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Abstract—Power management at any abstraction level is a key
issue for many mobile multimedia and embedded applications.
In this paper a design workflow to generate system-level power
models will be presented, tailored to support quantitative run-
time power optimization policies to be implemented within
an operating system. The approach we followed to derive
power models is strongly use-case oriented. Starting from a
comprehensive general and accurate model of a representative
architecture for embedded applications (including a multi core
MPSoC, accelerators, interfaces and peripherals), a methodology
to derive compact models is presented, based upon the distinctive
characteristics of the selected use cases. The methodology to
generate such model, whose exploitation is foreseen within a
power manager working at the OS level, is the focus of the paper.
The value and accuracy of the approach is quantitatively and
statistically justified through extensive experiments carried out
on a development board designed for multimedia applications.

I. INTRODUCTION

Mobile devices are nowadays complex and full featured

systems, with multiple functionalities embedded into few

components, usually realized using SoC based embedded

platforms. The shortening of the overall design time of such

systems is enforcing more comprehensive design approaches

where system-wide power control is exposed also at the

Operating System (OS) level. Moreover, to better fit different

and frequently changing system usage profiles, both dynamic

and adaptive power management policies are required.

The problem of building policies and models to support ef-

fective implementation of static and dynamic power managers

has been addressed since at least a decade [1], comparisons can

be found in [2][3][4]. Such a general goal has been considered

in multiple ways, focusing on some architecture components,

as well as at higher levels of abstraction.

Many techniques focus on the microprocessor power, tuning

the computational power to the application demand, both in

the domain of real time applications [5][6], where off-line

profiling data are used to optimize scheduling algorithms,

and in less time constrained applications exploiting on-line

collected measurements [7][8][9]. Other approaches take into

account the modeling and optimization of peripheral devices

such as memories [10][11], consider some effects related to

the technology scaling trends, such as leakage power [12][13],

or address specific application contexts [14] and architectures

[15]. Only recently appeared some concrete proposals paying

particular attention to system-wide power management at the

OS level [9][16].

One of the main needs of any policy concerning power

management is the availability of some model for the power

consumption of the application and possibly of the operating

system. Using a model is generally time consuming and a

balance between accuracy and overhead must be achieved.

One of the first approaches towards including the OS within

the analysis loop, is SimOS, which extended the idea of ISS

with those services of the peripherals necessary to simulate the

behavior of an entire operating system. A step ahead has been

done by SoftWatt [17], EMSIM [18] and SimBed [19] which

introduced informations for the simulation related both to the

instructions and the connected peripherals in order to enable

full-system simulations. However, the problem of long run

times when using full-featured configurations is still present,

as well as the loss of per-cycle information.

Modeling of timing/power at the operating system level

has been carried out in [20] where, starting from a call-

tree of some applications, a proper clustering of power and

execution time is derived to provide guidelines for application

optimization. Other operating system characterizations have

been presented in [21], where data collected from simulation

are grouped to extract statistical models useful for performance

prediction; in [19] this type of data is used at run-time to

manage and optimize the power consumption.

Other valuable proposals affording the characterization of

the operating systems by using complex dedicated hardware or

measurement boards, or very time consuming procedures are

presented in [22][23][24], while a complete characterization

working at OS system call granularity is presented in [25].

Even if the focus of our research is significantly overlapped

with the above literature, our final goal is to work on the

development of a lightweight framework to be used for driving
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mainly run-time optimization policies. Moved by the aim to

better support system-wide power management, we propose

a methodology to build use-case based energy estimation

models, using OS and device state informations, while still

being completely application independent.

The methodology described in the following is conceived

to provide a predictive model for the energy consumption

depending on the different system configurations, based on

observations carried out at OS level and with low run-time

overhead. We decided to focus on a quantitative analysis of the

use-cases: (i) to simplify the creation of models, by reducing

the design space to be explored, and (ii) to increase the

accuracy/flexibility of the predictions for a given application

context.

The aim of our work is to suggest a new methodology

to build system-wide energy consumption models, that are

suitable to be used at run-time to support power management

decisions, taking into considerations the application context.

Thanks to the well defined system configuration, already

available at the platform design time, it is possible off-line

models generation and optimization. The use-case approach,

will allow to be more adaptive with respect to system usage

conditions changes and better balance between the control

overhead and its accuracy.

This work is the foundation for an on-going study aimed

at developing a dynamic and adaptive system-wide power

management system. Due to lack of space, this paper will

present only the main stages to create a predictive system-

wide energy model, disregarding its actual usage to implement

run-time power management policies. More details on these

aspects can be found in [26].

The rest of this paper is organized as follow: Section II

describes the use-case oriented approach to the building of

power models. In section III we report some experimental

results, verifying our models fitting with power data from real-

world applications. Concluding remarks and a brief outline of

the work in progress are drawn in Section IV.

