
Design of an Application-specific Instruction Set

Processor for High-throughput and Scalable FFT

Xuan Guan, Hai Lin and Yunsi Fei

Dept. of Electrical & Computer Engineering

University of Connecticut, Storrs, CT, USA

E-mail: {xug06002,hal06002,yfei}@engr.uconn.edu

Abstract—Various Orthogonal Frequency Division Mul-
tiplexing (OFDM)-based wireless communication standards
have raised more stringent requirements on throughput
and flexibility of Fast Fourier Transformation (FFT), a
kernel data transformation task in communication systems.
Application-specific instruction set processor (ASIP) has
emerged as a promising solution to meet these requirements.
In this paper, we propose a novel ASIP design tailored for
FFT computation. We reconstruct the FFT computation flow
into a scalable array structure based on an 8-point butterfly
unit (BU). Any-point FFT computation can be carried out in
the array structure which can easily expand along both the
horizontal and vertical dimensions. We incorporate custom
register files to reduce memory access. The data address for
custom registers in each FFT stage is changed accordingly,
and we derive a regular address changing (AC) rule. With the
microarchitecture modifications, we extend the instruction
set with three custom instructions correspondingly. Our FFT
ASIP implementation achieves great performance improve-
ment over the standard FFT software implementation, one
TI DSP processor, and one commercial Xtensa ASIP, with
the data throughput improvement as 866.5X, 5.9X, 2.3X,
respectively. Meanwhile, the area and power consumption
overhead of the custom hardware is negligible.

I. INTRODUCTION

Orthogonal frequency-division multiplexing
(OFDM) [1], [2], a multi-carrier modulation technique
for high data rate digital communications, has seen its
increasingly broader usage in various communication
standards. The 802.15.3 Multi-band Ultra Wide Band
(MB-UWB) standard has the highest data rates ranging
from 200 to 480 Mbps [3]. Fast Fourier Transformation
(FFT) and inverse FFT (IFFT) are the most time-
consuming block in a MB-UWB receiver, which requires
a throughput rate of more than 409.6 M sample points per
second. Current commercial DSPs, such as Sandbridge’s
Sandblaster and SODA [4], [5], have to apply multi-cores
to meet this real-time processing requirement. Other
DSPs like TI’s TMS320c6X processor achieve good
performance in embedded and real-time applications [6],
while it uses 256-bit long instructions, which is not
energy-efficient for domain-specific applications.

In addition to the high throughput requirement, another
key feature of the current 3G and 4G wireless systems is
that they should be easily reprogrammed or reconfigured

Acknowledgments: This work was supported by National Science
Foundation under grant CPA-0541102.

to support various standards and operating modes. This
imposes a requirement of high flexibility on FFT pro-
cessing. For example, in WiMAX/IEEE 802.16 standard,
the system has to adjust the FFT size from 128 to 2048
points to scale the channel bandwidth from 1.25 to 20
MHz for different applications. Therefore, the size of
FFT is desired to be changeable under different operation
environments. The existing application-specific integrated
circuits (ASICs), although can provide high throughput,
cannot offer the required flexibility and programmabil-
ity. On the other hand, the programmable DSP can not
meet the system throughput requirement with an efficient
energy cost. Application-specific instruction set processor
(ASIP) has emerged in recent decades as an intermediate
design option between ASIC and general purpose DSP,
which extends some base processor core with application-
specific custom hardware for computation acceleration [7],
[8]. Hence, it can offer both good flexibility with base
core software control and high throughput with hardware
acceleration, providing a feasible design choice for high-
throughput and scalable FFT algorithms.

