
Increased Accuracy through Noise Injection in
Abstract RTOS Simulation

Henning Zabel, Wolfgang Mueller
Universität Paderborn, C-LAB

Fürstenallee 11, D-33102 Paderborn, Germany

Abstract—Today, mobile and embedded real-time systems have
to cope with the migration and allocation of multiple software
tasks running on top of a real-time operating system (RTOS)
residing on one or multiple system processors. Abstract RTOS
simulations and timing analysis applies for fast and early
estimation to configure it towards the individual needs of the
application and environment. In this context, a high accuracy of
the simulation compared to an instruction set simulation (ISS)
is of key importance. In this paper, we investigate the accuracy
of abstract RTOS simulation and compare it to ISS and the
behavior of the physical system. We show that we can reach an
increased accuracy of the simulation when we inject noise into
the time model. Our results indicate that it is sufficient to inject
uniformly distributed random time values to the RTOS real-time
clock.

I. INTRODUCTION

Today, RTOS timing analysis is mainly performed by Worst
Case Execution Time (WCET) analysis, Worst Case Response
Time (WCRT) analysis [1], and by Instruction Set Simulation
(ISS) [2]. Additionally, logic analyzers, tracing hardware, and
specialized trace boxes come into application.

Traditionally, ISS is mainly used for functional and perfor-
mance analysis based on a specific target processor and oper-
ating system. ISS mainly performs the emulation of assembly
code at the machine code level covering the execution of
the complete application plus operating system by accurately
representing and simulating values of single variables and all
registers. As such, ISS requires the complete software exe-
cutable including the real RTOS to be available in binary form.
Instructions set simulators are highly accurate and already
reach considerable speeds. However, their simulation times are
typically still insufficient for early estimation and rapid pro-
totyping. However, fast simulation is of utmost importance in
early estimation in order to scale different system parameters.

On the other hand, simulations based on abstract RTOS
models give promising simulation speeds. Schirner et al. [3],
for instance, report significant 1000x speed-ups. However,
they come with a reduced accuracy of approx. 7-8 % in
average compared to ISS. The resulting simulation errors are
mainly due to the abstraction since not all execution paths
are considered. Additionally, instructions are data–dependent
thus they may vary in their execution time so that they can
hardly be represented by fixed mean or worst case execution
times. Inaccurately modeled critical sections may have further
impact to the starting time and duration of individual tasks
and, finally, we can identify small variations in the frequency

of the crystal clock. In some cases, the combination of these
effects may give completely different scheduling sequences,
which finally result in more or less significant errors in the
abstract simulation.

This article investigates the accuracy of abstract RTOS
simulations for timing analysis compared to measurements
taken by ISS and by a logic analyzer and their coverage
by the abstract RTOS simulation. To increase accuracy, we
investigate noise injection to abstract RTOS models through
three different timing parameters: (i) execution time of basic
blocks, (ii) communication delays, and (iii) the frequency of
the RTOS real-time clock, which is typically implemented by
an RTOS tick interrupt service routine (ISR). For all param-
eters we apply uniformly distributed random values within a
specific timing interval. The main goal of our investigations
is the compensation of possible time shifts in the scheduling
sequence by the introduction of noise.

We present our studies on the impact of noise injection
to different combinations of those parameters and finally find
very clear indications for improved accuracy and the increased
coverage of the measurements by noise injection to the RTOS
real-time clock. We can also show how to meaningfully limit
the noise to a small interval, which in turn decreases simulation
time by smaller stimuli sets.

The remainder of this article is organized as follows. The
next chapter discusses related works. Thereafter, we introduce
basic principles of abstract RTOS simulation and develop a
metrics for the coverage of measurements by abstract RTOS
simulation before we investigate (i) the accuracy of a simu-
lation w.r.t. the physical system and (ii) the coverage by the
simulation. Finally, the article closes with a conclusion.

