

Efficient Constant-time Entropy Decoding for H.264

Nabeel Iqbal and Jörg Henkel

University of Karlsruhe, Chair for Embedded systems, Karlsruhe, Germany

{Iqbal, henkel} @ informatik.uni-karlsruhe.de

Abstract--Diverse approaches to parallel implementation of

H.264 have been proposed; however, they all share a common

problem. The entropy decoder in H.264 remains mapped on a

single processing element (PE). Due to the inherently sequential

and context-adaptive nature of the entropy decoder, it cannot be

parallelized. This renders a bottleneck to the performance of the

entire decoding process. Depending on the type of the processing

core and the video bit-rate, the performance of the entire decod-

ing process is subject to the process of entropy decoding. It is,

therefore, needful to research and implement new algorithmic

solutions to compensate for this bottleneck, and thereby make

optimal use of parallel implementation of H.264 decoder on

mainstream multi-core systems.

 This paper presents a new CAVLC decoding method which is

de-rived by constructing custom CAVLC decoding tables using

„table grouping‟. Compared to the conventional [5] „sequential

table look-up‟ method, which requires multiple memory ac-

cesses. Our proposed method accesses the custom tables only

once for the decoding of any symbol. Moreover, in our proposed

method, the symbol decoding time does not depend on the sym-

bol length and it is constant for each symbol, resulting in a near-

ly linear increase in computational complexity with increase in

video fidelity as compared to an non linear increase in earlier

proposed methods. Experimental results show that our proposed

algorithm features up to 7x higher performance and 83% less

memory accesses compared to conventional methods. We com-

pare to three commonly used, state-of-the-art CAVLC algo-

rithms, such as table look-up by sequential search [5], table

look-up by binary search [9], and “Moon‟s method” [16] .

I. INTRODUCTION
Advances in semiconductor technology allow billions of tran-

sistors to be integrated on a single chip. Intel has already built

the first Billion transistor chip featuring quad cores and a large

cache [19] and prototype eighty core chip [21]. Industry‟s

prowess continues to drive Moore‟s Law, providing a double

of transistor density every two years. The availability of terra-

scale integration capacity and small feature size resulted in the

dawn of multi-core systems [2].

 According to Pollack‟s rule, the increase in area or energy

consumption of a single core doesn‟t lead to a linear increase

in performance. In general, 2x energy consumption results on-

ly in a 1.4x increase in performance. On the other side multi-

core performance increases approximately linearly with energy

consumption by integrating more cores on a single die, which

makes it ideal for embedded mobile devices where perfor-

mance-to-energy ratio is always a critical design goal. Accord-

ing to the „kill rule‟ for multicore [1], the smaller the

processing element (PE), the better the energy savings; howev-

er, more cores on a single die are only meaning full when ap-

plication parallelism exists and communication cost between

the cores and memory does not dominate the energy consumed

in actual computations. Multicore systems are already availa-

ble commercially and systems with more than 100 cores on a

single die are envisioned in the near future. The promise of

high computational performance with low energy consumption

makes multicore processors ideal for multimedia enabled mo-

bile devices. The promised computational performance will

only be available to parallelized applications with suitably par-

titioned tasks. This parallelization requirement gives rise to an

urgent need to study and devise new algorithms that are able to

exploit the available computing power.

 In multimedia, video encoding/decoding is the most compu-

tation-intensive process. Many video compression standards

are in use like MPEG-2, H.263. MJPEG-4, H.264 etc. The lat-

est video codec from Joint Video Team (JVT) of ISO/IEC

MPEG and ITU-T Video Coding Expert Group (VCEG) is

H.264 or MPEG-4 AVC part 10, which offers better compres-

sion as compared to other standards under the envelop of the

same video fidelity[3]. The primary goals of H.264 are better

compression, suitability for network transmission and error

resilience. To achieve these goals, a wide variety of tools are

included in the standard, which makes it computationally com-

plex and predominantly control-flow oriented [4]. Due to its

versatility and coding efficiency, H.264 is widely accepted by

industry and would likely be the leading video codec for mo-

bile multimedia embedded systems for years to come.

 The increased performance in bit rate owes to the inclusion

of additional tools which lead to increased computational

complexity in encoding as well as decoding. This increased

complexity in decoding is a major problem when it comes to

devise cost effective H.264/AVC-based video solutions [18].

