
Runtime Reconfiguration of Custom Instructions
for Real-Time Embedded Systems

Huynh Phung Huynh and Tulika Mitra
School of Computing

National University of Singapore
{huynhph1,tulika}@comp.nus.edu.sg

Abstract—This paper explores runtime reconfiguration of
custom instructions in the context of multi-tasking real-time
embedded systems. We propose a pseudo-polynomial time algo-
rithm that minimizes processor utilization through customization
and runtime reconfiguration, while satisfying all the timing
constraints. Our experimental infrastructure consists of Stretch
customizable processor supporting runtime reconfiguration as
the hardware platform and realistic embedded benchmarks as
applications. We observe that runtime reconfiguration of custom
instructions can help to reduce the processor utilization by up
to 64%. The experimental results also demonstrate that our
algorithm is highly scalable and achieves optimal or near optimal
(3% difference) processor utilization.

I. INTRODUCTION

Application-specific customizable processor cores enable
the design of complex, high-performance, low-power embed-
ded systems under tight time-to-market constraints. Customiz-
able processors are configurable w.r.t. the micro-architectural
parameters. More importantly, they support extension of the
core instruction set architecture with application-specific cus-
tom instructions. Custom instructions encapsulate the fre-
quently occurring computation patterns in an application. They
are implemented as custom functional units (CFU) in the
datapath of the existing processor core. CFUs improve per-
formance and reduce energy consumption of the applications.
Lx, ARCTM core, Xtensa, and Stretch S5 are some examples
of commercial customizable processors.

As the total available area for implementation of the CFUs
is limited, we may not be able to exploit the full potential of all
the custom instructions in an application. This is particularly
true if the application consists of a large number of kernels
and each kernel requires unique custom instructions — a
scenario that is quite common in high-performance embed-
ded systems. In this context, runtime reconfiguration of the
CFU fabric appears quite promising [15]. Here the set of
custom instructions implemented in the fabric can change over
the lifetime of the application. For multi-kernel applications,
runtime reconfiguration is specially attractive, as the fabric
can be tailored to implement only the custom instructions
required by the active kernel(s) at any point of time. Of
course, this virtualization of the CFU fabric comes at the
cost of reconfiguration delay. The designer has to strike the
right balance between the number of configurations and the
reconfiguration cost.

In this paper, we explore runtime reconfiguration of custom
instructions in the context of multi-tasking real-time embedded
systems. More concretely, we assume that the application is
specified as a set of task graphs (consisting of a number of

tasks with dependencies among them), each associated with a
period and a deadline. We only consider static non-preemptive
schedules. Our objective is to minimize the processor utiliza-
tion through appropriate selection of custom instructions for
each task and the reconfiguration points while ensuring that all
the timing constraints are satisfied. The custom instructions,
in this scenario, may enable an application that was originally
not schedulable to meet its deadlines by reducing execution
times. Second, a lower processor utilization can exploit voltage
scaling opportunities to lower the energy consumptions and
still meet the computational requirements of the application.

II. RELATED WORK

Many custom instructions generation techniques have been
proposed in the literature, for example [1], [3], [16] among
others. However, none of these approaches targets platforms
exploiting dynamic reconfiguration of custom functional units.
Recently, Bauer et al. [2] have developed rotating instruction
set processing platform that selects custom instructions at
runtime. We [9] have earlier presented an efficient framework
for runtime reconfiguration of custom instructions. However,
the above studies do not consider real-time constraints.

Co-synthesis of periodic task graphs with real-time con-
straint onto heterogeneous distributed embedded systems is
addressed in [5], [11]. [7] partitions a task graph with timing
constraints into a set of hardware units. Enforcing schedulabil-
ity of real-time tasks with hardware implementation appears
in [14], while [8] studies instruction-set customization for
real-time tasks. None of these techniques takes into account
the reconfiguration overhead or possibility of both spatial
and temporal partitioning. [6], [12] co-synthesize real-time
task graphs onto distributed systems containing dynamically
reconfigurable FPGAs. These works assume a single hardware
implementation of a task in FPGA and do not explore the
hardware design space to evaluate tradeoffs between different
implementations of the same task. Moreover, they do not put
any hardware area constraint and try to minimize either cost
(area), power or tardiness function while real-time constraints
are satisfied. Finally, majority of the work in temporal parti-
tioning comes from the reconfigurable computing community
[4], [13], [10] . However, none of these studies considers real-
time constraint. Our solution takes into consideration both dy-
namic (runtime) reconfiguration for instruction-set extensible
processors and real-time constraints.