II. RELATED WORK

Timing informations for schedulability analysis are usu-
ally derived from a Worst Case Execution Timing Analysis
(WCET). Currently available tools for static analysis like aiT
(AbsInt) and SymTA/S (SymtaVision) support static WCET
and response time analysis, which are based on the estimated
upper bound over all possible execution times of a task. An
alternative approach is to model task execution times as a
stochastic distribution. Manolache [4] introduces an analysis
based on stochastic execution time models to retrieve the
expected deadline miss ratio for a given task set.

Instruction Set Simulation (ISS) simulation usually comes
with a slow execution so that no detailed evaluations and anal-
ysis like the evaluation of different scheduling strategies can be

978-3-9810801-5-5/DATE09 © 2009 EDAA

efficiently performed. Therefore, several research groups are
working on C-based abstract canonical RTOS models which
give simulation speed increase 500x-1000x compared to ISS
[5], [6].

Desmet et al. [7] provide one of the early approaches to
RTOS generation with SystemC. Later, several groups like [5],
Yoo et al. [8], and [9] published approaches for fast SystemC-
and SpecC-based RTOS simulation. They all support slightly
different RTOS-relevant properties like POSIX compatibility
and interrupts. Most of them are based on the simulation
of static time annotation of basic blocks of tasks, where
timing information is retrieved and backannotated before the
simulation and introduce improvements compared to ISS.

Posadas et al. [10] have published several articles on RTOS
simulation. They introduce concepts of their SystemC RTOS
library PERFidiX, which covers approximately 70% of the
POSIX standard. Segments of software threads are annotated
by time estimations, which are estimated at run-time by
overloading C/C++ operators and depends on the simulated
target platform. They report improvements in simulation speed
of more than 142x compared to ISS.

Huss and Klaus [11] apply the Gumbel distribution to
compute execution times of tasks in their SystemC RTOS
model. They evaluated different scheduling strategies for the
case study of a mobile robot. This is one of the very few
approaches, which tries to combine SystemC RTOS simulation
with statistical methods. Unfortunately, no detailed numbers
on the accuracy of their approach is available.

There are very few approaches which compare abstract
RTOS simulation to execution times on physical hardware.
Here, Hwang [12] investigates a cycle approximate retar-
getable performance estimation to generate timed SystemC
models at transaction level. Time information is derived from
the instruction set of the Low Level Virtual Machine (LLVM)
and from the processing unit model (PUM) via a CDFG
(Control-Dataflow Graph). Comparison to physical hardware
showed an average error of 8% in the number of estimated
cycles.

Our approach combines abstract RTOS simulation with sta-
tistical methods. To increase accuracy, we have implemented
a noise injection for different time parameters. We show that a
uniform distribution of noise to a specific parameter can lead
to significant improvements in the accuracy and increase the
coverage of measurements by our abstract RTOS simulation.
For wider conclusions, we compare accuracy and coverage of
our results to ISS and to physical hardware.

III. ABSTRACT RTOS MODELING AND SIMULATION

Modeling of embedded and SoC systems typically starts
with an architectural model, which is further refined into
hardware and software. In hardware-dependent software re-
finement, there are several approaches to develop high-level
models. [3], for instance, divides abstraction levels into Ap-
plication Level and Task Level before arriving at Firmware,
Transaction Level Models (TLM) and cycle- and pin-accurate
Bus Functional Models (BFM). At task level abstract Operat-
ing System (OS) models are typically introduced, which cover

software tasks, interrupts, and interprocess communication
(IPC). RTOS abstraction is applied for fast simulation in order
to analyze different system parameters like scheduling strategy.

In more details, task level models are composed of the
following entities:

• I/O Access. This covers the direct read/write to registers
and other memory resources.

• Driver and Communication Stacks. Drivers and com-
munication stacks typically implement routines for fast
I/O access. This can be by the means of interrupts. This
access can be through an Hardware Abstraction Layer
(HAL) for register, access, and functional shielding.