To meet the computational requirement of the H.264 decoder,

many parallel approaches have been proposed for Multi-

Processor systems [7, 8, 10, 13, 14] utilizing from 2 PEs to 60

PEs. The common design metric in all these approaches is to

map the entropy decoder on single PEs because entropy decod-

ing is an inherently sequential process and cannot be paralle-

lized. Hence entropy decoding in parallel designs becomes the

bottle neck [7, 14] and the total throughput of the decoder de-

pends on the performance of entropy decoder.

 In H.264, there are two kinds of entropy encoding schemes:

the conventional Variable Length Coding (VLC) and Context

Adaptive Variable Length Coding (CAVLC). VLC is based on

Exp-Golumb codes; its decoding process is simple and

straightforward, and it is only being used to transmit the head-

er data. On other hand, CAVLC is used to encode actual video

data and is a combination of entropy and „run length‟ coding

with context-adaptive mechanism. The whole entropy encod-

ing/decoding process is elaborated in [17]. The H.264 standard

document defines the symbol tables for the CAVLC encoding

process and is fixed for all profiles which include coeff_token,

total_zero, and run_before syntax elements for “luma” and

978-3-9810801-5-5/DATE09 © 2009 EDAA

“chroma”. At decoding end, in a typical implementation, look-

up tables are used to decode the syntax elements in incoming

bit-stream. The decoding based on look-up table requires mul-

tiple memory accesses until the desired codeword is found. In

this paper we propose an efficient constant-time decoding al-

gorithm for CAVLC. Our algorithm accesses custom table and

coded bit-stream only once and decoding time is independent

of symbol length. We built small decoding tables by exploiting

the regularity and correlation in code words given in standard

with the focus on simplest possible decoding algorithm.

 The rest of the paper is organized as follows: Section II

highlights the existing CAVLC decoding methods; Section III

presents our methodology and in Section IV experimental se-

tup and comparison with existing approaches are presented.

Section V concludes the paper.

II. RELATED WORK
 In this section, we briefly review existing CAVLC decoding

methods. Most of the work done so far targets hardware im-

plementation of CAVLC decoding such as special instructions

or SoC design. Regardless of hardware or software solution,

the primary goal of the work done is to reduce the memory

used for lookup tables and minimize computational costs and

memory accesses. The basic method is to parse encoded stream

bit-by-bit to decode the symbol information, but a more so-

phisticated method may take a chunk of bits e.g. 8 bits at a

time to speed-up the decoding process. The most fundamental

CAVLC decoding method is Table Lookup by Sequential

Search (TLSS) and has been implemented by H.264 reference

software [5]. This method sequentially compares one bit at a

time with decoding table until the exact code and its length is

found. As TLSS-based decoding is done bit-by-bit, it is very

slow and requires a lot of computational power with numerous

memory accesses. To mitigate computational cost of TLSS,

Table Lookup by Binary Search (TLBS) is proposed in [9]. In

TLBS method, VLC codes are first arranged in descending or-

der with respect to their numerical value, and then binary

search algorithm is used to search the entry in the decoding

table. It is reported that TLBS algorithm is faster than the

TLSS algorithm because only six table look-up operations are

required to search the code from a table with 64 entries. In

TLBS method, table access is random and may show ineffi-

ciency in some systems due to random memory accesses which

are contrary to sequential memory accesses in TLSS, and its

speed-up gain may evaporate when the length of incoming

symbol is large.

 To reduce the memory access of CAVLC decoding process,

software decoding for some components is proposed in [16]

and it is known as Moon‟s method. The main idea is to use

arithmetic operations for highly probable short VLC codes to

reduce memory access, and use conventional TLSS method to

decode symbols with low probability of occurrence. Moon‟s

method proposes arithmetic equations for some entries of

coeff_token table 1 and 2 and for all entries of run_before

tables only. The proposed algorithm contains many conditional

statements with large arithmetic operations which may not

help in reducing CAVLC decoding time. Moreover, it assumes

that 95% of the symbols will have length shorter than 9 bits

which is not valid in case of high fidelity video. Therefore, the

decoding time of this approach varies drastically with length of

the symbol and is not a constant, and computational complexi-

ty increases drastically with increase in symbol length. Moreo-

ver, in arithmetic operations, integer division and modulo op-

erations are used which are not helpful to reduce the computa-

tional cost effectively, but is also contrary to the standard that

it does not involve any floating point operation.