III. PROBLEM FORMULATION

We model the application as a set of periodic task graphs
(refer Figure 1), which has been widely used in previous works

978-3-9810801-5-5/DATE09 © 2009 EDAA

T0

T3

T2T1

T6

T5

T4

D6

D4

D3

D0

C0 C1 C2

T0
[0] T1

[0] T2
[0] T4

[0] T3
[0] T5

[0] T6
[0] T0

[1] …

D1 D2 D5
…

Schedule of Task Instances

Temporal Configurations

Fig. 1. A set of periodic task graphs and its schedule

[5], [6], [11], [12]. Each task graph is a directed acyclic graph
consisting of a number of tasks. Let {T0, . . . ,TN−1} be the set
of N tasks corresponding to all the task graphs. A directed edge
between two tasks Ti → Tj in a task graph denotes that task
Tj can start execution only after task Ti completes execution.
Let ei denote the execution time of Ti in software, i.e., without
any optimization through custom instructions. Each task graph
has a deadline less than or equal to its period. The deadline
Di of Ti is the latest finish time of Ti derived from a backward
topological search of the corresponding task graph starting
with the sink node (whose deadline coincides with the task
graph deadline).

The underlying processor platform allows optimized im-
plementation of the tasks by exploiting custom instructions.
Multiple custom instruction-set (CIS) versions are generated
for each task with a trade-off between hardware area and
performance gain. A CIS version consists of a set of custom
instructions extracted from the corresponding task under an
area constraint. In general, the performance gain of a CIS
version increases with larger area. Let {v0

i , . . . ,v
Mi
i } denote

the possible CIS versions of task Ti. In addition, let gk
i and

ak
i denote the performance gain and area requirement of

the version vk
i . We assume v0

i corresponds to the software
implementation, i.e., g0

i = 0 and a0
i = 0. In other words, for

each task Ti, we have a choice of one software implementation
and Mi implementations accelerated with custom instructions.
The area A available for implementation of the CFUs can be
reconfigured at runtime to support a different set of custom
instructions. In this work, we focus on inter-task reconfigu-
ration and do not consider intra-task reconfiguration. So the
CIS version of a task must fit into the available area without
reconfiguration, i.e., ak

i ≤ A.
Our objective is to come up with a static non-preemptive

schedule of the task set that minimizes processor utilization
by exploiting (a) processor customization and (b) runtime
reconfiguration of the custom instructions, while satisfying
deadline constraints. We need to construct our static schedule
for the hyper-period (HP), which is the least common multiple
of the task graph periods. All the tasks in a task graph have
the same period. Let Pi denote the period of task Ti. Clearly,
a task Ti has HP

Pi
instances within the hyper-period. The sth

instance of Ti, denoted as T [s]
i , has the deadline

deadline(T [s]
i) = Di + s×Pi (1)

In a feasible schedule, all the task instances meet their dead-
lines.

To minimize processor utilization, we need to assign ap-
propriate CIS version to each task instance in the schedule.
However, as we can exploit runtime reconfiguration of the

custom instructions, we need not restrict ourselves to the area
constraint A. Instead, we can perform temporal partitioning
of the schedule into C configurations, where area constraint
A is imposed on each configuration. For example, Figure 1
illustrates an initial portion of the schedule and its partitioning
into three configurations. Note that each configuration contains
a disjoint subsequence of task instances from the original
schedule. Temporal partitioning allows us to work with a larger
virtual area at the cost of a delay ρ per reconfiguration. The
area A within a configuration is spatially partitioned among
the task instances assigned to it by choosing appropriate CIS
version for each task instance.

