

PSPE and SP caches, like MAC cache are much simpler
than hash caches but they are also much closer to the Trans-
lation Lookaside Buffer (TLB) of a MMU than to a regular
cache. Their number of entries is thus limited. The optimal
write policy depends on the frequency of cache writes: a
write-through cache increases the rate of write accesses to
the Master Block. Updating the Master Block is expensive,

mainly because it forces a main hash tree update. If it is
infrequent enough it could be negligible. But if cache writes
are frequent events the implementation overhead of write-back
caches could be worth the effort. System level simulations will
help evaluating both options.

V. CONCLUSION AND FUTURE WORK

We presented a page-based memory bus protection scheme.
Its design targets a constrained context where the modifications
of CPU and software tool chain are considered impractical.
The impact of the security on the cost and performance
is optimized by different algorithmic means and hardware
caches. The trusted OS is largely involved in the security
management. This scheme is a promising, cost effective so-
lution. A simulator is being built to rigorously evaluate the
performance/complexity trade-offs of the different caches. In
the near future, simulation results will provide valuable inputs
and will drive architecture choices. Meanwhile, a formal model
of the security management unit will be designed and its
correctness will be checked against security properties. In the
long run, a hardware prototype will be designed, an OS will
be selected and adapted and a complete demonstrator will be
built to demonstrate that a true trusted computing platform
is realizable at costs and with performance compatible with
consumer markets.

ACKNOWLEDGMENT

This work was supported by the French Conseil Régional
Provence-Alpes-Côte d’Azur and by the French Association
Nationale de la Recherche Technique.

REFERENCES

[1] M. Kuhn, “Cipher Instruction Search Attack on The Bus-Encryption
Security Microcontroller DS5002FP,” IEEE Transactions on Computers,
1998.

[2] A.B. Huang, “Keeping Secrets in Hardware: The Microsoft XBox Case
Study,” MIT, AI Memo, 2002.

[3] T. Gilmont and J.D. Legat and J.J. Quisquater, “Enhancing Security in
the Memory Management Unit,” in EuroMicro, 1999.

[4] G.E. Suh and D. Clarke and B. Gassent and M. van Dijk and S. De-
vadas, “AEGIS: Architecture for Tamper-Evident and Tamper-Resistant
Processing,” in ICS, 2003.

[5] D. Lie and C. Thekkath and M. Mitchell and P. Lincoln and D. Boneh
and J. Mitchell and M. Horowitz, “Architecture Support for Copy and
Tamper Resistant Software,” in ASPLOS, 2000.

[6] D. Lie and J. Mitchell and C. Thekkath and M. Horowitz, “Specify-
ing and Verifying Hardware for Tamper-Resistant Software,” in IEEE
Symposium on Security and Privacy, 2003.

[7] G. Duc and R. Keryell, “CRYPTOPAGE: an Efficient Secure Archi-
tecture with Memory Encryption, Integrity and Information Leakage
Protection,” in ACSAC, 2006.

[8] X. Zhuang and T.Zhang and S.Pande, “HIDE: an Infrastructure for
Efficiently Protecting Information Leakage on the Address Bus,” in
ASPLOS, 2004.

[9] X. Chen and R.P. Dick and C. Alok, “Operating System Controlled
Processor-Memory Bus Encryption,” in DATE, 2008.

[10] R. Elbaz and D. Champagne and R.B. Lee and L. Torres and G.
Sassatelli and P. Guillemin, “TEC-Tree: a Low-Cost, Parallelizable Tree
for Efficient Defense Against Memory Replay Attacks,” in CHES, 2007.

[11] R.C. Merkle, “Protocols for Public Key Cryptography,” in IEEE Sym-
posium on Security and Privacy, 1980.

[12] B. Gassend and G.E. Suh and D. Clarke and M. van Dijk and S. Devadas,
“Caches and Hash Trees for Efficient Memory Integrity Verification,” in
HPCA, 2003.


	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index