A. Related Work

Recently, a variety of ASIP implementations have been
presented for FFT algorithms, falling into two categories.
For the classic Cooley-Tukey FFT (CT-FFT), different
ASIP implementations have been presented in [9], [10],
[11], which utilize parallelism in the datapath for per-
formance improvement. Specifically in [9], an instruction
capable of calculating a whole butterfly operation is im-
plemented, and the computation resources are distributed
into three execution stages to reduce the clock cycle.
However, long pipelines consume more energy, and the
speed-up from one integrated butterfly computation is still
not enough to meet the high throughput requirement of
the demanding IEEE 802.15.3a UWB communication stan-
dard. A vectorized Ultra-Long Instruction Word (ULIW)
approach is introduced in [10], which performs eight radix-
2 butterfly operations in parallel, at the cost of high gate
count and power dissipation for the wide instruction length
of 619 bits. The Xtensa ASIP design for FFT adds a set
of special instructions which parallelize the data load/store
and computation operations [11], thus realizing software
pipelining and increasing the overall throughput. However,
since each unit FFT computation requires input data loaded
from the memory and output results stored to the memory,
the number of memory access may be significant and thus
would incur great performance degradation and energy
consumption.

978-3-9810801-5-5/DATE09 © 2009 EDAA

Different from the instruction and data-level paral-
lelization techniques, the other category of FFT ASIP
implementations addresses the memory bottleneck. Baas
et al. presented a cache-memory architecture to reduce
the communication between the FFT processor and mem-
ory [12]. They divide the FFT computation into two epochs
of equal length, where each epoch spans several stages, the
data points are processed in independent groups of a fixed
size, and the intermediate results are temporally stored in
the cache. Only at the beginning and end of each epoch,
the cache exchanges data with the main memory by load
and store operations, thus reducing the memory access. A
recent ASIP design has utilized a modified cached FFT
(MCFFT) algorithm which can support variable-length
epochs [13], to reduce the total number of cache loading
and dumping. Further improvement is presented in [14],
which interleaves group executions in different epochs to
exploit temporal parallelism for higher throughput.

B. Paper Overview
Our work falls into the second category of reducing the

memory access by adding custom data registers, with more
efficient and scalable architecture based on our proposed
array structured FFT. The array FFT ASIP is designed to
have both high computation parallelism and low memory
access, so that it can meet the throughput and flexibility
requirements. We adopt the epoch idea in our design,
splitting the N-point FFT into two smaller FFT loops. We
then reconstruct the inner-loop FFT data flow into an array
structure with a basic computation module composed of 4
parallel butterfly units. We extend the basic processor core
with the computation module as a functional unit and also
add custom register files to store all the intermediate results
of the inner loop FFT computation. We propose efficient
addressing methods for both data and coefficients. Accord-
ing to the microarchitecture modifications, we customize
the instruction set with an additional data manipulation
instruction and two data transfer instruction. With the
support of an array structure and efficient data address
logics, the FFT algorithm can be easily scaled for any size
of computation.

The rest of the paper is organized as follows. Sec-
tion II-A describes our new array structured FFT, and ex-
plains the corresponding data address changing algorithm
and coefficient addressing method. Section III introduces
the architecture of the array FFT-based ASIP, including
the custom hardware, the enhanced instruction set, and
custom program. Section IV gives simulation results and
comparison among several different FFT implementations.
Finally, Section V draws conclusions.

II. SCALABLE ARRAY FFT ALGORITHM

The Cooley-Tukey algorithm is the most common FFT
algorithm [15], which can be applied in two domains,
decimation in time (DIT) and decimation in frequency
(DIF). In a standard CT-FFT implementation, there are
load and store operations for each stage. An N-point FFT
(with log2N stages) has a total of N ∗ log2N loads and
stores for the whole dataflow, which may degrade the
performance of the FFT algorithm greatly with certain
cache-memory architecture.