• Operating System. An operating system is introduced
when different hardware resources have to be shared
by multiple software tasks. The operating system, for
instance, provides different synchronization and commu-
nication schemes as well as a task scheduler.

Task level abstraction typically replaces the I/0 access and
the HAL by a functional layer in order to analyze different
aspects at that level. This functional interface has to be
carefully defined so that no significant modifications have to
be applied on the existing software. In the case that software
functions are removed by such an abstraction, they have to be
adequately replaced by its constant execution time, i.e., mean
or worst case execution time.

Abstract RTOS simulation at the task level is based on
partitioning of the application into hardware components and
software tasks, including Interrupt Service Routines (ISR).
Tasks and ISRs are further divided into a sequence of time-
annotated software segments. Segments are usually defined at
the basic block level, though it is possible to partition into
more coarse- or fine-grain segments (see Figure 1).

Fig. 1. Time annotated software segment

In abstract RTOS simulation by SystemC [9], this is typ-
ically modeled by the execution of the basic block (B) or
its abstraction followed by a wait statement for modeling its
fixed time delay (t). The time is retrieved from measurements
or from ISS which typically introduce a small time error
(∆t). As SystemC, like other C-based system description
languages, is based on a non-preemptive simulation kernel this
modeling style gives simulation inaccuracies in start times of
tasks and ISRs when preemptive behavior, like an interrupt, is
simulated. To overcome this drawback several extensions and
libraries like [10] and [9] were introduced. However, due to
the individual application a certain inaccuracy remains when
abstract RTOS simulation is compared to ISS or to the physical
system execution.

Figure 2 shows a simplified view of testbeds comparing
the I/O behavior of a combined task/transaction level with an
ISS and a physical system, respectively. The task level model
runs the applications and the device drivers on an abstract
RTOS (aRTOS) and on a TLM I/O model, which both run

Fig. 2. Simulated vs. Physical System

on a SystemC kernel. We can easily generate trace files from
the TLM model in order to run a further analysis. The ISS
and physical system is sketched by application layer, device
driver, RTOS, and the I/O access, which reside on the ISS or
processor. The I/O access of the system can be traced by a
logic analyzer for further measurements or a logfile can be
generated. The execution times for back annotation to more
abstract levels can be estimated by disassembling the binary
for the target [13].

To avoid too many re-spins in the design cycle, main
considerations concern the accuracy of the analysis results
at task level with respect to the behavior of the ISS or
the final physical system, which is subject of our remaining
investigations.

Despite of accurate simulation models at task level, most
executation times of segments cannot be exactly determined.
This is due to specific individual execution paths and the
data-dependent variances of instructions, which both have
to be determined after optimization and compilation into
assembler code. Small variations in the crystal clock and
inaccurate models of critical sections have additional impact
on their execution. In total, all these effects give more or
less significant deviations in the start times and durations of
tasks. In many cases, the total error may give a different task
schedule compared to the execution by ISS or on the physical
hardware.

To adequately cover all these effects, we apply a statistical
method and inject a uniformly distributed random value to
the different time values, which are given by the estimated
execution times. This, of course, implies that an additional
number of stimuli has to be applied so that we also have to
conclude with findings how to limit the width of the noise
intervals.

In our abstract RTOS simulation, we evaluate timing vari-
ances to the execution times of

1) basic blocks,
2) communication, and
3) the real-time clock

Abstract RTOS simulation is typically based of the simula-
tion of basic blocks of each task annotated by their mean or
worst case execution time. Time annotations for communica-
tion can be due to bus transmissions, buffer delays etc. Ad-

ditionally, physical variations of the hardware clock or clocks
may significantly determine variations in the system behavior,
which has to be accurately covered during simulation. The
notion of real-time clock refers to the RTOS tick interrupt
that triggers all RTOS activities. The real-time clock depends
on the clock crystal that resides on the board, often denoted
as XTAL.