A feasible solution to this problem is a static, non-
preemptive schedule of the task instances over the hyper-
period where (a) the schedule is partitioned into C configu-
rations, (b) each task instance is assigned to an appropriate
CIS version, (c) the total area requirement of the chosen CIS
versions within a configuration satisfies area constraint A, (d)
each task instance satisfies its deadline constraint given by
Equation 1, and (e) task dependence constraints are satisfied.
The processor utilization U over the hyper-period HP for this
solution can be expressed as

U =

(
N−1

∑
i=0

HP
Pi
× ei

)
−

N−1

∑
i=0

HP
Pi
−1

∑
s=0

gain(T [s]
i)

−ρ ∗ (C−1)


HP

(2)
where gain(T [s]

i) is the performance gain of the sth instance
of task Ti based on its assigned CIS version. As stated before,
our objective is to construct the solution that minimizes U . In
other words, we try to maximize the performance gain minus
the reconfiguration cost

maximize

N−1

∑
i=0

HP
Pi
−1

∑
s=0

gain(T [s]
i)

−ρ ∗ (C−1) (3)

IV. ALGORITHM

The problem defined in Section III consists of two sub-
problems, namely, task scheduling and CIS version assign-
ment. Design of optimal task scheduling algorithm is not the
focus of this work. Instead, we employ list scheduling and
use deadlines of task instances as the scheduling priority, i.e.,
a task instance with earlier deadline has higher priority. Still
temporal partitioning of the resulting schedule into multiple
configurations and assigning appropriate CIS versions to the
task instances within each configuration with the objective of
minimizing processor utilization (Equation 2), while satisfying
all deadline constraints (Equation 1) is a non-trivial problem.
In this section, we present an elegant solution based on
dynamic programming.

List scheduling employed on the task graphs (as shown in
Figure 1) over the hyper-period constructs a linear schedule
of the task instances with possible idle periods in between.
Let 〈T0,T1, . . . ,TX 〉 be the resulting schedule of task instance
where X = ∑

N−1
i=0

HP
Pi

. For simplicity of exposition, we ignore
the superscripts for task instances in the rest of the paper. If
all the task instances can meet their deadlines in this schedule

0
0
0

87665421
44443221
22222210

1 2 3 4 5 6 7 80

D0

T0

X
T1 T2

D1 D2

XD0

T0 T1 T2

D1 D2

1 2 3 4 5 6 7 8 9 10 11 12

X X

5

(a.2)

(a.1)

(a.3)

876
444432
222222

1 2 3 4 5 6 7 80

V0
2 V2

2

6

(b.2)

D0

T0 T1 T2

D1 D2

(b.1)

T0

T1

T2

T0

T1

T2

Task
Instance (Ti)

Deadline Execution
Time

vi
0

(ai0,gi0)
vi

1

(ai1,gi1)
vi

2

(ai2,gi2)
T0 1 3 0,0 2,1 3,2
T1 4 3 0,0 1,1 2,2
T2 6 6 0,0 1,1 3,4

v1
2 v2

2

-∞ -∞ -∞
-∞ -∞ -∞
-∞ -∞ -∞ -∞ -∞ -∞

Reconfiguration cost = 1ρ

32
22T0

T1

T2

1 2 3 4 5 6 7 80

V1
1V0

2

C0 = 4

D0

T0 T1 T2

D1 D2

1 2 3 4 5 6 7 8 9 10 11 12
ρ(c.4)

66
3*3*3*3*32
2*2*2*2*22

1 2 3 4 5 6 7 80

V1
1V0

2

C0 = 4 C1 = 4

(c.3)

3*32
2*22

1 2 3 4 5 6 7 80

V1
1V0

2

C0 = 4 C1 = 4

(c.2)(c.1)

T0

T1

T2

T0

T1

T2

v2
2

-∞ -∞ -∞
-∞ -∞ -∞
-∞ -∞ -∞ -∞ -∞

-∞ -∞ -∞
-∞ -∞ -∞
-∞ -∞ -∞ -∞ -∞ -∞

-∞ -∞ -∞
-∞ -∞ -∞
-∞ -∞ -∞ -∞ -∞ -∞ -∞

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 2. Running Example

without any hardware acceleration, then we can guarantee that
reduction in execution time of a task with custom instructions
will still maintain schedulability. The problem gets a little
simplified in this case. But if some of the task instances
fail to meet deadlines, then our first priority is to ensure
schedulability through hardware acceleration.