A. Hierarchical FFT Architecture
To address this problem, we employ the cached FFT

(CFFT) structure proposed by Baas et al. [12], where an

N-point FFT computation is split into two loops of
√

N -
point FFT (assume N is a square number, N = 22m, more
general cases will be discussed later), and thus the FFT
architecture is decomposed into two epochs consisting of
several stages. The processor-memory data communication
is reduced to one-time between the two epochs, and the
intermediate results inside each epoch are stored in an on-

chip storage of size
√

N .
Based on the concept of epoch, we adjust the FFT

data flow to obtain a hierarchical and fine-grained FFT
processing unit. Taking the 64-point FFT as example, we
reconstruct it into a regular array structure, as shown in
Fig. 1. The FFT is first split into two epochs, with data
shuffling between them. In each epoch, there are eight
independent groups of 8-point (8=

√
64) FFT transforma-

tions. Each 8-point FFT consists of three stages (log28),
where each stage is computed by a regular functional
module. Fig. 2 shows a modular structure for an 8-point
FFT. The functional module contains four parallel butterfly
processing units for eight data points. The overall FFT
structure in Fig. 1 becomes an array, with 6 columns
(corresponding to 2 epochs and 3 stages in each epoch)
and 8 rows (corresponding to group computations within
an epoch). At the beginning of each epoch, data points are
loaded from the memory to on-chip register file. For each
stage within an epoch, the intermediate results are stored
in the register file, and used for the next stage. At the end
of an epoch, content of the register file is dumped into the
memory. The advantage of the array structure is its simple
FFT processing in each stage, and better scalability to meet
the requirement of communication systems for arbitrary
size of FFT computations.

Fig. 1. A regular array architecture for 64-point FFT data flow

Fig. 2. A modular structure for an 8-point FFT

More generally, we can split N as N = P ∗ Q in case
N is not a square number. When N = 22m−1 = P ∗ Q,
the number of stages within the two epochs would be p =
log2P = m, q = log2Q = m − 1, respectively, the size
of each FFT computation group within an epoch would be
P = 2m, and the number of data-independent FFT groups
in an epoch is Q = 2m−1.

B. Data Address Change Algorithm

With the FFT computation structure changed, the se-
quence of the data points for a group in each stage
should be changed accordingly to provide the right inputs
for the butterfly operations. There are two kinds of data
shuffling in the proposed FFT structure. One is the global
data shuffle between the two epochs through the off-chip
memory, as shown in Fig. 1. The other is for the local data
shuffle between two stages within an epoch, as shown in
Fig. 2.

The data memory containing all the N data points is
only accessed at the beginning and end of each epoch. We
use AIi to represent the address for the loaded input data
of epoch i, and AOi for the output address. For an N-
point FFT (N = 2n), AI0 is [an−1an−2...ap][ap−1...a0]
= [AH][AL],where p, q are the total number of stages in
epoch 0 and 1, respectively, satisfying p + q = n, and
0 ≤ p − q ≤ 1.

The other addresses are represented as:
AO0 : [an−1...ap][a0a1...ap−1] = [AH][AL]
AI1 : [a0a1...ap−1][an−1...ap] = [AL][AH]
AO1 : [a0a1...ap−1][ap...an−1] = [AL][AH]
Since for each P -point FFT, the data outputs should be

in an reversed order of inputs, AO0 is changed from AI0

by reversing the order of the lower p bits (i.e., AL). The
same rule applies to AI1 and AO1. The data shuffling
between the two epochs is to change the data points in
memory with an address distance of 1 to a distance of
2p, i.e., AI1 is obtained by swapping the higher q bits
with the lower p bits of AO0. An example is shown in
Fig. 1 with data sets of X, Z, Z’, Y using addresses of
AI0, AO0, AI1, AO1, respectively.

Within an epoch, there are 2q independent groups of 2p-
point FFT transformations, and all the intermediate results
are stored in a register file instead of the memory. Take
the 8-point FFT in Fig. 2 as example, where p = 3,
each stage of the FFT computation has two columns of
local data sandwiching the modular butterfly operations,
the right column for computation output data stored in the
register file and the left column for input data. There are
2p = 23 = 8 entries in each storage column, and thus
the data address for the register file is represented by a
3-bit value, e.g., input address for Stage 1 is def , which
is the lower 3 bits of the memory address abcdef for the
epoch input. There is data shuffling between outputs of the
previous stage and inputs of the current stage. For example,
in Stage 3, the data address for the input column is efd,
which is obtained by switching the 2nd (to the leftmost)
and 3rd bit of edf , the data address for the output column
of the previous stage, as shown by the address changing
step of L2 in Fig. 2. The final address fed for this group
after the bit-reverse transformation R is the rightmost 3
bits of the memory address for the output data of epoch
0, Z.