IV. SIMULATION COVERAGE

To achieve high accuracy at task level, the abstract RTOS
simulation has to cover the final physical system behavior as
much as possible. More precisely, this means that as many
scheduling sequences of the simulation have to be as close as
possible to the sequences of later measurement of the ISS or
the physical system. In the ideal case, the set of scheduling
sequences equals the set of sequences in the measurement in
number and values, or just differ by a ǫ, which has to be kept
as small as possible. To more formally cover these problem,
we introduce some definitions.

Definition IV.1. Let J = {J1, J2, .., Jn} be the set of Tasks

and ISRs, and JS = {RUNNING,READY,WAITING}
the set of possible states of an element of J . #J = n gives

the number of elements of J . Then se = (s, i, t) defines a

scheduling event se at time point t ∈ R, where Ji switches to

state s ∈ JS.

Note that an ISR is limited to RUNNING and
WAITING, where the latter denotes the state when waiting
on an interrupt.

Definition IV.2. We further define SE as a finite sequence of

scheduling events 〈se1, se2, .., sen〉, where for each pair sej =
(sj , ij , tj) and sek = (sk, ik, tk) of that sequence tj ≤ tk is

true if j < k.

In the remainder, we have to compare different sequences
SEk where k ∈ {1..m} and m is the number of elements
of the set of all possible scheduling sequences M(SE), i.e.,
#M(SE) = m.

A scheduling sequence is related to the execution sequence
of segments within a specific period. We denote the corre-
sponding execution path by σ. Note, that the set of all possible
paths is finite since the number of segments is finite.

Definition IV.3. We define two scheduling sequences SEk and

SEl with path σ and k, l ∈ N as ǫ-similar and write SEk ǫ
∼

SEl, if:

1) #SEk = #SEl = n and

2) ∀p ∈ {1..n}: sk
p = sl

p and ikp = ilp and

3) ∀q ∈ {2..n} : |tkq − tlq − toffset| ≤ ǫ with toffset =
tk1 − tl1.

In other words, two scheduling sequences are ǫ-similar, if
they refer to the same path σ, they have the same length,
their sequences of states and tasks/ISRs are equal, and their
time values only differ by ǫ with respect to a given initial
offset toffset. As a consequence, in the case of ǫ = 0, two
sequences then just have a toffset time shift.

In our work, we consider scheduling sequences from simu-
lation (SIM) and measurement (MEA). Both sets are subsets
of all possible sequences SIM,MEA ⊆ M(SE).

We are especially interested in the number of elements
of MEA

ǫ(SIM) = {se ∈ MEA|∃sea ∈ SIM : se
ǫ
∼

sea}, which defines the set of measured sequences that
are ǫ-similar to sequences in a given simulation. Thus,
#MEAǫ(SIM)/#MEA defines the ratio of a set of mea-
sured sequences that are ǫ-similar to a set of simulated
sequences divided by all measured sequences. In the remainder
of this article we abbreviate this by ρMEA

SIM (ǫ). In the ideal case,
ρMEA

SIM (ǫ) is close to 1, which means that the simulation covers
all measurement sequences within an ǫ.

In the next section, we take traces from the transaction
level simulation SIM and compare them to traces of the
measurements MEA (see Figure 2). Traces refer to scheduling
sequences SEk in the above definitions.

V. ACCURACY AND COVERAGE ANALYSIS

For early accurate estimations by abstract RTOS simulation,
we are interested in two results

1) how to improve simulation accuracy by keeping the
simulation speed

2) how to improve the simulation model to get the best
coverage of the measurements

For this, we apply noise injection at specific points in the
model and evaluate the relevance of different parameters to the
accuracy and the coverage of the simulation. Our evaluations
are based on two representative case studies with different
properties and on a set of configurations of their parameters1.
Case study 1 is a distributed light controller with heat sensors.
The system is composed of 5 processors and implements
communication over serial channels. Each processor executes
9 tasks and 5 ISRs. The RTOS handles sporadic events
with static priorities and without preemption. Case study 2
implements a single processor CPU benchmark executing three
periodic tasks, which are scheduled with Rate Monotonic with
preemption. Two tasks have an almost constant execution time
where the execution time of the third one varies significantly.
In both cases, the execution of tasks are triggered by the real-
time clock, which is implemented by an ISR, i.e., the RTOS
tick interrupt. Though measurements of case study 1 are taken
by a logic analyzer and measurements of case study 2 are taken
by ISS they give the same direction.

