Thermal-Aware Memory Mapping in 3D Designs

Ang-Chih Hsieh and TingTing Hwang
Department of Computer Science, National Tsing Hua University
HsinChu, Taiwan 300

Abstract—DRAM is usually used as main memory for program
execution. The thermal behavior of a memory block in a 3D SIP is affected
not only by the power behavior but also the heat dissipating ability of
that block. The power behavior of a block is related to the applications
run on the system while the heat dissipating ability is determined
by the number of tier and the position the block locates. Therefore,
a thermal-aware memory allocator should consider the following two
points. First, allocator should consider not only the power behavior
of a memory block but also the physical location during memory
mapping, second, the changing temperature of a physical block during
execution of programs. In this paper, we will propose a memory mapping
algorithm taking into consideration the above-mentioned two points. Our
technique can be classified as static thermal management to be applied
to embedded software designs. Experiments show that our method can
reduce temperature of memory system by 17.2°C as compared to a
straightforward mapping in the best case, and 13.4°C in average.

I. INTRODUCTION

System in package (SIP) provides a cost-effective solution for
large-scale integration [1]. This technology has been widely used
in mobile devices and embedded systems. Current technology allows
more than twenty chips to be stacked in one package [2]. With the
capacity provided by SIP technology, integrating memory chips into
package has become popular in recent years. Several researches on
memory integration based on SIP have been studied [3]-[7]. Though
SIP technology provides extremely high capacity for circuit integra-
tion, it suffers severe thermal stress because of three dimensional
stacking of ICs [8]. Thermal stress will induce variation of DRAM
retention time and reliability problem [9].

Many temperature-aware researches have been conducted. They
can be classified into two categories, dynamic and static thermal
managements. The former techniques detect the temperature infor-
mation at run-time, and stop hot units operating till their temperature
cools down. Examples such as voltage scaling [10], throttling tech-
niques [11], and non-DVS localized thermal management [12] are in
this category. Dynamic thermal management schemes can precisely
monitor temperature value and guarantee that the system temperature
will never be higher than a predefined constraint, however, at the
cost of slowdown of the processor execution. As to static thermal
management, the profiling data is generated first and then used to
analyze the temperature distribution of the program. [13] proposes
a floorplan technique from microarchitecture level point of view to
reduce the hotspot temperature. This floorplan algorithm determines
the locations of functional units by spreading hot functional units
and surrounding them by cooler functional units. However, this
technique is less flexible because the same floorplan is used for all
applications and the locations of functional units can not be changed
after floorplan is done. Yet, another approach [14] is proposed
from compiler-level point of view which distributes computations to
different functional units so that the hotspots are prevented.

Except [15], none of previous research addressed thermal and
energy problem for 3D memory design. In [15], energy and delay
savings due to 3D partition of cache memory based on wafer-
bounding technology is discussed. Although its method is suitable

This work was supported in parts by Synopsys Inc. and National Science
Council of Taiwan, Republic of China, under grant NSC 97-2220-E-007-033.

978-3-9810801-5-5/DATE09 © 2009 EDAA

- <

DRAM Die

DRAM Dies in SIP
DRAM Packages on PCB and DRAM Dies in SIP Design

Fig. 1.

for custom cache design, it cannot be applied to DRAM chips in
stacked SIP design.

DRAM is usually used as main memory for program execution.
The thermal behavior of a memory block in a 3D SIP is affected not
only by the power behavior but also the heat dissipating ability of that
block. The power behavior of a block is related to the applications
run on the system while the heat dissipating ability is determined by
the number of tier and the position the block locates.

Therefore, a thermal-aware memory allocator should consider the
following two points. First, allocator should consider not only the
power behavior of a memory block but also the physical location
during memory mapping, second, the changing temperature of a
physical block during execution of programs. In this paper, we will
propose a memory mapping algorithm taking into consideration the
above-mentioned two points. Our technique can be classified as static
thermal management to be applied to embedded software designs.

The rest of the paper is organized as follows. In Section II,
motivation of this work is presented. Section III describes our system
model and problem definition. In Section IV, details of each step
of our algorithm are introduced. These techniques include thermal
aware memory configuration, program behavior analysis and ILP
formulation. The experimental results are given in Section V. Finally,
Section VI concludes this work.