Running Example: Throughout this section, we use a
simple example to illustrate our algorithm and convey the
intuition behind it. Let us assume a schedule consisting of
three task instances 〈T0,T1,T2〉. The deadlines Di and exe-
cution times ei of the software implementation of the tasks
appear in the table in Figure 2. Clearly, all the tasks will miss
their deadlines with the software implementations as shown in
Figure 2 (a.1). Therefore, we would like to explore processor
customization so as to reduce execution times of the tasks and
meet the deadlines. The table in Figure 2 also shows that each
task Ti has three CIS versions v0

i ,v
1
i ,v

2
i with varying area and

performance gain (e.g., 3,2 for v2
0 denotes 3 units of area and

2 units of performance gain). The version v0
i is the software

implementation (zero hardware area and zero performance
gain).

A. A Simple Solution
Let us for the moment ignore reconfiguration cost, config-

uration boundaries, and deadline constraints. Our objective is
to find an assignment of CIS versions to the tasks to achieve
maximum performance gain (given by Equation 3) under a
virtual area constraint. Given a virtual area area, let us define
the maximum performance gain of the sequence 〈T0, . . . ,Ti〉 as
Gi(area). If we ignore reconfiguration cost and configuration
boundaries, we can compute Gi(area) for different values of

area through dynamic programming. Gi(area) can be defined
recursively as

Gi(area) = max
k=0,...,Mi
ak

i≤area

(
gk

i +Gi−1(area−ak
i)
)

(4)

That is, given a virtual area area, we explore all possible CIS
versions of Ti and choose the one that results in maximum
performance gain for 〈T0, . . . ,Ti〉. The base case for task T0

G0(area) = max
k=0,...,M0
ak

0≤area

gk
0 (5)

Example: Figure 2 (a.2) shows the performance gains
for the tasks under area constraints 0 to 8 where 8 is the
area required to implement the best CIS versions of all the
tasks. Total execution time of T0,T1,T2 in software is 12 time
units whereas the entire sequence should complete execution
within 6 time units. The solution table indicates that we can
obtain a performance gain of 6 time units for the task sequence
with 5 units of area. The solution cells corresponding to this
performance gain are shaded in Figure 2 (a.2); the CIS versions
chosen are v0

0, v2
1, and v2

2. Unfortunately, the first task T0 fails to
meet its deadline because it is implemented purely in software
as shown in Figure 2 (a.3) (execution time = 3 while deadline
= 1). This example clearly shows that we cannot ignore the
deadline constraints of the individual tasks (T0 and T1) while
constructing the solution to maximize performance gain.

B. Deadline Constraints

The recurrence defined by Equation 4 does not take into
account the deadline constraints. Let us now proceed to modify
this equation so as to maximize performance gain while
satisfying deadline constraints. We will continue to ignore
reconfiguration at this point.

Given a virtual area constraint area, we find the solution
with the maximum performance gain Gi(area) and each task
T0, . . . ,Ti is assigned one of its CIS versions. The solution is
feasible if all the tasks T0, . . . ,Ti can meet their deadlines with
the CIS version assignments in the solution. To satisfy the
deadline constraints, we modify the construction of dynamic
programming solution table with the following consideration.
While exploring CIS versions of task Ti, we need to choose
the solution that returns best Gi(area) and T0, . . . ,Ti meet their
deadlines. So how do we impose this constraint? Equation 4
is now modified as

Gi(area) = max
k=0,...,Mi
ak
i ≤area

is schedulable(Ti)

(
gk

i +Gi−1(area−ak
i)
)

(6)

Here, is schedulable(Ti) simply checks the deadline con-
straints for T0, . . . ,Ti. In fact, as we ensure the sequence
〈T0, . . . ,Ti−1〉 is already schedulable, we only need to check
that Ti meets its deadline. If we cannot find any CIS version
assignment for Ti to make the sequence 〈T0, . . . ,Ti〉 schedula-
ble, we set Gi(area) =−∞.