II. ENERGY ESTIMATION BASED ON USE-CASES

One of the aims of our system energy estimation models

is to efficiently support the power control decision process.

Such models allow on-line estimation, with a sufficient ac-

curacy, of power consumption of a target platform when it

is running in a given system state. To better exploit available

optimizations, our estimation models refer to use-cases instead

of applications, considering the system state as a snapshot of

both hardware and software configurations. Let us focus on

how such models are built. A view of the whole process is

reported in Fig 1. Three main steps can be identified: (A) the

training set generation, (B) a profiling phase and, finally, (C)

the data processing and model creation.

A. Training set generation

A system observer module defines the set of parameters that

can be identified in the target platform. Disregarding the nature
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Fig. 1. Workflow for the generation of power estimation models

TABLE I
SOME PARAMETER PROPERTIES

Property Description

name Property name

min val Minimum allowed value

max val Maximum allowed value

min step Minimum change step value

controllable TRUE if its value is configurable

of these parameters, we simply define the vector of observable

(system) parameters:

OP = {p1,p2, . . . , pn}
Each entry pi has an associated structure specifying some

of its properties, as shown in Tab I. Some of the OP entries

represent control points of the target platform (e.g. voltages

and frequencies): the power manager can change the value

of these parameters to tune system behaviors. We define the

vector of control parameters as:

CP = {c1,c2, . . . , cm} ⊆ OP

The definition of control parameters, along with their prop-

erties, should be provided by platform developers during the

implementation of the architecture specific part of the system

observer module.

The set of use-cases is similarly represented by the vector:

UC = {u1,u2,..., ul}
Each use-case comes with a description of the application

context in terms of the system parameters that could be

somehow affected by running the use-case. We define the use-

case sensible parameters as:

SPk = {pjk |pjk ∈ OP ∧ affect(uk, pjk )}
this represents the collection of the system parameters

influenced by the use-case uk. Of course, SPk ⊆ OP so that

focusing on a specific use-case, the OP set can be filtered to

shrink the analysis only on few parameters.

Moving towards the generation of models, we define the

training-set generation parameters as:

TPk = SPk ∩ CP

This is the set of control parameters that we will consider

to generate all the possible training traces to build our model.

The training set is a collection of system configurations

that are meaningful for the considered use-case. From another



perspective, the training set is the complete enumeration of

all the possible states the system can assume while executing

the considered use-case. Such exploration is typically time

consuming, in terms of both trace generation and model

identification; however it is performed off-line and it has to

be done only once.

The complete set of configurations to be considered for a

specific use-case is given by:

TSk = TPk × TPk

The cardinality of this set corresponds to the number of

experiments we have to perform in the following profiling step.

Such value is defined by:

Experimentsnumber ≤
∏

p∈TPk
|p|

Actually this is an upper bound, since there exist dependen-

cies among the parameters: e.g. voltage and frequency cannot

be modified independently. Parameters constraints shrink the

search space significantly, avoiding the explosion of its dimen-

sions, as we have observed in the experimental phase, while

working on some real use-cases.

B. Configuration profiling

In this step a power consumption trace is generated for

each system configuration. Power profiling can also be done

by simulation, using a suitable architectural simulator with a

sufficiently accurate power consumption model. This approach

can be useful to support the development of a power manager,

starting from the early design stages of a new platform.

Alternatively, as we did in this paper, if the target platform

is already available as tangible hardware, it is necessary to or-

ganize a profiling environment, e.g. using a digital multimeter

(DMM).

Current consumption can be measured using a current clamp

on board’s power lines. In this case a suitable software toolset

has to configure the target platform for a test, synchronize

the test execution with DMM sampling and, finally, collect

and store the power traces on a host PC. The availability

of a software tool allows to simplify the profiling process: it

can automate the translation of TSk’s training-set generation

parameters into a predefined-syntax “recipe file”, which once

parsed will describe the tests to execute and how to collect

measurements data.

C. Data processing and model generation

The last step of our workflow deals with processing power

traces in order to build a sufficiently accurate power estimation

model of the considered use-case. The proposed solution for

model identification is based on regression analysis [27]. In

the implementation of our workflow, regression analysis is

supported by “R”1, which has been selected thanks to its

functionalities, which are explicitly oriented to statistical data

analysis and model fitting.

Regression is one of the most widely used statistical analysis

technique for fitting a quantitative response variable y with

a function of one or more predictor variables x1,x2, . . . , xn.