The basic setup of the testbed for both case studies is
outlined by Figure 2. Here, the scheduling events se = (s, i, t)
are the context switches of the RTOS, which are written to an
I/O port, where only changes of the task state s ∈ JS and task
id i for Ji are recorded. The time point t ∈ R is either given by
the current simulation time or the sampling time of the logic
analyzer. Scheduling events within specific time intervals are
combined to scheduling sequences SQ. These time intervals
corresponds to the hyperperiods of the task set. The start and
end of such an interval is determined by a stimuli generator.

We applied 3 different timing parameters for noise injection
to both case studies: (i) communication time (vcomm), (ii) time

1In both cases the hardware was the AT90CAN128 8Bit RISC Processor

annotation of basic blocks (vblock), (iii) and the real-time clock
(vclock), i.e., the time point for the execution of the RTOS tick
interrupt. Applying noise injection to those parameters means,
that we randomly changed their time values or delays in each
simulation cycle within a fixed time interval. For this we
identify the time interval by their upper bound and call them
pcomm, pblock, pclock due to the corresponding parameters.
Upper bounds are given in terms of execution cycles.

In order to reach uniform distributions of the injected noise
there is a direct correlation of high values of vcomm to the
number of required stimuli or, in other words, the smaller
the interval the less stimuli are required and the shorter the
simulation time. That also means, that investigations on wider
intervals are of theoretical interest only.

In a first step, we address our first main issue and eval-
uate the influence of our parameters to the accuracy of the
simulation, i.e., to ∆t between the execution time in the
simulation and execution time in the measurement. To evaluate
the influences between timing parameters pclock, pblock and
pcomm, we investigated different configurations, which can be
found in the following table. An x denotes an applied noise
injection on the respective parameter.

configuration 1 2 3 4 5 6 7
communication time x x x - x - -
basic blocks annotation x x - x - x -
real-time clock - x x x - - x

All our results clearly indicated that no significant effects
can be identified with pblock 6= 0 so that could set pblock = 0.
This means that configurations 1, 2, 4, and 6 could be skipped
leaving configurations 3, 5, and 7. We can also easily see that
configurations 5 and 7 are all special cases of configuration
3 and can be evaluated by different settings of pclock and
pcomm in configuration 3, which was therfore taken for our
main studies.

 0 200 400 600 800 1000 1200 1400max variation of
 real time clock [cpu cycles]

 0
 1

 2
 3

 4
 5

max variation of
 communication

 time [%]

 8

 9

 10

 11

 12

 13

 14

 15

delta T

Fig. 3. Simulation Acuracy: pclock vs. pcomm

Mea- Simulation w/o noise Simulation w/ 200 cycles noise
Task sured

t[µs] t[µs] Cyc. ∆t [%] t[µs] Cyc. ∆t [%]
1 160.4 168.8 134 5.2 163.5 50 1.9
2 10.4 11.5 18 10.6 11.6 21 12.4
3 38.3 41.1 45 7.3 32.4 -94 -15
4 3.2 3.2 0 0 3.3 2 3.7
5 13.7 23.0 149 67.8 15.1 22.4 10.7

18.18 8.74

Mea- Simulation w/o noise Simulation w/ 200 cycles noise
Task sured

t[µs] t[µs] Cyc. ∆t [%] t[µs] Cyc. ∆t [%]
1 246.6 246.5 -2 0 246.5 -2 0
2 172.9 180.5 122 4.4 180.5 122 4.4
3 1551.5 1591.6 642 2.6 1580.8 469 1.9

