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Abstract— Wireless sensor networks hold the potential to open
new domains to distributed data acquisition. However, low-cost
battery-powered nodes are often used to implement such net-
works, resulting in tight energy and communication bandwidth
constraints. Cluster-based data compression and aggregation
helps to reduce communication energy consumption. However,
neglecting to adapt cluster sizes to local network conditions has
limited the efficiency of previous clustering schemes. We have
found that sensor node distances and densities are key factors in
clustering. To the best of our knowledge, this is the first work
taking these factors into consideration when adaptively forming
data aggregation clusters. Compared with previous uniform-size
clustering techniques, the proposed algorithm achieves up to 24%
communication energy savings in uniform density networks and
36% savings in non-uniform density networks.

I. INTRODUCTION

Wireless Sensor Networks (WSN) are distributed data ac-
quisition systems consisting of numerous wireless sensor
nodes. They have the potential to allow sensing in applications
and environments where it was previously impossible or
prohibitively expensive. For example, WSNs may be used
in weather monitoring, security, tactical surveillance, disaster
management, and intelligent traffic control applications [1].
Infrastructure-free operation and low node costs are the source
of much of their benefit. However, these beneficial attributes
exact a penalty. Distributed infrastructure-free operation in
remote locations makes replacing batteries expensive. Energy
constraints are therefore extremely tight. Tight energy con-
straints combined with the requirement for low node cost limit
wireless communication bandwidth.

Data compression and aggregation have the potential to
improve WSN energy efficiency and minimize communica-
tion. Researchers have previously considered data aggregation
and compression in WSNs. We divide existed strategies into
two categories. In single-input coding [2], [3] each node can
consider data from only one other source during data com-
pression. In multi-input coding strategies [4]–[8], aggregation
exploits correlation in data from multiple sources. Multi-
input coding strategies are generally based on clusters of
WSN nodes. We therefore call them cluster compression.
Cluster-based routing schemes perform data aggregation only
in cluster-heads, while in singe-input routing schemes every
intermediate node performs data aggregation. This property
generally reduces the communication and computation costs
of cluster compression, relative to single-input compression:
cluster compression generally scales better. This paper focuses
on cluster compression.

This work was supported in part by the 863 Program under award
2006AA01Z224, in part by the NSFC under awards 90207001 and 60871005,
and in part by NSF under awards CNS-0347941 and CNS-0721978.

There is a large body of work [9], [10] on clustering and
aggregating schemes for WSNs. Past work mainly focused
on maintaining network connectivity but neglected setting
cluster sizes to minimize energy consumption. Marco et al.
investigated the capability of large-scale sensor networks to
gather and communicate a two-dimension data field and pre-
sented theoretical limits on data compression [11]. Heinzel-
man, Chandrakasan, and Balakrishnan proposed the low-
energy adaptive clustering hierarchical (LEACH) method [6],
in which clusters are formed by selecting a specific num-
ber of sensor nodes as cluster heads. Nodes are placed in
clusters to minimize their individual communication energy
consumptions. PEGASIS [12] is an extension of LEACH,
in which all nodes are organized into a chain and each
node transmits data only to its neighbor. However, neither
LEACH nor PEGASIS optimize cluster sizes to minimize
energy consumptions considering spatial correlation.

Recently, Pattem, Krishnamachari, and Govindan [13] pre-
sented a uniform-size clustering approach for WSNs based
on joint entropy analysis. This work shows the impact of
spatial correlation on data aggregation. Experimental results
showed that static uniform clustering can provide near-optimal
performance for a wide range of spatial correlations. However,
their approach is limited to uniform-size clusters.

Soro and Heinzelman first introduced the non-uniform clus-
tering [14]. By assuming that the cluster-heads have pre-
determined locations, the proposed approach divides the sensor
nodes into circular-organized layers, and gains the network a
longer lifetime. Recently, Jin et al. introduced a non-uniform
ring-shaped clustering scheme and optimized the thickness of
each ring [15]. However, these projects [14], [15] rely on the
regular geometrical-shaped clusters and the assumption that
heterogeneous sensor nodes are used. These assumptions do
not hold for some applications.

To the best of our knowledge, this is the first article
to present a spatially-adaptive clustering scheme for WSNs
without any geometry restrictions. Spatial correlation factors,
such as node-to-sink distance and sensor density, are used to
adapt cluster size depending on data correlation and spatial
properties to minimize routing energy. This work makes the
following contributions. (1) We present a set of system models,
including network model, data aggregation model, and data
transmission model to estimate the energy costs of clustering
and data collecting in WSNs. (2) Given sensor density and
node-to-sink distance, we are the first to present an analytical
method of determining optimal aggregation cluster size. We
find that optimal cluster size increases with the distance to
the network sink node and with increasing sensor density.
Compared with a uniform cluster size approach, we show that
adaptive cluster sizes always improve energy savings for both
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Fig. 1. Intra-cluster and inter-cluster costs.

Fig. 2. Distance and density based clustering features.

uniform (up to 24%) and nonuniform (up to 36%) density
WSNs. The impacts of factors such as sink position, network
size, density, and data correlation on the proposed technique
are determined.