 In [11], for some components, CAVLC decoding solution

without look-up tables is proposed which is not general and

only valid under assumptions and constraints. A VLSI decod-

ing solution is suggested in [6] and is composed of several

modules with large area overhead and not suitable for software

implementation. Memory efficient solution using look-up

tables is proposed in [15]. In this solution, small decoding

tables are designed only with the perspective of hardware

based solution.

III. OUR METHODOLOGY
As mentioned in Section 2, the approaches use either tables or

derive arithmetic equations (possible for some components

only) to decode the CAVLC. We propose a new way to con-

struct CAVLC tables by exploiting the regularity and correla-

tion among codeword symbols in the decoding table.. This re-

gularity and correlation within table is not evident at first; and

to make use of it, one has to manually check each entry with

all possible choices, which is a lengthy and tedious job. Our

method gives many fold benefits first decoding tables are

small secondly decoding algorithm is fairly simple and lastly

the decoding time is independent of incoming symbol length.

We arranged the decoding table entries according to occur-

rence of regular pattern and correlation among code words. we

used self grouping of code words based on number of leading

zeros present in the code word and classify the symbols in

groups, this self grouping exists in H.264 tables with few ex-

ceptions in total_zero table. Then we sorted the resultant group

entries in ascending order after the occurrence of the first „1‟.

By grouping and sorting the stored information required to

identify the symbols can be reduced significantly, hence reduc-

ing memory accesses. Based on this grouping we derived your

decoding tables and decoding algorithm. Moreover the way we

grouped the symbols leads to a very small table requirement

and fairly simple decoding algorithm. Our grouping method

makes possible the classification of incoming symbol in a

group using one single instruction, available in most modern

processors, as compared to other works which use multiple

conditional statements to narrow down the search. Beside sim-

ple decoding process the prime aspect of our method is that

decoding time of coded symbol is independent of its length

e.g. the decoding time of 16 bit coded symbol is same as 4 bit

coded symbol. It is worthwhile to mention that our decoding

process comprises of two steps and total decoding time re-

quired to decode the coded symbol is smaller than the methods

with we compared in results Section IV. Which means even if

there is high probability of occurrence of shorter length coded

symbols even then our method will out perform other methods

though the overall benefits will diminish as compared to long-

er coded symbols.

A. Table Grouping
We exploited the regularity and correlation found among de-

coding symbols of CAVLD tables and classify them into

groups according to number of leading zeros. The process is

shown in Figure 1 for example data of coeff_token table 1 in

H.264 CAVLD. The first column shows the resultant groups

based on leading zeros and second column shows the actual

code words and information required to be stored. The whole

process can be divided in three steps.

GROUP VARIABLE LENGTH CODE

Group
0001

0001 01 xx

0001 00 xx

0001 1x xx

Group
0000 01

0000 01 11

0000 01 10

0000 01 01

0000 01 00

Group
0000 0000 0000 1

0000 0000 0000 1 111

0000 0000 0000 1 011

0000 0000 0000 1 110

0000 0000 0000 1 010

0000 0000 0000 1 101

0000 0000 0000 1 001

0000 0000 0000 1 100

0000 0000 0000 1 000

Figure 1: Table grouping process and information required

to be stored.

 Arrange the decoding symbols in ascending order for lead-

ing zeros count.

 Arrange symbols which have same number of leading zeros

in a same group, first column of Figure 1.

 After leading zero(s), the first occurrence of „1‟ is a signal,

which acts as a classification of group. The occurrence of

first 1 after leading zero also acts as sentinel and informa-

tion bits follow it. Then sort the suffix bits and merge the in-

formation associated with the symbol to build the decoding

tables with minimum memory requirements.

 After classifying the group, the information that needs to be

stored (for decoding the incoming symbol) comprises of a few

bits and is shown in Figure 1 as a vertical group. Considering

an example in Figure 1, the table size is totally 114 bits. After

grouping the table entries, there is need to store the informa-

tion related to 38 bits only. Information bits occurring after the

first 1 are few as compared to the total length of code, which

significantly reduces the permutations, and hence memory re-

quirements of tables. Here afterwards we will call the leading

zeros and first „1‟ as prefix and remaining information bits as

suffix.