1A language and environment for statistical computing and graphics.
http://www.r-project.org

This kind of data analysis is widely adopted in experimental

contexts with poor knowledge about the underlying system,

and thus it is acceptable to use empirical models to describe

reality. Moreover, under some assumptions and constraints

that we verified our approach complies with, regression is a

powerful tool which can also be used to predict behaviors.

This technique fits very well our needs: we have a set of

experimental data (power traces) and we have to identify a

predictive model related to the system configuration used to

produce such data. The values of SPk are our independent

variables (i.e. explanatory variables) while the mean value of

a power trace is the dependent variable (i.e. response variable)

we have to predict. The resulting regression model is a func-

tion of the independent variables and one or more parameters.

These parameters must be tuned in order to achieve the best

data fitting.

Note that the input data of such models do not represent a

complete coverage of the application context. Only some of

the independent variables, namely those belonging to the TPk

set, are changed during profiling. Hence, the model should

support extrapolation: this is considered to be more risky when

regression is used to build the model and therefore we paid

particular attention to the validation phase. This is the main

motivation for the last step in our workflow (Fig 1): a model

validation stage is required using input data different from

those considered for the model identification.

The estimation capability of the new predictive model

is tested indirectly, by forcing each of the non-controllable

parameters in NPk = SPk \ TPk. For each validation test,

if the prediction error can be verified to be within required

acceptable margins, the model is assumed to be validated

with respect to this non-controllable parameter. Otherwise the

considered parameter has to be added to the TPk set and the

profiling stage restarted.

As it will be explained in the next section, each model has to

be incrementally refined to balance the number of parameters

and its accuracy, defined by residual errors. The statistical

significance of parameters will be the guideline to shrink the

model. This task can be carried out almost automatically with

just some manual fine-tuning to produce the final model.

III. EXPERIMENTAL RESULTS

The proposed workflow has been validated considering a

real-world use-case and computing architecture. We consid-

ered audio playback applications running on a Nomadik board

equipped with the STn8815 MPSoC2, which integrates an

ARM core and a DSP. This architecture exposes a number of

fine grained power-performance controls on different devices,

including dynamic frequency and voltage scaling (DVFS).

An implementation of the system observer module has been

developed as an extension of the DPM [28] subsystem running

on a 2.6.20 Linux kernel. This first implementation exports in

userspace all the observable parameters reported in Tab II. The

2Nomadik: mobile multimedia application processor. STMicroelectronics.
http://www.st.com
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Fig. 2. (a) The profiling setup. Pymeasure running on a laptop and collecting data using a current clamp. (b) Consumption data on different system
configurations and different playback setups. (c) CPU load data on different system configurations and playback setups. (All data have been normalized due
to existing NDA.)

TABLE II
SYSTEM PARAMETERS: OBSERVABLE (OP) AND CONTROLLABLE (CP)

Name Description Type Range

Ch Number of audio channels OP 1 or 2

Encf Encoding audio frequency OP 8000, 22050

and 44100 [Hz]

Bps Bit per sample OP 8 or 16

Cpx Decoding complexity OP PCM, MP3, WMA

and OGGVorbis

Procload CPU load OP [0;100]

Memload Used memory OP [0;100]

Fcore CPU clock frequency CP 66, 100, 201, 264

and 302 [MHz]

Vcore SoC voltage CP 1000, 1050, 1150, 1200

and 1220 [mV]

DSPload DSP load OP [0;100]

HCLK System bus clock frequency CP 66, 100, 133 [MHz]

first three parameters (Ch , Encf , Bps) are retrieved by the

audio-codec driver configuration. The decoding complexity is

a qualitative classification of the computational effort related to

the adopted decompression algorithm. Procnum , Procload and

Mem load are parameters retrieved directly from some kernel’s

internal data structures. Fcore and Vcore are derived from the

control points already exported by DPM to configure the main

clock, along with HCLK which represents the clock of the

memory and DSPs subsystems. Finally DSP load is read by

the on-kernel audio accelerator firmware interface.

It is worth to notice that only three parameters are con-

trollable, while the others are only observable. Anyway, in

this particular use-case, it is quite easy to drive the first three

observable parameters simply by changing the audio file to

decode. Hence, for the profiling of the target use-case we

considered:

TPk = {Ch,Encf ,Cpx , Fcore , Vcore ,HCLK}

The range of each parameter is reported in Tab II. In order

to compute correctly the size of the training set, it should be

observed that some of these parameters cannot be modified

independently from the others: e.g. the VCore has a minimum

allowed level for each FCore value, as typical in systems

supporting DVFS. To evaluate advantages on configuring these

two parameters independently, we considered only the com-

binations of them ensuring system stability, which turned out

to be 15. Considering some other architectural constraints, the

final training set counts just 134 configurations to be profiled.

For each configuration, a power trace has been generated by

collecting 1000 current measures at 50Hz sampling frequency.