RTC 10.7 10.9 4 1.9 10.9 4 1.9
2.2 2.1

TABLE I
AVERAGE EXECUTION TIME OF TASKS W/ AND W/O NOISE INJECTION AND

MEASURMENTS (CASE STUDY 1 AND 2 UNDER CONFIGURATION 7)

A. Simulation Accuracy

Figure 3 is one example which compares different variation
intervals of pclock and pcomm on the horizontal plane to
different values in accuracy in the vertical for case study 1
with configuration 3. Like in this example, all our studies
showed that variations of pcomm have no visible impact on
the accuracy in this configuration. In all cases, the influence
of pcomm to the accuracy was 5x less than the impact of
pclock. As a conclusion, pcomm and pblock can be set to 0
without a major loss of accuracy. Therefore, we focused our
investigations to variations of the real-time clock vclock ≤
pclock. In this context, our studies with pclock have shown,
that beyond an upper bound of 500 clock cycles no further
relevant improvement can be made. As an example, Figure
3 with numbers from case study 1 indicates, that a small
increase in the interval upper bound pclock gives a significant
increase of simulation accuracy at all values of pcomm. In
more details, it clearly indicates that noise intervals with
100 clock cycles ≤ pclock ≤ 500 clock cycles gives a very
high accuracy and still keeps a low number of stimuli for noise
injection. Case study 2 gave a similar effect though the initial
error was not that significant.

In conclusion for the simulation accuracy on both case
studies under all configurations, we can summarize that a
uniformly distributed noise injection to the real-time clock,
i.e., to the RTOS tick interrupt, results in the highest simulation
accuracy in the interval [100, 500]. Injections to the basic block
are neglectable and even variations of the communication time
have no significant impact and thus can be skipped. Therefore,
their time values can be fixed to the given mean or worst
case execution times so that we can focus on pclock, i.e.,
configuration 7 in the remainder of this article.

Table I gives more details of both case studies for configu-
ration 7. It compares measured execution times of individual
tasks and their simulated execution times with and without
noise injection (pclock = 0 and pclock = 100) including their
relationship to simulation cycles. The first case study shows a
significant improvement from 18.18% to 8.74%. The second
case study shows an increased accuracy by 0.1%.

Our further evaluations addressed response times and mes-

 0

 5

 10

 15

 20

 25

 30

 1500 1550 1600 1650 1700 1750 1800

pe
rc

en
ta

ge
 o

f
ex

ec
ut

io
n

co
un

t [
%

]

Execution Time [0.1us]

Measurement

 0

 5

 10

 15

 20

 25

 30

 1500 1550 1600 1650 1700 1750 1800

pe
rc

en
ta

ge
 o

f
ex

ec
ut

io
n

co
un

t [
%

]

Execution Time [0.1us]

Simulation with deviation 0 cycles

 0

 5

 10

 15

 20

 25

 30

 1500 1550 1600 1650 1700 1750 1800

pe
rc

en
ta

ge
 o

f
ex

ec
ut

io
n

co
un

t [
%

]

Execution Time [0.1us]

Simulation with deviation 10 cylces

 0

 5

 10

 15

 20

 25

 30

 1500 1550 1600 1650 1700 1750 1800

pe
rc

en
ta

ge
 o

f
ex

ec
ut

io
n

co
un

t [
%

]

Execution Time [0.1us]

Simulation with deviation 200 cylces

Fig. 4. Message handling task of case study 1: Measured and simulated with
noise injection 0, 10, and 200 CPU cylces

sage handling. Here, first studies indicated an maximum
reduction for the accuracy of response times to approx. 20% in
average. Figure 4 shows a set of histograms with the execution
times for the message handling task of case study 1. The upper
left gives the real numbers of the physical hardware. The other
figures give more details on abstract RTOS simulation. In more
details, the upper right with pclock = 0 (w/o noise injection)
lack multiple peaks at ca. 159µs which are the consequences
of missing scheduling sequences in the abstract simulation.
In that figure just some peaks at 169µs are recorded. Their
displacement from 165 to 169 with respect to the measurement
is due to a small overestimation in the annotated times. The
lower two figures with pclock = 10 and pclock = 200 clearly
indicate the advantage of noise injection within certain limits,
where for pclock = 200 (lower right) the peaks closely match
the hardware execution.