In general, the local address changing is between two
adjacent stages for a group of data points, as represented
by green arrows (L1, L2) in Fig. 2. In stage j, the input
address is obtained by switching the jth and (j − 1)th bit
(from the leftmost bit) of the previous stage output address.

In addition to the inter-stage local address changing rule
as described above, we derive a global address changing
rule between the original FFT and our new FFT struc-
ture within an epoch. In the original FFT structure, the

input addresses for all the stages are the same. For DIF-
FFT, the input data address for Stage j is represented as
Aj = ap−1...a1a0. The corresponding new address in the

modular FFT, A
′

j , is obtained by putting the (p− 2)th bit

of Aj in the jth bit, and other bits are still kept in their
original order.

This data changing rule can be proved for any point FFT
(P = 2p), by formulating the address changing process
into a matrix computation form, as shown below in Fig. 3.

Fig. 3. Matrix representation of the transformations between data
addresses for the two FFT structures

The terms in Fig. 3 include (for each stage j):

1) Xj , a P × 1 vector, representing the original
data sequence in stage j. For example, X1 =
[0, 1, 2, 3, 4, 5, 6, 7]T , as shown in the leftmost col-
umn in Fig. 2.

2) X
′

j , a P×1 vector, representing the new sequence for
the input data after the address changing in stage j.

For example, X
′

1 = [0, 1, 2, 3, 4, 5, 6, 7]T , as shown
in the second data column in Fig. 2.

3) Bj , a P × P matrix, representing the original but-
terfly operations in stage j to generate Xj+1 from
Xj .

4) A, a P × P matrix, represents the modular FFT
operation in one stage in the array FFT structure,
which is the same for all stages.

5) Lj , a P×P matrix, representing the inter-stage local
address changing operation (AC), as shown by steps
L1 and L2 in Fig. 2.

6) Pj , a P ×P matrix, representing the global address

changing between Xj and X
′

j .

For a given number of points P and stage j, the matrixes
Bj and A are already known from the FFT algorithm and
structure. Lj and Pj are the row-switching matrixes that

have performed on A × X
′

j and Xj , respectively, which
can be generated by our local and global address changing
rule. For example, the sparse matrix P3 would be

P3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0 0 0 0 0
1

1
1

1
1

1
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

With all the matrix and vector expressions ready, we
can prove an equation for each stage j: Pj+1 × Bj =
Lj ×A×Pj . Starting with j=1, multiplying both sides of

the equation with X1 we can get P2×X2 = X
′

2. Continue
this iterative process, and finally we can prove:

X
′

n+1 = Pn+1 × Xn+1.
It means that by changing the original FFT data com-

putation Bj into a regular computation module A, and
applying an address changing step Li on the intermediate

data before they go to module A, the final FFT outputs
are the same as in the original FFT structure, i.e., our new
FFT structure functions correctly. More detailed proof can
be found in the technical report [16].

C. Coefficient Address Algorithm

Besides data points, there are coefficients for butterfly
operations that also need to be stored. Because an N-point
FFT is split into two P-point FFT loops, there are two kinds
of coefficients. One is used for the P-point FFT within an
epoch, and the other is the pre-rotation coefficients applied
between the two epochs.

For the intra-epoch P-point FFT computations, only

number of P/2 coefficients are needed, where P =
√

N
when log2N is an even number, and P =

√
2N otherwise.