Example: In our example, the feasible schedule is shown
in Figure 2 (b.1) and the solution table is shown in Figure 2
(b.2). When area < 3, G0(area) =−∞ which shows T0 misses
its deadline. Clearly, G1(area), G2(area) are also equal to
−∞ when area < 3. The difference between Equation 4 and
Equation 6 becomes clear by looking at the last row in Figure
2 (b.2). For example, when area = 5, we cannot find any CIS
version for T2 to make it schedulable and G2(5) =−∞ instead
of G2(5) = 6 in Figure 2 (a.2). The shaded cells in Figure 2
(b.2) provide the optimal solution that satisfies all the deadline
constraints. Here T0 selects v2

0, T1 selects v0
1 (implemented in

software) and T2 selects v2
2.

C. Runtime Reconfiguration

So far we assume that the entire virtual area is available
as a single continuous configuration. However, in reality, the
virtual area is divided into a number of configurations and
reconfiguration cost is incurred while switching from one con-
figuration to another. Suppose the area constraint for a single
configuration A = 4 in our example. Let us now investigate the
optimal solution returned in the previous subsection where T0
selects v2

0 (3 unit area), T1 selects v0
1 (implemented in software)

and T2 selects v2
2 (3 unit area) in Figure 2 (b.2). This solution

is no longer feasible for the following reasons
• A task instance should be mapped to only one configu-

ration; it cannot straddle across configuration boundaries.
In our example, task T2 occupies 1 unit of area in the
first configuration and 2 units of area in the second
configuration.

• The reconfiguration cost should be taken into account
while computing performance gain.
Restricting a task instance to one configuration: How do

we handle the constraint that a task cannot straddle across con-
figuration boundaries? Given a virtual area area, the number
of configurations is C = d area

A e and the area available in the
last configuration physical area is

physical area =
{

A if area mod A = 0
area mod A otherwise (7)

When exploring the CIS versions of task Ti under area con-
straint area, we should now impose the constraint that the
available area is less than the physical area, i.e., the area of
the current configuration. We modify Equation 6 to reflect this.

Gi(area) = max
k=0,...,Mi

ak
i ≤physical area

is schedulable(Ti)

(
gk

i +Gi−1(area−ak
i)
)

(8)

Reconfiguration cost: We now need to subtract the re-
configuration cost from the total performance gain under the
following conditions.

1) If the area requirement of a CIS version is equal to the
area of the current configuration, i.e., ak

i = physical area and
C > 1, then Ti is the first task in the current configuration. We
should subtract the reconfiguration cost from the gain.

2) The reconfiguration cost offsets the performance gain
of the CIS version chosen for task Ti. Hence, T0, . . . ,Ti may
have obtained greater performance gain when reconfiguration

was not involved. That is, it is possible to have Gi(area) ≤
Gi(area− physical area). In this case, it does not make sense
to perform reconfiguration before task Ti and we should instead
select the solution with gain Gi(area− physical area). Even if
Gi(area) is equal to Gi(area− physical area), we still prefer
the solution Gi(area− physical area) as it is better not to use
the current configuration, if possible. The fact that a solution
does not use the current configuration is represented visually
with a ‘*’ in Figure 2 and maintained as a binary variable
recon f igi(area). If the solution for tasks T0, . . . ,Ti under area
has not used any portion of the current configuration, then
recon f igi(area) = f alse; otherwise we set recon f igi(area) =
true.

3) Suppose in Equation 8, we use the partial solution
Gi−1(area) where recon f igi−1(area) = f alse (marked with a
*), i.e., the solution did not use the current configuration. If we
combine this solution with a CIS version of Ti, the implication
is that Ti is the first task to use the current configuration.
Therefore, reconfiguration cost should be subtracted from the
total performance gain. The modification of Equation 8 to

Algorithm 1: Compute Gi(area)
1 C← d area

A e;

2 physical area←
{

A if area mod A = 0
area mod A otherwise

3 Gi(area)←−∞; reconfigi(area)← false;
4 for k = 0 to Mi do
5 if ak

i ≤ physical area then
6 gain← gk

i +Gi−1(area− ak
i);

7 reconifguration← false;
8 if C > 1 AND

(
ak

i = physical area OR !reconfigi−1(area− ak
i)
)

then
9 gain← gain−ρ; reconfiguration← true;

10 if is schedulable(Ti) AND gain > Gi(area) then
11 Gi(area)← gain; reconfigi(area)← reconfiguration;

12 if C > 1 AND Gi(area)≤ Gi(area−physical area) then
13 Gi(area)← Gi(area−physical area); reconfigi(area)← false;

take reconfiguration cost into account is easier to present in
an algorithmic form as shown in Algorithm 1.