II. OBSERVATION & MOTIVATION

In traditional on-board designs, DRAM chips are placed in a
planar space. Therefore, system designers can view all DRAM
chips identical and assume that all DRAM chips have the same
heat dissipating ability. However, when DRAM chips are stacked
using SIP technology, chips of different tiers have very different
environmental conditions. For example, in 3D memory, it is more
difficult to dissipate the power of a physical block on the middle tier
than on the top tier, as shown in Figure 1. That is, chips on different
tiers have different heat dissipating abilities and can sustain different
access frequencies under a given temperature constraint. Moreover,
for each access, multiple banks of different chips need to be triggered
at the same time. How to select a bank in a chip should consider
thermal issue.

ExampleProgram() Segment | Access Frequency
{ . 0
SuncA(); // access segment A j,zzzz;j ;(5)02
funcB(); // access segment B
SuncC(); // access segment C funcC() 35%
SfuncD(); // access segment D SineD() 80%
/ (a) (b)

To Top
/A7B7

i

Mapﬁing A: Mapp.ing B:

Straightforward Stacking Effect Stacking Effect &
Program Behavior
© (d (e)

=3
@

o=0Straightforward
o-0Avoid Stacking Effect
<=0 Avoid Stacking Effect & Consider Program

~
a

| 32-bit Processor |

| System Bus |

| Memory Controller |

Z8-bit_8-bit__J8-bit__Js-bit[_

DRAM DRAM DRAM DRAM

) ‘ , ' Group 1
Die 0 Die 1 Die 2 Die 3
DRAM | DRAM | DRAM | DRAM G
; : : : roup 2
Die 4 Die 5 Die 6 Die 7
DRAM | DRAM | DRAM | DRAM G
; : : : roup 3
Die 8 Die 9 Die 10 Die 11
DRAM | DRAM | DRAM | DRAM G
. R . . roup 4
Die 12 Die 13 Die 14 Die 15
Fig. 3. Memory System
Cell Bank Cell Bank

Pre-charge Circuit | Pre-charge Circuit
Sense Amplifier | Sense Amplifier
Control & Pre-fetch Circuits

DRAM Tiers
(Tier 0 ~ Tier 7)

[Peripheral Circuits
Peripheral Circuits

5
«

el
@

5

(C)

~
«
|

w
«

Highest Temperature in Package

25 €
Stage | Stage Il Stage Il Stage Il
15
FuncA() FuncB() FuncC() FuncD()
Execution Stage
®
Fig. 2. (a) Example Program; (b) Access Frequency; (¢) Mapping A; (d)

Mapping B; (¢) Mapping C; (f) Simulation Result

On the other hand, the logical memory space for an application
comprises several memory blocks for data, instructions, heap and
stack. Each block has different access behavior and access frequency.
And even different segments in a block can have quite different
access frequencies. For example, instructions of an application are all
loaded to a consecutive memory space. But segments for instructions
of different loops or different functions are accessed with different
frequencies. This situation can also be found in memory blocks
for data, heap and stack. In traditional on-board DRAM chips, the
mapping between these memory blocks and physical DRAM chips
can be simple since all DRAM chips are identical. However, for
SIP designs, the mapping problem becomes complicated because the
behavior of each memory block and the heat dissipating ability of
each DRAM chip need to be considered simultaneously for thermal
management.

Figure 2 gives an example to present our motivation. Assume that
a program is executed with 4 stages. 4 functions named funcA(),
funeB(), funcC() and funcD() are called in each stage, as shown in
Figure 2(a). When a function is called, its corresponding memory
segment is accessed. Since different function has different behavior,
each segment has different access frequency. Let the access frequency
of each segment be given in Figure 2(b) where access frequency is
defined as the number of accesses to a memory segment divided
by the total cycle counts of that stage. In this simplified example,
we assume each memory die has only two banks. Due to design
constraints, for each memory die, only one bank can be accessed at
a time. Let a wider memory word be composed of bits from two dies.
Then 2 memory dies are required to be triggered simultaneously for
each access. This means an address will map to 2 banks of 2 different
memory dies. Three mapping policies are shown in Figure 2(c)-(e).
Figure 2(c) shows a straightforward mapping (Mapping A) where

I 2| Sense Amplifier | Sense Amplifier | £

i Pscudo Ti 3 [Pre-charge Circuit | Pre-charge Circuit 3

: seudo Tier to & &

7 represent the effect of |3 B

di Tiers Below DRAM |2| Cell Bank Cell Bank (2]

d Chips G 5
(a) (b)

Fig. 4.