B. Coverage of Measurement by Simulation

Let us now consider the coverage of the measurement by
the simulation for configuration 7 with noise injection.

Recall that we have defined the ratio ρMEA
SIM (ǫ) =

#MEAǫ(SIM)/#MEA for our simulation coverage. In our
studies, we evaluated ρMEA

SIM (ǫ) for the different intervals and
investigate them for increasing ǫ. Figure 5 shows the coverage
of the simulation of case study 1 with different intervals pblock

for configuration 1 on the left. It shows ρMEA
SIM (ǫ) in % on the

y-axis with an increasing ǫ given in 0.1µs on the x-axis. The
four overlapping waveforms for the different noise injection
intervals to the basic blocks pblock = {0, 10, 50, 200} show a
very low coverage of the measurement in all four cases.

Like in the previous accuracy studies, our evaluations also
indicate here that variations of pblock and pcomm both give
not a sufficient coverage for both case studies. We found that
configuration 7, which only injects noise to the real-time clock,
is far ahead of the other options for both case studies (see
5 center and right). With ǫ = 200, the coverage could be
increased from 2% up to 50% for case study 1. This basically
corresponds to the time for one context switch. For case study
2, the waveforms show a coverage of over 95% for ǫ = 200.

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000

co
ve

ra
ge

 o
f

m
ea

su
re

m
en

t [
%

]

epsilon [0.1us]

0
10
50

200

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000

co
ve

ra
ge

 o
f

m
ea

su
re

m
en

t [
%

]

epsilon [0.1us]

0
10
50

200

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000

co
ve

ra
ge

 o
f

m
ea

su
re

m
en

t [
%

]

epsilon [0.1us]

0
10
50

200

Fig. 5. Coverage by simulation: (left) case study 1/configuration 1, (center) case study 1/configuration 7 (right) case study 2/configuration 7

The waveforms for case study 1 and 2 in the center and on
right additionally indicate a significant lower coverage of just
50% and < 5% when no noise injection is applied, i.e., when
pclock = 0 (solid line).

VI. CONCLUSION

This article investigated noise injection to increase the
accuracy of abstract RTOS simulations and its coverage of
measurements of real execution times. For this, we investigated
variation of different parameters for time annotations of basic
blocks, communication times, and the frequency of the RTOS
real-time clock. We studied the impact of noise injection to
different combinations of those parameters and finally found
that noise injection to the RTOS real-time clock gives a
significantly improved accuracy and increased abstract RTOS
simulation coverage. We also could show that the clock cycle
interval [100, 500] is already sufficient for the highest accuracy
and for a high coverage by the abstract RTOS simulation.
This is a promising result since this also limits the number
of traces to match the stimuli and thus does not come with
significantly higher runtimes in simulation when introducing
noise injection. Our studies are based on a considerably high
number of traces. We applied approx. 50,000 traces for the
abstract RTOS simulation and 5,000 CPU traces for ISS in
the context of case study 1. For case study 2, we applied
45,000 for RTOS simulation and 1,000 for the physical system,
respectively.

Our studies clearly indicate that noise injection to the
real-time clock increases the coverage of the simulation and
decreases the deviation from the mean execution times of task
at the same time. Our internal investigations have shown that
this effect is due the number of simulated interruptions and the
simulation error mainly comes from inaccurate estimations of
execution times. Due to the nature of those estimations they
cannot be really avoided. We found that noise injection to the
real-time clock introduces variations of such interruptions that
also results in an increase of the simulation coverage. Addi-
tionally, noise injection also resolves the effect of variances
in start times of tasks, which are due to small variances in
the crystal clock. Though the latter effect seems to be less
important, our experience with abstract RTOS simulation is
that small variations may easily have observable impact in
several cases, i.e., different task schedules. That effect may
become more important when we have to deal with distributed
systems based on multiple CPUs and chipsets.