Each trace corresponds to 20s of audio playback. To skip the

perturbations associated with the switching among the config-

urations, measurements have been taken in a steady condition,

by selecting them randomly in the interval of [5..10]s after the

starting of the playback. Samples have been collected using

a Keithley’s Digital Multimeter and a Fluke’s current clamp

sensing the board’s power line. Measures are downloaded from

the DMM trough a custom-made application that, for each

power trace to be generated, takes care to configure both

DMM and the target board, synchronize their behavior, collect

the measurement and store the data for the further processing

(Fig 2a). The platform average power consumption, for each

tested configuration, is immediately available at the end of

these highly automated profiling procedures.

An initial analysis of the data collected during profiling

has been performed using both numerical (i.e. mean, standard

deviation and correlation values) and graphical summaries

(e.g. one variable boxplots and two variable scatterplots). We

investigated for outliers, data-collection errors and skewed or

unusual distributions. This first analysis confirmed that data

have been correctly collected and reasonably distributed.

We generated a first model, Model 1 in Tab III, by perform-

ing linear regression on these datasets. The obtained model

describes quite well data, with a low 2.5 residual standard

error, but it still has an excessive number of regressors.

To move towards a simplified version, from the first model

we selectively removed regressors with a low statistical sig-

nificance, using stepwise regression, still taking care to keep

the residual standard error lower than 10. We obtained Model

2 counting only 10 regressors and still having good fitting

properties.

Another improvement in the model has been obtained by ex-

ploiting a correlation analysis between the response variables



TABLE III
STATISTICAL PROPERTIES OF THE MODEL

Model 1 Model 2 Model 3

Residual standard error 2.509 6.466 3.14

Multiple R-Squared 0.9963 0.9514 0.9883

Adjusted R-squared 0.9921 0.9475 0.9876

F-statistic 237.7 242.7 1336

p-value ¡2.2e-16 ¡2.2e-16 ¡2.2e-16

Regressors count 69 10 8

Average error [%] 6.4 5.15 2.47

Fig. 3. Comparison between the model forecast (orange) and the actual
measurements (green) for a significant validation set

(i.e. mean current drained) and the product of some pairs of

input variables. Some of these products, such as FcoreVcore

and HCLKF 2

core , resulted highly correlated and thus have

been explicitly introduced into the model before running the

stepwise regression. At the end of such optimization stages,

Model 3 has been identified, which includes only 8 regressors

and still shows good statistical properties.

An extensive model validation has been performed, not only

to verify the prediction capability of the Model 3, but also to

verify the regression’s underlying hypothesis. Results of such

analysis3 is graphically represented by the plots in Fig 4, where

we can analyze:

1) residuals independence: residual errors are confirmed to

be random since the graph does not show clusters.

2) error linearity: the graph is balanced around zero,

namely the model does not suffer of over or under

estimation bias.

3) error normality: the residuals distribution is normal

since the points on the graph tend to cover the line.

4) homoschedasticity: residuals have almost a constant

variance.

After model statistical validation, the prediction capabilities

have been tested by using different set of traces from those

used for profiling and model identification. Such validation

set covered a range of different system configurations and

playback setups. Differences between the actually measured

average power consumption and the model forecasts are shown

3Refer to [27] for a detailed description

on Fig 3. As reported in Tab III, the average prediction error of

the model is only 2.47%, that is comparable with the accuracy

of the adopted measurement equipment.

Due to an NDA with STMicroelectronics, only the general

structure of Model 3 can be reported:

Iest = k1 − k2Cpx + k3Bps + k4DSP load +
k5ProcloadFcore + +k6HCLKVcore + k7FcoreVcore +

k8CpxVcore − k9HCLKF 2

core

IV. CONCLUSIONS AND FUTURE WORK

We presented a methodology to produce system-wide en-

ergy estimation models suitable to support a power manager

run-time policy. Our approach leverages on system knowledge

for off-line use-case based platform profiling.

The main benefit of the use-case approach lies in the pos-

sibility of identifying fine-grained run-time models, optimized

for specific application contexts. Moreover they simplify the

off-line profiling stage and improve the power manager adapt-

ability to application contexts changes. Stepwise regression

has been used to build and optimize linear models that predict

the average power consumption, with a proved accordance

with measured data, given the informations corresponding to

the system configuration. These informations come from a

software implemented observation module, laying on top of an

efficient and platform independent OS instrumentation code.

Currently we are working on the run-time composition of

energy models, belonging to different use-cases, in order to

better support the power manager in more generic utilization

scenarios. Others efforts are on: performance estimation mod-

els by following an approach similar to that used for the power

consumption, and mechanisms to feed these informations to

the power manager in order to better support its control

decisions.
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