(a) SIP Model; (b) Floorplan of a Typical DRAM chip

two banks at the same relative position denoted as A, B, C, D are
accessed simultaneously. Figure 2(d) shows a mapping (Mapping B)
to avoid stacking effect where banks accessed at the same tier are not
in the same vertical position and Figure 2(e) a mapping (Mapping
C) consider stacking effect and the access frequency where segments
with high access frequency are mapped to banks on upper tiers. The
simulation result by HotSpot 4.0 [16] is presented in Figure 2(f). The
y-axis represents the highest temperature in all dies and the x-axis
represents the execution stages referred as Stage I, Il, Il and IV.
Each stage represents the execution period of each function. Stage
| (funcA()) shows that the temperature is reduced at most 7°C by
mappings considering stacking effect (Mappings B, C) as compared
to Mapping A. Stages Il & I (funcB() & funcC()) show that
mappings considering stacking effect but banks located at bottom tiers
(Mapping C) sometimes has higher temperature than straightforward
mapping. But in both stages, the temperature is relative low because
of low access frequency. The maximum temperature occurs in Stage
IV because of the highest access frequency. Stage IV (funcD()) shows
that a mapping considering stacking effect (Mapping C) and program
behavior can reduce the maximum temperature by 18°C and 12°C
as compared to Mappings A and B respectively.

III. SYSTEM MODEL AND PROBLEM DEFINITION

In this section, we will first give our system model. Based on the
model, we will define our problem and propose an overall design
flow. The data width of a modern DRAM chip often ranges between
20.bit to 2%-bit while processors have a 32-bit, 64-bit, or more data
lines. Therefore, to read or write a 32-bit, 64-bit or more bit word
from memory, multiple DRAM chips need to be accessed. Figure 3
gives an example of a system containing 32-bit processor, system bus,
memory controller and 8-bit DRAM chips. To access a 32-bit data,
4 DRAM chips need to be activated simultaneously. Let the DRAM
chips activated simultaneously form a group. Then, in the example,
DRAM Die 0 to DRAM Die 3 are in the same group. To increase
the number of words (address space) in the system, multiple groups
are assembled. In the example, there are 4 groups. Hence, the total
address space is 4 times the word capacity of one group.

A B
die 3 die 11 die 3 die 11
A
B
die 2 die 10 die 2 die 10
A B
die 1 die 9 die 1 die 9
A
B
die 0 die 8 die 0 die 8
@
Fig. 5. Example for Memory Access

In a stacked SIP system, memory dies are stacked one tier on
another. In one tier, there will be one or more dies packed. Due to
intra-tier package routing constraint, the number of dies packed in
one tier is rarely greater than 4. Figure 4(a) shows a system that has
8 tiers and 2 dies packed in one tier. Within a die, there are multiple
banks in it. The floorplan of a typical DRAM chip with 4 banks is
shown in Figure 4(b). For each access to a memory chip, Control
& Pre-fetch Circuits block is always triggered. This block contains
control, error correction and pre-fetch circuits. The Cell Bank block,
the Peripheral Circuits block and the Sense Amplifier block of each
bank will be triggered if that bank is accessed. In each DRAM die,
only one bank can be accessed at a time due to the shared hardware
and bus lines.

For a given address, memory controller will generate appropriate
control signals to first select dies (forming a group) and then within
dies to select banks. Let us take Figure 5 as an example using the
same system configuration as shown in Figure 3 where 4 dies form a
group. In Figure 5(a), die 0, die 1, die 2 and die 3 form a group. The
banks in a group that are selected simultaneously to form a wider
word are denoted as a sez. Figure 5(a) shows that banks denoted as A
in the same relative position form a set. In Figure 5(a), 4 dies form
a group and there are 4 sets in a group.

However, in a stacked SIP design, Figure 5(a) will suffer serious
thermal problem. The reason is as follows. Of all blocks in a die,
Sense Amplifier block has extremely high power density due to their
small area size. In general, more than 30% power of a DRAM chip
is consumed by Sense Amplifier block while the area of a block is
usually less than 5% of the total area. Sense Amplifier blocks are
usually candidates for hotspot. If continuous addresses in a bank are
accessed, Sense Amplifier blocks stacked at the same relative position
in 3D space will result in high temperature.

On the other hand, Figure 5(b) shows another access mapping
where the same dies form a group but banks in different relative
positions are selected to form a sez. In this mapping, lower tempera-
ture can be expected because the activated banks are not in the same
vertical location.

In this paper, we will study a memory mapping problem to mini-
mize the maximum temperature in a stacked 3D memory system. The
problem is defined as follows. Given parameters of a memory system
and the profiling of memory references for all application programs,
the objective is to find a memory configuration and a mapping from
logical address to physical location so that the maximum temperature
is minimized.