II. MOTIVATION

This section provides the motivation of the proposed spatial
adaptive clustering and routing scheme. We first discuss the
relationship between the intra-cluster and inter-cluster cost. We
then summarize the basic idea behind distance- and density-
adaptive clustering.

II.A. Intra- and Inter-Cluster Costs
The total cluster communication energy is composed of two

parts. The intra-cluster cost is the energy consumed by all
data communication from the member nodes in the cluster to
the cluster-head, which is a special node to aggregate data
from other nodes in a cluster. The inter-cluster cost is the
energy consumed by communication between the cluster-head
and the sink node. Intra- and inter-cluster costs are functions
of cluster size. If the entire WSN is composed of one large
cluster, there is no inter-cluster cost but the intra-cluster cost
is extremely high. At the other extreme, each cluster contains
only a single node, for which the inter-cluster cost is high but
the intra-cluster cost is low. Figure 1 shows how the intra-
and inter-cluster costs vary as a function of cluster size (we
will give details on the setup below). The total cost function
is convex. Our goal is to find the optimal cluster size.

II.B. Distance and Density Based Clustering (DDC)
Our idea is to take distance and density into consideration

to form an adaptive clustering scheme. As Figure 2(a) shows,
if the distance of a region from the sink is large, the optimal
cluster size is also large because any data transmitted from
this point must be repeatedly retransmitted before reaching
the sink. The converse is true for clusters near the sink node:
smaller clusters are better in this case. Figure 2(b) compares
regions with different densities. In dense regions, large clusters
are better because high spatial data correlation leads to a
good compression ratio. In summary, distance and density are
two key factors in clustering. Based on this observation, we
develop our network model.
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Fig. 3. Random graph.

III. FORMULATION

This section describes the modeling methodologies used in
our analysis and experiments. We first describe the network
model including sensor nodes, wireless communication, and
statistical data properties. Second, we propose a common data
aggregation model to estimate the performance of multi-input
compression algorithms in each cluster. Third, we present
energy models for wireless communication and provide typical
values for the parameters. Finally, we explain our method of
computing total data gathering energy consumption for both
inter-cluster and intra-cluster cases.

III.A. Sensor Network Model
We aim to build a network model of WSNs that supports

applications with a wide range of characteristics. A connected
graph G = (V, E) is used to describe the network. Each vertex
vi ∈ V represents a sensor node. Each edge ei ∈ E is an
available wireless communication link. The data gathering tree
T = (V, ET ) is defined as a subgraph of G. The tree indicates
the communication paths from every source to the sink node.
Each node is assumed to generate the same amount of data b0

per cycle. For each edge ei in T , the flow amount is denoted
as the number of bits bi that transports over ei.

Example network instances can be generated in MATLAB
as shown in Figure 3. Sensor nodes in our model have a
uniform coarse-grained distribution and a uniform random
fine-grained distribution. To generate an n × n node network
of this type, we first partition the region into (n−1)× (n−1)
square elements, each of which has a side length of d0. The
n2 sensor nodes are located near the n2 grid vertices, offset
by random two-dimensional offsets drj , which are constrained
as follows: −d0/2 < drj < d0/2. Each node is linked to its
neighbors directly and di is the Euclidean distance along the
ith edge. Figure 3 shows a 6 × 6 random graph generated by
this method.

III.B. Data Aggregation Model
Data correlation exists in many applications. Several ap-

proaches have been proposed to model the correlation, e.g.,
the entropy-based model [13] and the inverse proportional
model [2]. However, real compression algorithms and data
from real applications have not been used in their models.
In order to draw a more accurate and realistic data aggre-
gation model, we use data from the Tropical Atmosphere
Ocean (TAO) project [16], on which the differential coding
compression algorithm [17] is used. TAO provides collections
of oceanographic and surface meteorological data sets from
moored ocean buoys. It consists of records including air
temperature, sea level pressure, and sea surface temperature.
We use the data set of sea surface temperature because the
observed points are not far from each other (depth from 1 m
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Fig. 4. Compression fitting model.

TABLE I

FITTING PARAMETER VARIATION

Cluster Size 2 3 4 5 6 7 8 9
Most Fitting c 40 41 42 42 43 45 47 48

to 500 m), and exhibit spatial data correlation. To compare
the number of bits before and after compression, we do
differential encoding as follows. The sources in a cluster are
coded along aggregation tree paths from the cluster head to
the farthest node in order. When data are encoded within a
cluster, we chose the nearest neighbor to be its differential
coding reference.

Based on the compression algorithm and data sets, we
compress data from clusters to show the relationship between
real compressed data size and their inter-node distance d0 in
Figure 4. We show results for cluster size s ranging from 2
to 9. An analytical expression is needed to model the curve.
Pattem et al. [13] presented the following formula to model
the average joint entropy of an s-node cluster:

Bs(d0) = b0 + (s − 1)

(
1 − 1

d0

c + 1

)
b0 (1)

where b0 is the number of bits generated by each source, c is a
constant characterizing the spatial data correlation, and Bs(d0)
is the number of compressed bits generated by the cluster-head
in an s-node cluster with inter-node distance d0. Bs(d0) is
chosen such that when c = d0, data from the second source
can be compressed to half their initial size. In the sea surface
temperature data set, the best c is 40. Experiments show that
Equation 1 has an average error of 5.4% and maximum error
of 18.5%.