Example: Now let us get back to our running example.
Tasks T0,T1,T2 cannot have a feasible solution when we
restrict ourselves to one configuration (4 units of area) and
take schedulability constraints into account (Figure 2 (c.1)).
Let us now look at performance gain with 5 units of area in
Figure 2 (c.2). Task T0 cannot obtain any further performance
gain. Therefore, its solutions is marked with ‘*’ in the sec-
ond configuration indicating that T0 belongs to the previous
configuration.

The situation gets interesting with T1. If T1 is implemented
in the second configuration, it can get a maximum gain of 2
time units. However, we need to subtract reconfiguration cost
of 1 time unit. As T0 has a gain of 2 time units, the total
performance gain for T0,T1 with two configurations is only
2+2−1 = 3. On the other hand, we can easily get a gain of 3
units by implementing both T0 and T1 in the first configuration
as shown by the shaded cells in Figure 2 (c.3). Therefore, it
does not make sense to put T1 into the second configuration
and its cell is marked with ‘*’.

Finally, T2 fails to meet its deadline in the beginning by
using the second configuration as reconfiguration cost over-
shadows the performance gain. However, when area = 7, T2
can implement its best CIS version in the second configuration
with 4 units of performance gain (Figure 2 (c.3)). T0,T1 gets
3 units of gain from the first configuration. Therefore, total
performance gain is 3 + 4− 1 = 6. At this point, we have
been able to construct a solution that satisfies all the timing
constraints as shown in Figure 2 (c.4).

D. Putting It All Together

We can now present our complete dynamic programming
(called DP) algorithm (Algorithm 2) that satisfies deadline
constraints as well as takes into account runtime reconfigu-
ration.

Algorithm 2: Maximize Performance Gain
1 for area = ∆ to Max A in steps of ∆ do
2 for i=0 to X−1 do
3 if ∀ j ≤ i !reconfigj

(
b area

A c×A
)

then
4 Gi(area) = Gi

(
b area

A c×A
)

;

5 else
6 compute Gi(area);

7 if area mod A = 0 AND ∀ i !reconfigi(area) then
8 break;

9 return GX−1(area);

Let X = ∑
N−1
i=0

HP
Pi

be total number of task instances over the
hyper-period. We vary area in steps of ∆ to the area required to
implement the best CIS versions of all task instances Max A.
For each area, we do not compute Gi(area) if performance
gains of 〈T0, . . . ,Ti〉 have no improvement compared to the pre-
ceding configuration

(
b area

A c×A
)

(line 3). Therefore, Gi(area)
should be filled up with the solution from the preceding con-
figuration (line 4) as performance gain is guaranteed to have
no improvement in the current configuration either. In Figure
2 (c.3), performance gains of 〈T0,T1〉 have no improvement in
configuration C1. Therefore, the performance gain of 〈T0,T1〉
will remain unchanged in all the future configurations. We
compute Gi(area) through Algorithm 1 (line 6). Finally, if
performance gains of 〈T0, . . . ,TX−1〉 have no improvement at
the end of the current configuration, we will stop the algorithm
(lines 7-8). This is because we cannot get any additional
performance gain by exploring further configurations.

Algorithm Complexity: For each task instance, we com-
pute Gi(area) (Algorithm 1) with area = 0 . . .Max A in steps
of ∆. Moreover, for each Gi(area) we have (Mi + 1) choices
of CIS version. Let Mmax = maxi=0...N−1 (Mi +1). Therefore,
the worst case complexity of our algorithm is O(X× Max A

∆
×

Mmax).

V. EXPERIMENTAL EVALUATION

Each task graph (see Figure 3) used in our experiment com-
bines real kernels from the same application domain to form
meaningful benchmarks, such as JPEG decoder (TG1) and
encoder (TG4), automotive application (TG3), and consumer
electronic applications (TG0, TG2, TG5).

src

matrix ifft

fir a2t road

fft

table

huff_de dquant y2ridctTG1

des r2cdjpegTG2

r2y quant huff_enfdctTG4

autoCor

adpcmde

sink

fpba fft

TG0

TG3

crc adpcmenTG5

Fig. 3. Task Graphs

Given each task, custom instruction versions are manually
generated for the Stretch S5 platform [15] by using Stetch C
language. We can achieve different custom instruction versions
(or CIS versions) by changing the unroll factor of the compute-
intensive loops within the task or the number of custom
instructions. The higher unroll factor results in larger hardware
area requirement and better performance gain. The profiler in
Stretch can provide us the performance gain and hardware area
of the CIS versions of each task.