B. CAVLC Final Tables
The CAVLC tables are generated by grouping and sorting as

described previously and the procedure is similar for each

CAVLC table. In H.264, coeff_token syntax has four tables

and selection of appropriate table depends on the context.

Context table selection is based on average number of non-

zero transform coefficient levels of top and left 4x4 luma

blocks and it is -1 for chroma blocks. VLC table of the current

block is adaptively selected according to neighboring blocks‟

non-zero transform coefficient levels.

 To elaborate our method further, Table I and II shows the

grouped table with associated information. As CAVLC tables

are large and it is not possible to show complete tables here,

only small portions are shown to elaborate our grouping and

merging of tables. Table I shows the part of coeff_token table

0, TC and T1 represent the total number of coefficient and to-

tal number of ones respectively associated with the symbol.

We partitioned the code in prefix and suffix. As explained ear-

lier, group is made on the basis of prefix and we only stored

the information related to suffix. We divided the whole table in

14 groups and similarly coeff_token table 2 is divided in 10

groups. In this way our method is seamlessly applicable to

nearly all tables. Table II show the parts of total_zero table

which is classified into 21 groups. The appropriate group se-

lection is based on context, total coefficients decoded already,

and leading zeros, and difference here is that already decoded

information, total number of coefficient and symbol reveal the

total zeros. There is exception in total_zero table that a few of

the entries cannot be merged and grouped because of irregular-

ities. We grouped all these entries in a separate group and used

all of their permutations to keep the decoding algorithm simple

which incurr a little memory overhead.

 Similarly, all coeff_token, run_before, zero_left tables for

luma and chroma tables are generated by the same processs. As

mentioned earlier we only need to store the tables related to

suffix entries as classification in a group can be done by find-

ing the number of leading zeros and from now onwards we

will use the term suffix table as decoding table.

Table I: The grouping for part of coeff_token table 0.

Code Prefix Suffix [TC, T1]
0000 0100

0000 01

00 [6, 3]

0000 0101 01 [4, 2]

0000 0110 10 [3, 1]

0000 0111 11 [2, 0]

0000 0010 0

0000 001

00 [7, 3]

0000 0010 1 01 [5, 2]

0000 0011 0 10 [4, 1]

0000 0011 1 11 [3, 0]

0000 0000 0100 0

0000 0000 01

000 [8, 0]

0000 0000 0100 1 001 [9, 2]

0000 0000 0101 0 010 [8, 1]

0000 0000 0101 1 011 [7, 0]

0000 0000 0110 0 100 [10, 3]

0000 0000 0110 1 101 [8, 2]

0000 0000 0111 0 110 [7, 1]

0000 0000 0111 1 111 [6, 0]

0000 0000 0010 00

0000 0000 001

000 [12, 3]

0000 0000 0010 01 001 [11, 2]

0000 0000 0010 10 010 [10, 1]

0000 0000 0010 11 011 [10, 0]

0000 0000 0011 00 100 [11, 3]

0000 0000 0011 01 101 [10, 2]

0000 0000 0011 10 110 [9, 1]

0000 0000 0011 11 111 [9, 1]

Table II: The grouping for part of total_zero table.

Code Prefix Suffix [TC, T0]

100

1

00 [3, 1]

101 01 [3, 2]

110 10 [3, 3]

111 11 [3, 6]

0000 10
0000 1

0 [1, 7]

0000 11 1 [1, 8]

0000 010
0000 01

0 [1, 9]

0000 011 1 [1, 10]

Only information related to these bits is required to

be stored

 We need to store only the necessary information: in our case

it is just the suffix bits occurring after first one and constructed

the suffix tables. It is evident that there is variation in the

length of suffix bits in a given table but is limited to one or

two bits only. We decided to use maximum length of suffix bits

occurring in a table across multiple groups to construct our

decoding tables. Surely this will increase the number of per-

mutations which results in increased size of suffix table. This

increase in size is negligible and is very little compared to the

total size of the tables. This will eliminate the exceptions in

decoding algorithm which results in simple decoding algorithm

without conditional statements. All CAVLC suffix tables take

less than 8 KB in total which make them ideal to be placed in

scratchpad memory, and if placed in main memory it is highly

likely that when accessed tables will be cached automatically

due to small size.