As shown in Fig. 1, Z is the output of epoch 0. Let
s,m ∈ [0, P − 1], l ∈ [0, Q− 1]. The FFT computations in
epoch 0 are:

Z(s + Pl) =

P−1
∑

m=0

X(l + Qm)W sm
P

The coefficients are evenly distributed between

[W 0
P ,W

P/2−1

P], with WP = e−
2jπ

P . Since this kind of
coefficients is frequently accessed by different groups in
different stages, they can be stored in an on-chip ROM.
The ROM address will range from 0 to P/2 − 1. In
each stage j, there are number of P/8 8-point butterfly
operations (BU), and each BU needs 4 coefficients for
computation. The addresses for the 4 coefficients depend
on the stage number j within an epoch, and the module
number i within the stage. Take a 32-point FFT for
example, there are 5 stages and 4 BU modules. In Stage 2,
the 16 coefficient addresses for module 1 through module 4
are (0,0,0,0), (0,0,0,0), (8,8,8,8), (8,8,8,8), which increase
with a stride of 8 for every 8 steps. In general, the address
in Stage j starts from 0 and increases with a stride of P/2j

for every P/2j steps. The 4 coefficient addresses for the
ith BU module in Stage j are expressed as:

p1 =

⌊

4i − 4
P

2j

⌋

·

P

2j

p2 =

⌊

4i − 3
P

2j

⌋

·

P

2j
, i = 1 ∼

P

8

p3 =

⌊

4i − 2
P

2j

⌋

·

P

2j
, j = 1 ∼ log2 P

p4 =

⌊

4i − 1
P

2j

⌋

·

P

2j

The second kind of coefficients is the pre-rotation
weights applied to the intermediate output results at the
end of the first epoch, Z. The input data for the second

epoch, Z
′

, is got by:

Z ′(s + Pl) = W sl
N Z(s + Pl)

The coefficients between the two epochs are W sl
N .

There are N/2 different inter-epoch coefficients evenly

distributed between [W 0
N ,W

N/2−1

N], and can be stored in
the off-chip memory. Because of the circular symmetry
in a complex plane, only the first N

8
+ 1 coefficients

need to be stored, and others can be easily generated by
conjugation or swapping the real and imaginary parts of a

complex coefficient. The real address needed to locate the

coefficient in memory is (sl)mod(N/8) when
⌊

sl
N/8

⌋

is

an even number, and N/8 − (sl)mod(N/8) when
⌊

sl
N/8

⌋

is an odd number, which will first locate the complex data
[a, b] in memory, and then generate the corresponding real
coefficient, among [b, a], [−b, a] and [−a, b].

III. DESIGN OF AN ASIP WITH ARRAY STRUCTURED

FFT

In this section, we will explain the implementation of
our proposed FFT processor, based on the description of
the array FFT algorithm and the addressing logic for both
data and coefficients.

A. Custom Hardware Extension

As the ASIP is specificly tailored for FFT computations,
a highly customized data path is optimized to speed up
the computation, and the instruction decoder may need
to be modified to control the data flow. As shown in
Fig. 4, in the custom hardware, we incorporate a Basic Unit
(BU) composed by four parallel butterfly units, a separate
custom register file (CRF) to store all the intermediate
data of the FFT computations in each epoch, and an on-
chip ROM for the intra-epoch coefficients. An address
changing logic (AC) is added in the decoder to give the
right data address and coefficient address.

Fig. 4. Structure of the custom hardware extension

In each operation cycle, the BU gets 8 data points from
the CRF, with the generated register file address (RA). The
computed outputs are stored back to the CRF with the same
address (WA), replacing the previous input data. The BU
operations are performed on independent groups, stage by
stage. For example, as shown in Fig. 1, the BU operations
are applied in a horizontal order first (from Stage 1 to Stage
2, and so on for the first group of data points), and then the
vertical order (from the top group to the bottom group).

One advantage of this architecture is that it removes all
the address calculation instructions from the assembly code
of FFT program, and moves this computation to additional
hardware in the instruction decoder. Thus, the execution
cycles for the FFT computation may be reduced.

Another advantage comes from the use of custom regis-
ter files. All the intermediate results of FFT computations
within an epoch are stored in the custom register file,
and then used for the next stage, thus reducing access
to memory. The only load and store operations between
memory and custom register files are at the beginning and
the end of those two epochs.