To solve this problem, the flow depicted in Figure 6 is proposed.
The first step, Determination of Candidate Configurations is, for
given parameters of a memory system, to find candidate memory
configurations (in Section IV-A). Then, behaviors of applications
run on the system are analyzed in the second step, Application

Parameters of the memory Memory reference records
system for all applications

Determination of Application Behavior
Candidate Configurations Analysis

v v
/ Candidate confi guration% /
‘ v

Segments of all
applications
ILP Formulation for
Segments Mapping

A7 L4
Configurations of the Mapping decisions for all
memory ststem segments

Fig. 6. Overall Flow

| Memory System |
I
I I I]
Q Q Q Q
5 5 5 5
=1 =1 =1 =1
o ° o °
I I

I
|| || || || || 1| || || || || || || »|| L] 1| L1
allalalallelalalal|lla|]e|lalallalalal e
FUN | REN | [RCN | I | RN | [RCY | [RUN | [RUN | U | IpUY | LN | [RUN | [RUN IR | Y | LY

Fig. 7. Hierarchical View

Behavior Analysis, where logical memory blocks that have the similar
behaviors are grouped in a segment (in Section IV-B). According to
the candidate configurations and segments obtained, the last step,
ILP Formation for Segments Mapping, applies ILP techniques to
perform mapping so that the maximum temperature is minimized
(in Section IV-C).

IV. THERMAL DRIVEN MEMORY ADDRESS MAPPING
ALGORITHM

Before we present our mapping algorithm, we first review some
terms defined in Section III.
group for a given address, the dies that are accessed simultane-
ously form a group.
set for a given address and a given group, the banks that are
accessed simultaneously form a set.
segment a collection of consecutive logical memory blocks that
have similar behaviors is called a segment.

The parameters of a memory system include the number of tiers,
#tier, the number of DRAM dies on one tier, #die_on_tier,
the number of banks in a DRAM die, #bank, the bit width
of a DRAM die, #bit_width_die, the size of a DRAM die,
#bit_die, and the bit width of system bus, #bit_width_system.
#bit_width_system /#bit_width_die determines the number of
DRAM dies in a group and also the number of banks
in a set. The number of words in a set is computed as
#bit_die/(#bit_width_die x #bank).

A. Determination of Candidate Configurations

For given parameters of a memory system, we need to determine
how to form a group and how to form a set within a group. Let us
take the system in Figures 3 and 4 as an example. In this example,
because of #bit_width_system = 32 and #bit_width_die = 8,
the number of dies in a group is 4. There are 4 banks in a die. Hence,
the number of sets in a group is 4. Figure 7 gives the hierarchical

view of the system.
T,-m rl
Tiern

Fig. 8. Memory Banks of Tier n & Tier n + 1

@ Set 0 —— Tiern+ 1 j:t Tiern + 1
Dsm—— beg L O M4 Jedd)
Set 2 u Tier n Tiern
= i
Setd @ ®)
Fig. 9. (a) Configuration I; (b) Configuration II

First, we show how to form a group. Intuitively, we can select any
4 dies to form a group. However, most of combinations of dies are
not required to be considered. Because dies in a group are accessed
simultaneously, thermal behavior of a group is determined by the die
that has the worst behavior. For example, if die 7, die 6, die 5 and
die 4 in Figure 4(a) are defined as a group, though die 7 is on the
top tier and has the best heat dissipating ability, the actual thermal
behavior of the group is bounded by die 4. No matter how low the
temperature of die 7 is, the memory space provided by the group
would not be functional if die 4 is overheated. Thus, dies in a group
should have similar environmental conditions.

Based on the discussion above, how to form a group becomes
straightforward. We should group dies on consecutive tiers into a
group. In our example, because the number of dies in a group = 4
and #die_on_tier = 2, dies on 2 neighboring tiers forms a group.
That is, die 0, die 1, die 8, and die 9 form a group, and die 2, die
3, die 10, and die 11 form a group,...etc.

Next, we show how to determine the banks in a set. First,
banks on the same tier have different heat dissipating abilities when
#die_on_tier > 2. For example, suppose there are two dies on a
tier as shown in Figure 8. Banks 1, 3, 4 and 6 are in the middle area
of the tier and therefore have worse thermal behavior than banks
0, 2, 5 and 7. Second, accessing banks of different dies at the same
vertical position will result in undesirable thermal effect. For example,
banks 0, 8 are at the same vertical position. If they are accessed
simultaneously, heat will be generated in a small area and cannot
be dissipated in vertical directions. This situation should be avoided.
Based on the discussion above, possible sefs combinations for a group
can be defined through enumeration. The term configuration is used
to refer to a definition of all sets in a group. We use the example in
Figure 8 to explain how to determine possible configurations where
dies on two neighboring tiers form a group.