C. CAVLC Decoding Algorithm
We developed the fairly simple decoding algorithm in conjunc-

tion to the our table grouping method. The Algorithm 1

represent our decoding algorithm; though it shows the decod-

ing of coeff_token syntax elements for luma, but can be

adapted for remaining syntax elements just by changing the

suffix table. Moreover it is the algorithm of full routine to de-

code coeff_token table and conditional statements in the algo-

rithm are for context adaptation means selecting the different

decoding table depending on the context. The decoding algo-

rithm is three step process which include reading of bit-stream,

classification of incoming symbol to its group and then decod-

ing the suffix table using our suffix tables.

 We first read the bits to decode from bit stream, and the

number of bits we read is equal to the maximum length of the

symbol in a given table. To decode coeff_token and run_before

we read 16 bits and read 8 bits to decode total_zero, line 1 in

algorithm. So we in our method bit-stream reading is done on-

ly once for decoding of syntax element in comparison to mul-

tiple readings in other works. After reading the sufficient bits,

we classify the codeword into its group by counting the num-

ber of leading zeros. The counting of leading zeros is fairly

fast and simple as most of the modern processors include as-

sembly instruction for this purpose (commonly used for cryp-

tography and graphics operations). Assembly instruction MSU

and NSAU are examples in Intel x86 and Xtensa processors

respectively. Even if the leading zero count instruction is not

available in the processor, it is possible to compute it in con-

stant time using bit-twiddling algorithms with little overhead

of memory and cycles given in [20], line 2 in algorithm counts

leading zeros. Till now we have classified the incoming sym-

bol to its group after this the the extraction of information bits

or suffix bits is done by shifting, line 4 and 5. We have ob-

tained the suffix bits and use these bits to extract the decoding

information from suffix table, line 7 to 11. The remaining part

is repetition of last step in decoding which is for different suf-

fix table selection based on context.
 Our decoding method is straightforward and is independent

of codeword length and without any conditional statement

which results in constant decoding time for a incoming sym-

bol. Due to constant decoding time, regardless of its code-

word length, the performance of our algorithm is scalable for

high fidelity videos in which probability of occurrence of

shorter length code-words decreases significantly and adverse-

ly affects the performance of conventional algorithms.

Algorithm 1: Pseudo code of our coeff_token decoding rou-

tine

1: code  show_bits(16) // read 16 bits from bitstream

2: idx_one  find_index_one(code) // using only

3: // one instruction

4: code  code >> 16 – (idx_one + 3)

5: suffix  code && 0x0007 //extract last three bits

6: if(vlcnum == 0) { // first vlc table

7: info  coeff_token_suff_0[idx_one>>3 + suffix]

8: // access 32 bits info from table

9: num_coeff  info && 0xff

10: num_trailing_one  (info >> 8) && 0xff

11: code_length  (info >> 16) && 0xff

12

13: }else if(vlcnum == 2) { // second vlc table

14: info  coeff_token_suff_1[idx_one>>3 + suffix]

15: // access 32 bits info from table

16: num_coeff  info && 0xff

17: num_trailing_one  (info >> 8) && 0xff

18: code_ length  (info >> 16) && 0xff

19:

20: }else { // Third vlc table

21: info  coeff_token_suff_2[idx_one>>3 + suffix]

22: // access 32 bits info from table

23: num_coeff  info && 0xff

24: num_trailing_one  (info >> 8) && 0xff

25: code_ length  (info >> 16) && 0xff

26: }

27: frame_bitoffset  frame_bitoffset + length

IV. EXPERIMENTAL RESULTS

A. Experimental Setup
We performed multiple experiments using test sequences with

diverse characteristics to avoid the influence of system and

data properties. To encode the sequences, latest reference en-

coder JM 13 is used. Table III shows the encoding parameters.

Each sequence is encoded with four different QPs to highlight

the scalability of proposed method. Though baseline profile is

used for encoding but proposed method is not limited to base-

line and conformance testing for Main profile was done suc-

cessfully. Table IV shows the test sequences used in experi-

ments and their parameters. We integrated each CAVLC algo-

rithm in our optimized decoder to get fair results. Application

binaries were generated with instrumentation code which is

required to get different performance metrics at runtime. The

inclusion of instrumentation code will definitely increase the

execution time, but it is not important because we are interest-

ed in relative performance of algorithms.

 Experiments were performed on 1.6GHZ Intel Core Duo

machine with 2 MB L2 cache and application thread was

locked to one of two processors. We measured the performance

metrics using Intel VTune performance analyzer which give

system wide performance analysis. To get precise readings,

data was gathered by Event-based sampling using processor

counters.