We create four combination of task graphs, A0, A1, A2,
A3, each consisting of two to four task graphs from Figure
3 to represent different applications. A0, A1, A2, A3 consist
of {TG1,TG4,TG5}, {TG1,TG3}, {TG0,TG2,TG4,TG5}, and
{TG2,TG4,TG5} respectively. To set the periods for the task
graphs, we choose a total processor utilization U for the
entire system (without any custom instructions) and then select
the period for each constituent task graph to achieve the
corresponding utilization. We vary U between 0.9− 1.4 for
each scenario. U > 1 implies that the application scenario
is definitely not schedulable without custom instructions,
whereas it may or may not be schedulable with U ≤ 1.

The configuration time of the whole CFU fabric of Stretch,
which includes 4096 4-bit AUs and 8192 4-bit × 8-bit MUs, is
approximately 100µs or roughly 30K CPU cycles at 300MHz
core. We define one hardware area unit to be a tuple of 400
AUs and 800 MUs. As configuration time is proportional to
fabric size, configuration time of one hardware area unit is
approximately 3K CPU cycles. For each application, we vary
the CFU fabric size between 10-100% (in steps of 10%) of the
maximum area required to implement the best CIS versions of
the constituent kernels, Max A. When maximum area is avail-
able, an application explores the limit of speedup achievable
though custom instructions without reconfigurations.

Given an application scenario, area constraint and processor
utilization, we apply three different techniques to generate a
feasible schedule and CIS assignments with minimum pro-
cessor utilization: (1) our DP algorithm proposed in Section
IV. (2) Optimal: an Integer Linear Programming (ILP) for-
mulation that can return the optimal solution. We note that
the optimal ILP formulation is non-trivial as it includes task
scheduling, CIS version assignment, and runtime reconfigura-
tion. However, due to space constraints, we do not include the
details here. (3) Static: this solution restricts itself to a static
configuration, i.e., it does not consider dynamic reconfigura-
tion. This is a simplified version of the ILP formulation for
Optimal that excludes dynamic reconfiguration.

Area Constraint (Fraction of Max_A)

Pr
oc

es
so

r U
til

iz
at

io
n

A0
U = 0.9

A1
U = 1.0

A2
U = 1.3

A3
U = 1.4

OptimalDPStatic

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

.1 .2 .3 .4 .5 .6 .7 .8 .9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

.1 .2 .3 .4 .5 .6 .7 .8 .9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

.1 .2 .3 .4 .5 .6 .7 .8 .9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

.1 .2 .3 .4 .5 .6 .7 .8 .9 1

Fig. 4. Comparison of DP, Optimal, and Static

Figure 4 shows the accuracy of our algorithm DP compared
to Optimal. This figure also shows the advantage of runtime
reconfiguration (Optimal and DP) over static configuration
(Static). Due to space constraints, we only show the results
for one particular input processor utilization U for each
application scenario. DP achieves up to 37% better processor
utilization compared to Static when area constraint decreases.
This is expected as runtime reconfiguration can fit more
custom instructions into the fabric through temporal sharing.
Note that for the application A3, when the area constraint
is really tight, i.e. 0.1 ∗Max A, there does not exist any
feasible solution with static configuration Static. But feasible
solutions can be obtained with runtime reconfiguration. More
importantly, the solution returned by DP often coincides with
the optimal solution. In fact it is mostly within 3% of the
optimal processor utilization. Moreover, for the application A2,
when area constraint is small, we do not get Optimal result as
ILP solver fails to return any solution.