We start with defining a ser with best thermal behavior. As
mentioned earlier, the thermal behavior of a set is determined by
the bank with the worst thermal behavior. Therefore, to define a set
with best thermal behavior, two rules should be followed. Rule 1 is
that banks in the middle area should not be grouped in the same ser
and rule 2 is that banks in the same vertical position should not be
grouped in the same sez. Following these two rules, Figure 9 shows
two resultant configurations, Configuration I and Configuration I,
where banks drawn in the same patterns are defined as a ser. Two
configurations have their own characteristics. In Configuration 1, set
0 and ser 1 have good heat dissipating ability because the banks in
these two sets are all in the boundary. However, the environmental
conditions of set 2 and set 3 are worse than those of set 0 and set
1 because banks in ser 2 and ser 3 are all located in the middle
positions with less heat dissipating abilities. On the other hand, in
Configuration I1, the thermal behavior of each sez is almost identical.

Configuration I is suitable for a program with uneven access
to memory while Configuration II is good for a program with
even memory access. Which configuration to choose will depend
on the behavior of the programs executing on the system. Thus,
both configurations are selected as candidate configurations in our
example.

Nevertheless, the configurations we obtained do not comply with
the design of an off-chip DRAM design. In traditional designs, a

SI;V :s" INV_BA_0[INV_BA_1 Effect
No | GND GND Original Mapping
|
| 2-to-1 No VDD GND Column Switched
I (UX
BAO 1| 0 No | GND VDD Row Switched
1| BA O -
I - No VDD VDD 180" Rotated
INV BA 04— @)
| 2-to-1 Mirrored by upper-right[T]3]
| UX § Yes GND GND to lower-left diagonal
BA_l 0 Z Yes VDD GND 90" Counterclockwise
| 1| BA_I' Rotated
| -) 90° Clockwise
INV BA | +——— Yes | GND ybD Rotated (1131
| . Mirrored by upper-left [2]0]
1 Yes Ybb Ybb to lower-right diagonal

(a) (b)
o swapping /0 /1 /1 /3 /2 No swapping o Suarring /1 o /1 /1 [No Swapping
Invert BA7 'ﬂ Invert BA_0 & BAil_ Hﬂ & BAil_

Original n\‘/’e%‘%ﬁ?i Original Original

Configuration 1 © Configuration 11
c
Fig. 10. (a) Re-mapping Logic; (b) Re-mapping Table; (c) Example

common address bus is used for all memory dies. Therefore, bank
address of each memory die is identical and banks at the same vertical
locations are always accessed as a set. To have different banks in
different dies accessed simultaneously, different bank addresses are
required for each die. It is not feasible for memory controller to
generate different bank addresses for each die due to in-package
routing overhead. A re-mapping circuit shown in Figure 10(a) is
proposed to be added to each DRAM die. Let BA_0 and BA_1 stand
for the input pads for bank address bits 0 and /. By setting INV_BA_0
and INV_BA_1 to VDD or GND, we can select to invert bank address
bits 0 and 1 or not. The re-mapped bank address bits are denoted as
BA_0' and BA_1' which are sent to control circuit and determines the
bank to be accessed. Moreover, swapping address lines connected to
BA_0 and BA_I doubles the mapping space. Table in Figure 10(b)
enumerates all mappings supported by the proposed circuit. The first
column of the table specifies whether the address lines are swapped,
and the second and third columns represent whether /NV_BA_0 and
INV_BA_I are set to 1 or 0. The forth column gives the address of
each bank after re-mapping. Though only one thirds of all possible
mappings are supported by our proposed circuit, it is sufficient to
implement most of desired configurations. Figure 10(c) shows the
settings for Configurations I & 1I as examples.

Next, we should determine the cost of each configuration under
different access frequency to each ser. In each configuration and
in each ser, we define the relation between temperature and access
frequency by simulation. This relation can be used to determine the
cost of mapping a memory segment with given access frequency to
a set. For a set, the average power is defined as follows. First, the
access to memory is divided to read access and write access. And
operating power in Equation (1) considers different ratios of read
and write access where « represents the ratio of read access to total
access and (1 — «) the ratio of write access to total access.

Poweroperating = POWergead X &+ Powerwrite X (1 —a) (1)

Next, with different access frequency to a set, f, Equation (2) is
defined for the average power.