B. Application-specific Instructions

As shown in Fig. 4, in our array FFT-based ASIP
architecture, there is a special vectorized FFT functional
unit, BU , which calculates 4 radix-2 butterfly operations in
parallel. Although the execution of BU needs eight input
addresses and eight output addresses, with the array FFT
architecture, the corresponding new instruction BUT4
only needs the current module number, which is between
[1, P

8
], and the current stage number, for data address

calculation performed in the decoder (AC).
Before entering the FFT BU computation iterations

along the vertical groups and horizontal stages, a new
instruction LDIN is used to load input data points from
the main memory to custom registers. This instruction
has two operands, one is the source address for the main
memory, and the other is the destination address for the
custom register file (CRF). With a 64-bit data bus, each
LDIN instruction loads two data points. Hence, for an
N-point FFT, this instruction needs to be repeated for N
times in total before the epoch computation. The similar
operation is performed at the end of BU iterations to
dump FFT computation results from the custom registers to
the main memory by instantiating another new instruction,
STOUT .

The processor pipeline is then extended correspondingly
to accommodate the three application-specific instructions,
BUT4, LDIN , and STOUT , with modifications in the
decoding (ID) and executions (EX) stages.

C. Custom FFT Program running on the Array FFT-based

ASIP

With all the custom hardware extension and new in-
structions in place, the FFT algorithm is reprogrammed to
incorporate the new instructions. Algorithm 1 illustrates
the pseudo-code for an N-point FFT computation, where
there are 2 epochs, which have number of p and q
computation stages respectively, and each stage has N

P
independent FFT groups with P

8
module computations in

each group. The inner-loop computation is just one BUT4
instruction. All the intermediate data within an epoch is
hold in a P -entry CRF.

IV. SIMULATIONS AND EVALUATIONS

In this section, we present experimental results on eval-
uating both the hardware cost and software performance,
and compare them with results from other approaches.

The extra hardware modules for the array FFT ASIP
include the Butterfly Unit (BU), the Address Changing
Logic (AC), custom register files (CRFs), and coefficient
ROM, as described in previous sections. We designed all
the modules in VHDL and synthesized them by Synopsys’s
Design compiler [17], using the standard TSMC13GFSG
library under CMOS 0.18 µm technology. The critical path
of the AC module is negligible, and that of the BU module
is 3.2 ns, and hence the processor can work at a clock speed
of up to 300 MHz. The total gate count of the BU and AC
modules estimated by Design compiler is 17324, and the
gate count of CRF and coefficient ROM is 15764. The
total gate count for the extra hardware is 33K, which is
acceptable as an accelerator compared to the basic PISA
core (106K gates including a 32KB cache). The power
consumption of BU and AC is 17.68 mW at 300 MHz.

Algorithm 1 FFT Algorithm running on the array FFT-

based ASIP
Input: N: total number of FFT points;

p (q): total number of stages in epoch 0 (1);
e: index of the current epoch;
d: index of the data groups loaded from the CRF;
j: index of the current stage;
i: index of the BU operation in each stage;

1: for e = 0 to 1 do
2: if e=0 then
3: s=p
4: else
5: s=q
6: end if
7: for d = 1 to 2

q do
8: Repeat LDIN for 2

p times;
9: for j = 1 to s do

10: for i = 1 to 2
p/8 do

11: BUT4 (i, j) ;
12: end for
13: end for
14: if e=0 then
15: Repeat coefficient pre-rotation for 2

p times;
16: end if
17: Repeat STOUT for 2

p times;
18: end for
19: end for

For a 1024-point FFT computation implemented on our
ASIP, the data throughput can reach to 440.6 Mbps which
attains UWB-OFDM specifications. In addition, the array
FFT ASIP is designed to have ease of scalability as a
primary objective. The FFT algorithm is reprogrammed
and recompiled for different FFT sizes. We modified the
Simplescalar software suite for our FFT ASIP implemen-
tation with the base processor core modeled on PISA [18].
Table I presents the simulation results for data throughput
for different FFT sizes with our array-based ASIP. It shows
that the throughput is decreasing slightly as the number
of points increases. This is because with the FFT size
grows, more cycles will be spent on the software control
of reusing the modular BU , e.g., more loop iterations, and
thus the hardware acceleration will be offset a little by the
software overhead.