Schedule Length Task Graph Sets Optimal DP
11 A3 19.525920 0.179993
12 A0 94.245572 0.246194
13 {TG0,TG2,TG5} 168.509196 0.492661
14 {TG2,TG5} 193.335448 1.182449
15 {TG0,TG1,TG4,TG5} 1273.653911 0.795110
16 A2 N/A 0.350204
17 {TG0,TG5} N/A 0.903613
18 {TG0,TG1,TG2,TG4,TG5} N/A 1.513959

TABLE I
RUNNING TIME OF OPTIMAL AND DP IN SECONDS.

Running times of both Optimal and DP depend on the
number of task instances in the schedule, schedule length.
{A0,A1,A3} have schedule lengths 11 or 12 while A2 has
schedule length 16. To show the effect of schedule length on
running time of both algorithms, we create more task graph
sets with schedule lengths varying from 11 to 18. Table I
shows running times of Optimal and DP on different schedule
lengths when input processor utilization is U = 1 and area
constraint is 0.3∗Max A for different task graphs. The running
time of Optimal, while relatively small with schedule lengths
of {11,12}, shoots up quickly at schedule length 16. The
solution for Optimal cannot be obtained even after waiting for
two days when schedule lengths are greater than 16. Clearly,
DP is significantly more scalable compared to Optimal.

VI. CONCLUSIONS

We propose a pseudo-polynomial time algorithm to effi-
ciently solve the problem of runtime reconfiguration of cus-
tom instructions for real-time embedded systems. Minimized
processor utilization is achieved through appropriate custom
instructions selection as well as temporal partitioning with
consideration of reconfiguration cost. Our experiments using
real embedded benchmarks on Stretch customizable processor
show scalability and accuracy of our algorithm compared to
integer linear programming based optimal solutions.

VII. ACKNOWLEDGEMENTS
This work is partially supported by NUS research project

R-252-000-292-112.
REFERENCES

[1] K. Atasu, C. Ozturan, G. Dundar, O. Mencer, and W. Luk. CHIPS:
Custom hardware instruction processor synthesis. In IEEE TCAD’08.

[2] L. Bauer, M. Shafique, S. Kramer, and J. Henkel. RISPP: Rotating
instruction set processing platform. In DAC ’07.

[3] P. Bonzini and L. Pozzi. Polynomial-time subgraph enumeration for
automated instruction set extension. In DATE ’07.

[4] K. S. Chatha and R. Vemuri. Hardware-software codesign for dynami-
cally reconfigurable architectures. In FPL ’99.

[5] B. P. Dave, G. Lakshminarayana, and N. K. Jha. COSYN: Hardware-
software co-synthesis of embedded systems. In DAC ’97.

[6] R. P. Dick and N. K. Jha. CORDS: Hardware-software co-synthesis of
reconfigurable real-time distributed embedded systems. In ICCAD ’98.

[7] T. Hollstein, J. Becker, A. Kirschbaum, and M. Glesner. HiPART: A
new hierarchical semi-interactive HW-/SW partitioning approach with
fast debugging for real-time embedded systems. In CODES/CASHE
’98.

[8] H. P. Huynh and T. Mitra. Instruction-set customization for real-time
embedded systems. In DATE ’07.

[9] H. P. Huynh, J. E. Sim, and T. Mitra. An efficient framework for dynamic
reconfiguration of instruction-set customization. In CASES ’07.

[10] M. Kaul, R. Vemuri, S. Govindarajan, and I. Ouaiss. An automated
temporal partitioning and loop fission approach for FPGA based recon-
figurable synthesis of DSP applications. In DAC ’99.

[11] Y. J. Kim and T. Kim. HW/SW partitioning techniques for multi-mode
multi-task embedded applications. In GLSVLSI ’06.

[12] B. Mei, P. Schaumont, and S. Vernalde. A hardware-software partition-
ing and scheduling algorithm for dynamically reconfigurable embedded
systems. In ProRISC ’00.

[13] K. M. G. Purna and D. Bhatia. Temporal partitioning and scheduling
data flow graphs for reconfigurable computers. IEEE Transactions on
Computers ’99.

[14] Y. Shin and K. Choi. Enforcing schedulability of multi-task systems by
hardware-software codesign. In CODES ’97.

[15] Stretch. S5000 software-configurable processors, 2004.
[16] P. Yu and T. Mitra. Scalable custom instruction identification for

instruction-set extensible processors. In CASES, 2004.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