Power apg = Poweroperating X f + Powersiandvy X (1—f) (2)

Finally, the simulation of each set is done as follows. For each f,
the average power is calculated. Then, the hardware blocks of the

target set for simulation are set with the average power while all
other blocks with standby power. Next, thermal simulation tool is
called to obtain the steady state temperature. In this paper, HotSpot
4.0 [16] is used as our thermal simulation tool. The temperature
obtained will be used to evaluate the effect of mapping a memory
segment with access frequency f to a set. Notice that this temperature
computed may be underestimated since all other surrounding blocks
are assumed to be idle. That means, the interaction effect of blocks
in the model is ignored. However, this underestimation is acceptable
since the temperature can still reflect the thermal behavior of a set
under a given access frequency. We use the term,

TG, f)

to represent the steady state temperature when set j is accessed with
frequency f.

B. Application Behavior Analysis

For each program runs on the system, the memory requirement
is varying over the time. We can partition a program’s logical
address space to a number of segments each with different access
frequencies and then based on access frequency, map each segment
to different physical locations in a 3D memory to minimize maximum
temperature.

An algorithm, Behavior Analysis Algorithm, is developed for this
purpose as shown in Figure 11. First, profiling of memory references
for application programs is recorded. For each cycle, whether memory
is accessed and if yes, which memory address is referenced are
recorded. Next, the memory reference profiling is fed to our algorithm
for analysis.

In each cycle, the algorithm first checks whether it has a memory
reference. If yes, it then checks if there exists a segment containing
the address of the reference (line 11). If no such segment exists, a
new segment is created for the reference (lines 12, 13). If there does
exist a segment containing the address of the reference, then update
the access information to that segment (line 15). Since a segment may
have different behaviors for different periods of time, segments need
to be analyzed periodically. A variable named counter is presented
to invoke segments analysis and segments merging for a fixed period
of time (lines 17, 18, 19, 20, 21, 22). Counter is a user defined
variable and is increased by 1 every execution cycle. When counter
equals to period where period is a constant, segments analysis is
invoked and counter is reset to 0. By the time, the access frequency
of each segment is computed as the number of memory accesses over
the cycle counts.

Segments merging is used to merge neighboring segments which
have similar behaviors to form a larger segment. Here, the criterion for
merging is changing over the time. At the beginning of the algorithm,
segments can be merged only when they are referencing adjacent
address space and the access frequencies are identical. When in the
later stages of the algorithm, the criterion for merging is looser. A
threshold of access frequency is defined. As long as the difference
of access frequencies is smaller than the threshold, two segments are
merged. When the program completes, a number of segments with
their access frequencies over different periods are obtained. For each
segment, the highest frequency of all periods is then determined as
the frequency of the segment.

C. ILP Formulation for Segment Mapping and Group Configuration

After we found candidate configurations for each group and
analyzed the behaviors of programs, how to select a most suitable
configuration for each group and how to map each memory segment
to an appropriate ser remain to be solved. Since this is an assignment
problem and all constraints are linear, we can use an ILP formulation

1 Algorithm : Program Behavior Analysis Algorithm()
2 Input : Memory reference record

3 Output : Memory segments

4

5 counter = 0;

6 While(end of record is not reached)

7 A

8 ref = ReadNextReference();

9 If(ref is TRUE)

10 {

11 segment = FindSegmentFor(ref);
12 If(segment == NULL)

13 CreateNewSegmentFor(re f);
14 Else

15 AddInfoTo(segment, ref);

16 }

17 counter++;

18 If(counter == period)

19

20 counter = 0;

21 UpdateAllSegments();

22 MergeNeighboringSegmentsWithSimilarBehavior();
23

24 }

25 UpdateAllSegments();
26 MergeNeighboringSegmentsWithSimilarBehavior();

Fig. 11. Algorithm for Behavior Analysis Algorithm

to solve this problem if the objective function is also linear. By
defining the cost of mapping a segment to a set based on the
temperature 7'(j, f) defined in Section IV-A, the objective function
to be minimized can be defined as the summation of all mapping
costs. The problem can then be solved by an ILP solver.

V. EXPERIMENTAL RESULTS

In this section, experimental results for different execution con-
ditions are presented. The system parameters are listed in Table I.
We assume the system supports multiprogramming with Round-
Robin scheduling and all programs run on the system are pre-
loaded to memory. The program set is composed of MediaBench
[17], PowerStone [18] benchmark suites and JM H.264/AVC CODEC
[19]. The programs are duplicated to multiple instances to simulate
systems with different memory utilization ratio. SimpleScalar 3.0 [20]
is used to generate memory reference records. lp_solve 5.5 [21] is
used as our ILP solver. HotSpot 4.0 [16] is used as our thermal
simulation tool. To demonstrate the efficiency of our method, two
straightforward mappings are tested for comparison. The first one
selects 4 DRAM dies at the same relative positions of 4 consecutive
tiers as a group and the second selects all 4 dies of 2 consecutive
tiers as a group. Notice that no additional re-mapping circuits are
added in these two mappings and therefore stacking effect among
banks cannot be avoided. These two mappings are referred as M_1
and M_2 while our proposed mapping is referred as M_ours in the
following discussion.