(a) (b)

(c) (d)

Figure 2: Execution time comparison for test sequences (a, b, c and d are for QP=16, 20, 24 and 28 respectively) .

Table III: Encoding parameters of test sequences.

Parameter Selected option

Profile Baseline

RDO On(fast algorithm)

MV search range +/- 32 pixels

Reference frame 4

QP 16, 20, 24, 28

Motion search Fast search

Intra interval 0

Encoder JM 13

 Video output file writing was disabled and input bit-stream

was loaded first into memory to eliminate thread stalling due

to IO operations. In each experiment, data was gathered using

five applications runs including one calibration run. We ga-

thered execution time as clock ticks and converted it to milli-

second units. Memory access was counted as all data memory

references made to the L1 data cache, including all loads from

and to the memory within CAVLC routine.

B. Results
We compared our proposed method with TLSS, TLBS and

Moon‟s algorithms in term of execution time and memory access

count. Our method clearly outperforms others in execution time

and performs better in memory access count. Figure 2 shows the

execution time comparison for different values of QP and Figure 1

Table IV: Parameters of test sequences.

Sequence Resolution Frame rate Frames

Tempete CIF 30 60

Silent CIF 25 60

Mobile CIF 20 60

Foreman CIF 35 60

Container CIF 15 60

(a), (b), (c) and (d) corresponds to QP values 16, 20, 24 and 28

respectively. As mentioned earlier time is measured in millise-

conds and binaries were compiled with instrumentation code so it

has the meaning of relative time. The comparison shows that the

proposed method is 7 times faster than TLSS and roughly 5 times

faster than TLBS and Moon‟s method. Maximum relative speed is

achieved when QP is equal to 16 in which longer length symbols

are more probable. Our speed-up gain diminishes with increase in

QP (decrease in video fidelity) and at QP = 28 it is just 5 times the

TLSS. Which means compared to other methods computational

requirement of our method increases less sharply with the de-

crease of QP. Contrary to TLSS, TLBS and Moons method, our

method reads bit-stream once and there are no conditional state-

ments or loops involved while decoding the incoming coded sym-

bol. Moons method assumes that 85% of codes will have length

shorter than 8 bits but we are not making any assumption on the

probability of occurrence of code length. Due to these reasons, our

decoding is independent of code length within table and its

Figure 3: Memory access savings.

computation time only depends on bit-rate. Constant time decod-

ing of code makes it scalable with increase in bit-rate and is ideal

for multi-core implementations in which a single processor has to

bear the work load of entropy decoding.

 Our proposed algorithm performs well in the sense of memory

access count compared to other algorithms. While in memory

access count, we excluded memory accesses related to encoded

bit-stream for all algorithms as it will be accessed sequentially and

will always be in cache memory. Figure 3 shows the percentage

savings in memory access count with TLBS, Moon and our me-

thod compare to TLSS. Our method uses only 13% memory ac-

cesses as compared to TLSS and savings are around 20% better

than TLBS and Moon‟s method, when QP =16. The memory

access savings gain decreases monotonically and reaches Moon‟s

method gain with increase in QP and is in aligned with the execu-

tion time results. But our method uses small table (less than 8

KB), and it accesses table only once for the decoding of one code

compared to others.

V. CONCLUSION
In this paper we proposed efficient constant time CAVLC entropy

decoding method for H.264/MPEG-4 AVC decoder. The proposed

algorithm uses table grouping method which leads to reduced

table look-up requirement, where codes are grouped using the

regularity and correlation within table. To classify the code into its

group, we used a single instruction. We defined custom tables for

all entries of coeff_token, run_before, total_zeros CAVLC tables.

The proposed method and decoding algorithm can overcome

conventional table look-up methods drawbacks, such as high

memory acesses and slow decoding time due to bit-by-bit

processing. The proposed method also saves memory by using

minimal possible CAVLC tables. Experiment results show that

reduction in memory access is upto 83% and speed-up of CAVLC

decoding time is upto 7x. Due to constant code decoding time, the

computational requirement of the proposed method increases

steadily with increase in bit-rate which makes it scalable and ideal

for multicore implementations, as only one processor has to bear

the load of whole entropy decoding process.