VII. ACKNOWLEDGMENTS

The work described herein is partly funded by the DFG
through the Sonderforschungsbereich 614, the German Min-
istry for Education and Research (BMBF) through the ITEA2
project TIMMO (01IS07002), and by the EU through CO-
CONUT (FP7-ICT-3217069).

REFERENCES

[1] R. Ernst, S. Schliecker, A. Hamann, and R. Racu, “Formal methods
for system level performance analysis and optimization,” in DVCon’08:

Design and Verification Conference and Exhibitation, San Jose, CA,
2008.

[2] J. Wagner and R. Leupers, “A fast simulator and debugger for a network
processor,” in Proceedings of Embeddes Systems/Embedded Intelligence,
2002.

[3] G. Schirner, A. Gerstlauer, and R. Dömer, “Abstract, multifaceted
modeling of embedded processors for system level design,” in ASP-

DAC ’07: Proceedings of the 2007 conference on Asia South Pacific

design automation, 2007.
[4] S. Manolache, “Schedulability analysis of real-time systems with

stochastic task execution times. licentiate thesis no,” Tech. Rep., 2002.
[5] A. Gerstlauer, H. Yu, and D. Gajski, “Rtos modeling for system level

design,” in Proceedings of Design, Automation and Test in Europe,

March 2003., 2003. [Online]. Available: citeseer.ist.psu.edu/608553.html
[6] H. Posadas, J. Ádamez, P. Sánchez, E. Villar, and F. Blasco, “Posix

modeling in systemc,” in ASP-DAC ’06: Proceedings of the 2006

conference on Asia South Pacific design automation. New York, NY,
USA: ACM Press, 2006, pp. 485–490.

[7] D. Desmet, D. Verkest, and H. DeMan, “Operating system based soft-
ware generation for systems-on-chip,” in DAC’00: Design Automation

Conference, 2000.
[8] S.Yoo, G.Nicolescu, L. Gauthier, and A.Jerraya, “Automatic generation

of fast timed simulation models for operating systems in soc design,”
in DATE’02: Proceedings of Design, Automation and Test in Europe.
Washington, DC, USA: IEEE Computer Society, 2002.

[9] H. Zabel, W. Mueller, and A. Gerstlauer, “Accurate rtos modelling
and analysis with systemc,” in W. Ecker, W. Mueller, R. Doemer (eds.)

"Hardware Dependent Software - Principles and Practice". Springer
Verlag, Dordrecht, Januar 2009.

[10] H. Posadas, J. A. Adamez, E. Villar, F. Blasco, and F. Escuder, “RTOS
modeling in SystemC for real-time embedded SW simulation: A POSIX
model,” Design Automation for Embedded Systems, vol. 10, no. 4, pp.
209–227, December 2005.

[11] S. A. Huss and S. Klaus, “Assessment of real-time operating systems
characteristics in embedded systems design b systemc models of rtos
services,” in DVCon 07: Design and Verification Conference and Ex-

hibitation, San Jose, CA, 2007.
[12] Y. Hwang, S. Abdi, and D. Gajski, “Cycle-approximate retargetable per-

formance estimation at the transaction level,” in DATE ’08: Proceedings

of the conference on Design, automation and test in Europe, 2008, pp.
3–8.

[13] H. Zabel and W. Müller, “An efficient time annotation technique in
abstract rtos simulations for multiprocessor task migration,” in Dis-

tributed Embedded Systems: Design, Middleware and Resources, vol. 27.
Springer Boston, 2008, pp. 181–190, DIPES2008.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