The first two experiments are used to observe the efficiency of
our method under different memory utilization ratios. In these two
experiments, the frequency of the processor is set to 800 MHz, which
is 4 times the frequency of DRAM dies. As shown in the left most
column of Figure 12, when memory utilization ratio is 75%, M_ours
has the temperature reduction by 17.2°C and 15.8°C as compared to
M_1 and M_2. This improvement is due to 25% unused memory
space which provides more mapping flexibility. On the other hand,
M_1 and M_2 not only suffer the stacking effect of banks but also
have locations with less heat dissipating abilities. For example, M_1
maps a segment with high access frequency to 4 banks in the middle

TABLE I
SYSTEM PARAMETERS FOR EXPERIMENTS

System Parameter Value
F#tier 8
F#die_on_tier 2
#bank 4
#bit_width_die 8
#bit_width_system 32
DRAM Parameter Value
Capacity 512 Mb
Clock Rate 200 MHz
| Total Memory Size | 1GB |
90
s = 80
£2 70
£ e
S
EZ 5o
=z
E % 40
gz 30
20
10
0 75%, 800 MHz 95%, 800 MHz 75%, 1.2 GHz 95%, 1.2 GHz
aM_1 80.6 81.5 87.7 88.9
amM_2 79.2 79.8 85.3 86.2
B M_ours 63.4 67.5 733 76.8

Fig. 12. Comparisons of the Maximum Temperature

area of 4 bottom tiers. Then, when the memory utilization ratio is
increased to 95% (the left second column), less memory space is left.
The improvement of our method is decreased to 14.0°C and 12.3°C.
At the mean time, the temperature of M_1 and M_2 is only slightly
increased because it is dominated by the worst case.

Next experiment is to increase the clock rate of the processor
from 800 MHz to 1.2 GHz. In general, this will increase the access
frequency of each segment due to the increased throughput. When
the clock rate of processor is 1.2 GHz and utilization 75% (the right
second column), the temperature of all mappings is increased by
7.7°C in average. Notice that the increase in temperature by our
method is larger than those of M_1 and M_2. The reason is as
follows. For segments which are accessed with high frequency, the
processor needs to be stalled frequently for memory access. This
means the memory segment is accessed at a near saturated frequency
and increasing the clock rate of processor will only leads to limited
increase in access frequency. However, for segments accessed with
low frequency, the increase in access frequency will be proportional
to the increase ratio of processor’s clock rate. Since maximum
temperature is usually observed on tiers with less heat dissipating
ability and M_ours maps segments with low access frequency to
these tiers, access frequency of these tiers is increased significantly
as compared to other tiers. Therefore, M_ours cannot provide the
same temperature reduction when clock rate of processor is increased.
Still, our method reduces the temperature by 14.4°C and 12.0°C as
compared to M_1 and M_2 (75%, 800 MHz). Finally, when the clock
rate of processor is set to 1.2 GHz under 95% memory utilization
(the right most column), the temperature is reduced by 12.1°C and
9.4°C as compared to M_1 and M_2 (95%, 800 MHz). Also, notice
that in all experiments, M_2 is consistently better than M_1, which
confirms our observations to form dies in adjacent tiers in a group.

VI. CONCLUSION

In this paper, we have proposed a static thermal management
scheme for DRAM dies in stacked 3D designs. Both physical and
software level issues are considered in our method. In physical level,
the floorplan of DRAM die and power behavior of bank access are
analyzed to generate candidate configurations. In software level, the

memory space of the programs run on the system are partitioned to
segments based on access frequency. The configuration decision and
the mapping segments to physical locations are formulated as an ILP
problem. Experiments show that our method can reduce temperature
of memory system by 17.2°C as compared to a straightforward
mapping in best case, and 13.4°C in average.

REFERENCES

[1]1 K. L. Tai, ”System-In-Package (SIP): Challenges and Opportunities,”
Asia and South Pacific Design Automation Conference, pp. 191-196,
2000.

[2] Alexandru Pancescu, "Hynix Storms The NAND Industry - 24 nand
memory chips only 1.4mm thick,” SOFTPEDIA, Sep. 7, 2007.