VI. REFERENCES
[1] Anant Agarwal, Markus Levy, “The kill rule for multicore”.

Design Automation Conference (DAC), pp. 750-753, 2007.
[2] Shekhar Borkar, Norman P. Jouppi and Per Stenström, “Mi-

croprocessors in the Era of Terascale Integration”, Design,
Automation and Test in Europe Conference (DATE), pp.
237-242, 2007.

[3] JVT Draft recommendation and final draft international stan-
dard of joint video specification. ITU-T Rec. H.264 and
ISO/IEC 14496-10 AVC .

[4] Dragorad Milovanovic, Zoran Bojkovic and Andreja Sam-
covic, “Video Coding with H.264/AVC : Tools performance
and complexity”, WSEAS AMTA-EE-ICAI-MCBC-MCBE
Conference, Venice, Italy, 2004.

[5] http://iphome.hhi.de
[6] W. Di, G. Wen, H. Mingzeng, and J. Zhenzhou, “A VLSI ar-

chitecture design of CAVLC decoder,” 5th IEEE Internation-
al Conference on ASIC, vol. 2, pp. 962-965, Oct. 2003.

[7] C. Meenderinck, A. Azevedo, M. Alvarez, B. Juurlink, and
A. Ramirez, “ Parallel Scalability of H.264”, In Workshop
on Programmability Issues for Multi-Core Computers
(MULTIPROG), 2008.

[8] Van der Tol, E., Jaspers, E., Gelderblom, R, “ Mapping of
H.264 Decoding on a Multiprocessor Architecture”, In: Proc.
SPIE Conf. on Image and Video Communications and
Processing, vol. 5022 pp. 707-718, 2003.

[9] Yong-Hwan Kim, Yoon-jong Yoo, Jeongho Shin, Byeongho
Choi, and Joonki Paik, “ Memory-Efficient H.264/AVC
CAVLC for Fast Decoding”, IEEE Trans. On Consumer
Electronics, Vol.52, No3, August 2006

[10] S. Sudharsanan et al., "Image and video processing using
MAJC 5200", Proceedings of the IEEE International Confe-
rence on Image Processing, Vancouver, Canada, 2000.

[11] Jeonhak Moon, Seongsoo Lee, “Design of H.264/AVC En-
tropy Decoder Without Internal ROM/RAM Memories”,
ISCCSP, March 2008.

[12] Y. K. Chen, E. Q. Li, X. S. Zhou and S. Ge, “Implementation
of H.264 Encoder and Decoder on Personal Computers”,
Journal of Visual Communication and Image Representation,
pp.509-532, 2006.

[13] Jike Chong, Nadathur Rajagopalan Satish, Bryan Catanza-
ro,Kaushik Ravindran, Kurt Keutzer. "Efficient Paralleliza-
tion of H.264 Decoding with Macro Block Level Schedul-
ing". Multimedia and Expo, IEEE ICMCS Conference, pp.
1874-1877, 2007.

[14] P. Li, B. Veeravalli and A. A. Kassim, “ Design and imple-
mentation of parallel video encoding strategies using divisi-
ble load analysis”, IEEE Trans. Circuits and Systems for
Video Technology, pp. 1098-1112, 2005.

[15] Hsiu-Cheng Chang, Chien-Chang Lin, Jiun-In Guo “A Novel
Low-Cost High-Performance VLSI Architecture For MPEG-
4 AVC/H.264 CAVLC Decoding”,IEEE ISCAS, pp. 6110-
6113, 2005.

[16] Y. H. Moon, G. Y. Kim, and J. H. Kim, “ An Efficient Decod-
ing of CAVLC in H.264/AVC Video Coding Standard,”
IEEE Trans. On Consumer Electronics, Vol.51, No3, August
2005.

[17] Iain E.G. Richardson, “H.264 and MPEG-4 Video Compres-
sion – video coding for next generation multimedia”, John
Wiley & Sons, 2003.

[18] M. Horowitz, A. Joch, F. Kosssentini, and A.Hallapuro,
“H.264/AVC baseline profile decoder complexity analysis,”
IEEE Trans. Circuits and Syst. Video Technology., vol. 13,
no.7, July 2003.

[19] http://www.intel.com/products/processor/core2quad/index.ht
m

[20] http://www-graphics.stanford.edu/~seander/bithacks.html
[21] http://www.intel.com/pressroom/kits/Teraflops/index.htm

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