TABLE I
SIMULATION RESULTS OF DATA THROUGHPUT FOR DIFFERENT FFT

SIZES

FFT Points Total Cycle Number Data Throughput (Mbps)

64 197 584.7

128 402 572.2

256 851 540.9

512 1828 502.2

1024 4168 440.6

We also simulate a 1024-point FFT computation for
four different implementations: the standard pure software
implementation on the base PISA core, the optimized
software implementation on TI’s TMS320C6713 DSP [6],
the custom algorithm on the FFT ASIP provided by
Xtensa [11], and our array FFT-based implementation. The
TI DSP uses 256-bit long instructions which can issue 8
operations per cycle (2 LD/ST, 2 MULT, 2 ADD/SUB, and

TABLE II
COMPARISON AMONG DIFFERENT FFT IMPLEMENTATIONS FOR 1024-POINT COMPUTATION

Imple 1: Imple 2: Imple 3: Imple 4:
Standard TI’s DSP Xtensa Proposed Improvement Improvement Improvement

SW FFT SW FFT FFT ASIP Array FFT ASIP over Imple 1 (X) over Imple 2 (X) over Imple 3 (X)

of Cycles 3611551 24976 9705 4168 866.5 5.9 2.3

of Loads 91675 - 5494 1059 86.6 - 5.2

of Stores 91677 - 5301 1192 76.9 - 4.4

of Data Cache Misses 114575 9944 284 106 1080.6 93.8 2.6

2 BR). With a 128-bit data bus, 4 complex numbers can
be loaded or stored in parallel. Since there is no special
function unit for FFT, the average processing time for a
butterfly operation is about 4 cycles after software pipelin-
ing. In Xtensa FFT ASIP, they parallelize the butterfly
computation with the load and store operations by using
their new TIE instructions. This way, they hide the butterfly
computations by load and store operations for the next set
of data points.

We modified Simplescalar for the two custom ASIP
implementations, respectively. The simulation results for a
1024-point FFT under different implementations are given
in Table II. In the table, we present the results for the
total number of execution cycles, number of data loads and
store operations (not available for the TI DSP though), and
the data cache miss counts. We also give the performance
improvement of our implementation over the baseline soft-
ware implementation, the TI’s DSP implementation and the
Xtensa ASIP in the last three columns. The data throughput
improvement is 866.5X, 5.9X and 2.3X, respectively. The
overall performance improvement of our FFT ASIP over
Xtensa’s is contributed by the reduction in load and store
instructions (5.2X and 4.4X), number of data cache misses
(2.6X), and parallel computation in butterfly operations.
We notice that compared to the Xtensa implementation,
our number of loads and stores is about 1/4-1/5, however,
the throughput is not 4 times higher. This is because we
do not parallelize the load and store operations with the
butterfly computations, hence, the cycle count saving from
the reduction of loads and stores is offset by the addition of
computation cycles. For Xtensa’s FFT ASIP, even if they
employ a butterfly unit with four parallel computations as
we have used, their throughput will not change, because
the bottleneck of their FFT algorithm is the load and store
operations, and hence the speedup in computation does not
affect the performance at all.

V. CONCLUSIONS

This paper proposes a highly efficient and flexible
array FFT ASIP design, which can meet both the high
throughput and flexibility requirements of various contem-
porary OFDM standards. We derive an address changing
rule, which manages the intermediate register data and
memory data storage, and works together with the re-
structured FFT to guarantee right data flow. With this
regular FFT structure, we propose our ASIP design for
FFT computation. New application-specific instructions are
incorporated to accelerate the butterfly computations in
groups, and move data between the main memory and
custom hardware. It has been demonstrated that our array
FFT-based ASIP implementation can improve the overall
performance greatly by reducing the number of main mem-
ory access and utilizing computation parallelism. The array
structure makes the hardware/software implementation of

FFT easily scalable to any points. The cost in both custom
hardware area and power consumption is acceptable.