[3] K. L. Tai,R. C. Frye, B. J. Han, M. Y. Lau, and D. Kossives, ”A chip-on-
chip DSP/SRAM multichip module,” Int’l Conf. on Multi-chip Modules,
pp 466-471, 1995.

[4] Y. L Low, R.C Frye, and K. J OConner, “Design methodology for
chip-on-chip applications,” IEEE Trans. on Components, Packaging, and
Manufacturing Technology Part B, vol. 21, pp. 298-301, Aug. 1998.

[5] M. X. Wang, K. Suzuki, W. W.-M. Dai, Yee L. Low, K. J. Oconner
and K. L. Tai, ”Integration of Large-Scale FPGA and DRAM in
a Package Using Chip-on-Chip Technology”, Asia and South Pacific
Design Automation Conference, pp. 205- 210, 2000.

[6] Michael Wang, Katsuharu Suzuki, Wayne Dai, Atsushi Sakai, Kiwamu
Watanabe, “Configurable Area-I0 Memory for System-in-a-Package
(SiP),” 27th European Solid-State Circuits Conference, September, 2001.

[7] Michael Wang, Katsuharu Suzuki, Wayne Dai, "Memory and Logic

Integration for System-in-a-Package,” 4th Int’l Conf. on ASIC, October,

2001.

Kiran Puttaswamy and Gabriel H. Loh, "Thermal Analysis of a 3D Die-

Stacked High-Performance Microprocessor,” ACM/IEEE Great Lakes

Symposium on VLSI, pp 19-24, 2006.

[9] Y. I. Kim, K. H. Yang, W. S. Lee, "Thermal Degradation of DRAM
Retention Time: Characterization and improving techniques,” Proceed-
ings of the 42nd IEEE Int’l Reliability Physics Symp., pp. 667-668, April
2004.

[10] D. Brooks and M. Martonosi, “Dynamic Thermal Management for
High-Performance Microprocessors,” Proceedings of the Seventh In-
ternational Symposium on High-Performance Computer Architecture,
February 2001.

[11] K. Skadron, T. Abdelzaher and M. R. Stan, "Control Theoretic Tech-
niques and Thermal-RC Modeling for Accurate and Localized Dynamic
Thermal Management,” Proceedings of the Eighth International Sympo-
sium on High-Performance Computer Architecture, February 2002.

[12] Y. Li, D. Brooks, Z. Hu, and K. Skadron, “Performance, Energy, and
Thermal Considerations for SMT and CMP architectures,” Proceedings
of the 8th Int’l Symp. on High-Performance Computer Architecture, Feb.
2005.

[13] K. Sankaranarayanan, S. Velusamy, M.R. Stan, and K. Skadron, ”A Case
for Thermal-Aware Floorplanning at the Microarchitectural Level,” The
Journal of Instruction-Level Parallelism, Septempter 2005.

[14] M. Mutyam, F. Li, V. Narayanan, M. Kandemir and M. J. Irwin,
”Compiler-Directed Thermal Management for VLIW Functional Units,”
In. ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and.
Tools for Embedded Systems, June 2006.

[15] Y-F. Tsai, Yuan Xie, N. Vijaykrishnan, M. J. Irwin, ”Three-Dimensional
Cache Design Exploration Using 3DCacti,” Proceedings of IEEE Interna-
tional Conference on Computer Design (ICCD), pp. 519-524, Oct. 2005.

[16] W. Huangry, K. Sankaranarayanany, R. J. Ribandoz, M. R. Stan and
K. Skadron, ”An Improved Block-Based Thermal Model in HotSpot
4.0 with Granularity Consideration”, Proceeding of the Workshop on
Duplicating, Deconstructing, and Debunking, June 2007

[17] C. Lee, M. Potkonjak and W. H. Mangione-Smith, "MediaBench: A
Tool for Evaluating and Synthesizing Multimedia and Communications
Systems,” in 30th MICRO, pp. 330-335, December 1997

[18] A. Malik, B. Moyer and D. Cermak, ”A Lower Power Unified Cache
Architecture Providing Power and Performance Flexibility,” International
Symposium on Low Power Electronics and Designs, 2000

[19] JM H.264/AVC CODEC 4.1, http://iphome.hhi.de/suehring/tml/

[20] D. C. Burger, T. M. Austin and S. Bennett, “Evaluating Future
Microprocessors— The SimpleScalar Tool Set,” Technical Report 1342,
University of Wisconsin-Madison, CS Department, June 1997

[21] Ip_solve, http://lpsolve.sourceforge.net/

8

[l

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