REFERENCES

[1] G. J. Byung, S. S. Byung, H. S. Myung, and Y. S. Kim. A high-
speed FFT processor for OFDM systems. In Proc. Int. Symp. on

Circuits & Systems, pages 281–284, May 2002.
[2] N. Weste and D. J. Skellern. VLSI for OFDM. In IEEE Commun.

Mag., pages 127–131, Oct. 1998.
[3] C. Now, L. Lampe, and R. Schober. Performance analysis of

multiband OFDM for UWB communication. In Int. Conf. on

Commun., pages 2573 – 2578, May 2005.
[4] M. Schulte, J. Glossner, S. Jinturkar, M. Moudgill, S. Mamidi, and

S. Vassiliadis. A low-power multithreaded processor for software
defined radio. J. VLSI Signal Process. Syst., 43:143–159, 2006.

[5] Y. Lin, H. Lee, M. Woh, Y. Harel, S. A. Mahlke, T. N. Mudge,
C. Chakrabarti, and K. Flautner. Soda: A low-power architecture
for software radio. In Proc. Int. Symp. on Computer Architecture,
pages 89–101, June 2006.

[6] TMS320C6713 Floating-Point Digital Signal Processor. TI
datasheet, 2005.

[7] D. Goodwin and D. Petkov. Automatic generation of application
specific processors. In Int. Conf. Compilers, Architecture & Syn-

thesis for Embedded Systems, pages 137–147, Oct. 2003.
[8] K. L. Heo, S. M. Cho, J. H. Lee, and M. H. Sunwoo. Application-

specific DSP architecture for fast Fourier transform. In Int. Conf.

on Application-Specific Systems, Architectures, & Processors, pages
369–377, June 2003.

[9] M. Nicola, G. Masera, M. Zamboni, H. Ishebabi, D. Kammler,
G. Ascheid, and H. Meyr. FFT processor: A case study in ASIP
development. In IST Mobile Summit, 2005.

[10] R. Chidambaram, R. V. Leuken, M. Quax, I. Held, and J. Huisken.
A multistandard FFT processor for wireless system-on-chip imple-
mentations. In Proc. Int. Symp. on Circuits & Systems, pages 4–7,
May 2006.

[11] Implementing the Fast Fourier Transform for the Xtensa Processor.
[http://www1.tensilica.com/pdf/FFT_apnote.pdf/].

[12] B. M. Baas. A low-power, high-performance, 1024-point FFT
processor. IEEE Journal of Solid-State Circuits, pages 380–387,
Mar. 1999.

[13] O. Atak, A. Atalar, E. Arikan, H. Ishebabi, D. Kammler, G. Ascheid,
H. Meyr, and M. Nicolaand G. Masera. Design of application
specific processors for the cached FFT algorithm. In Proc. Int.

Conf. Acoustics Speech & Signal Processing, pages 14–19, May
2006.

[14] H. Ishebabi, G. Ascheid, H. Meyr, O. Atak, A. Atalar, and
E. Arikan. An efficient parallelization technique for high throughput
FFT-ASIPs. In Proc. Int. Symp. on Circuits & Systems, pages 21–
24, May 2006.

[15] W. Cooley and J. W. Tukey. An algorithm for the machine
calculation of a complex Fourier series. Math. Computat, 19:297–
301, 1965.

[16] X. Guan. Addressing logic for array-structure
FFT. Technical report, Department of Electrical
and Computer Engineering, University of Connecticut.
[http://laurel.engr.uconn.edu/∼ggxuan/FFTrp.pdf/].

[17] Sysnopsys. [http://www.synopsys.com/products/
logic/design_compiler.html].

[18] C. Vieri. Pendulum: A reversible computer architecture. Master’s
thesis, MIT Artificial Intelligence Laboratory, 1995.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