We will further reduce the modeling error based on the
following observations: (1) the empirical curve in Figure 4
suggests an exponential trend and (2) as Table I has shown,
the optimal c value increases with cluster size. Therefore, we
propose the following improved model:

Bs(d0) = b0 + (s − 1)
(
1 − e

− d0
cinit+s ln 2

)
b0 (2)

where cinit is the initial optimal value for the minimal cluster.
Other parameters have the same meanings as in Equation 1.
The fitting curves of Equation 2 are shown in Figure 4.
Experiments show that the proposed model has 2.63% error
on average and a maximum error 6.32%. We consider this
accurate enough for use in system-level analysis. Thus, we
have a closed-form expression for quantifying correlation. This
is a general way to characterize the spatial correlation in a
specific application data set.

TABLE II

TYPICAL TRANSMISSION PARAMETER VALUES FOR μAMPS-1

Parameter α β η
Value 2.018 μJ 1.0 μJ 3.5

III.C. Data Transmission Model
Node-to-node wireless communication includes transmitting

and receiving phases. Let pi be the total bits transmitted
along edge ei. Min and Chandrakasan [18] models the energy
consumption of node-to-node communication as follows:

E(di) = pi · (α + βdη
i ) (3)

where di is the transmission distance on edge ei and η is
the path loss exponent. α and β are constants indicating the
distance-independent and distance-dependent energy compo-
nents for one-bit communication. μAMPS-1 is a hardware plat-
form for distributed microsensor networks using commercial
components. Based on measured parameters [18], we report
typical values of α, β, and η for the μAMPS-1 platform in
Table II. This model can be easily extended to other platforms
by changing the values of its parameters.

III.D. Total Data Gathering Cost
In cluster-based data gathering, each cluster’s communica-

tion costs can be divided into intra-cluster and inter-cluster
costs. We denote the intra-cluster cost as Cintra,k. A tree Tk

is used to collect data from cluster k. According to Equation 3,
Cintra,k is calculated as follows:

Cintra,k =
∑

ei∈Tk

E(di) =
∑

ei∈Tk

pi · (α + βdη
i ) (4)

where di is the transmission distance on the edge ei, and pi

is the number of bits transmitted on ei.
The inter-cluster cost Cinter,k of cluster k is defined as the

energy consumed by transmitting compressed data from the
cluster-head to the sink via route Rk. Equation 2 can be used
to estimate the size of compressed data Bk

s in an s-node cluster
k. Therefore, we can calculate Cinter,k based on Equation 3.

Cinter,k =
∑

ei∈Rk

E(di) =
∑

ei∈Rk

Bk
s · (α + βdη

i ) (5)

Finally, we get the total transmission cost of the network
Cnetwork =

∑
k(Cintra,k + Cinter,k) by summing all the

cluster’s communication costs.

IV. PROPOSED DDC APPROACH

As explained in Section II, distance and density should be
considered in clustering for data aggregation and compression.
This section describes DDC, an adaptive clustering algorithm
that balances the intra-cluster and inter-cluster cost by locally
tuning cluster size. We first give an analytical framework
for determining energy-efficient cluster size. Based on this
analysis, we present the DDC spatially-adaptive clustering and
routing algorithm.

IV.A. Determine DDC Size
We now present a theoretical framework to determine

energy-optimal data gathering cluster sizes, considering dis-
tance and density. Suppose m2 sensor nodes are deployed near
vertices of a mesh network (see Figure 3) with an average
nearest-neighbor distance of d0. Each sensor generates b0 bits
of data per cycle. As Figure 5(a) shows, the distance between
the sink and this region is d. We divide all sensor nodes
into m2/s s-node clusters. For each cluster, the sensor node
nearest to the sink is designated as the cluster-head. After the



Fig. 5. Determine the optimal cluster size considering distance and density.

cluster-head completes data aggregation, the compressed data
are sent to the sink. Therefore, the problem can be formulated
as follows. Given a sensor network structure, determine the
optimal cluster size(s) to minimize the total energy cost of
transmitting data from this region to the sink.

According to the models presented in Section III, we now
derive the energy cost expressions for intra-cluster and inter-
cluster components and determine the optimal number of
nodes in the cluster sopt. We first calculate the intra-cluster
component of the cost.

√
s nodes are along the side of each

s-node square cluster (see Figure 5(b)). Observe that the intra-
cluster energy cost Cintra,k is the sum of communication
energies of sensor nodes in cluster k. We denote the number of
retransmissions a sensor node i requires to transmit a packet
to its cluster head as λi. To simplify analysis, we assume each
hop communication distance is equal to the average distance
d0 shown in Figure 3. Manhattan distance is used to estimate
the communication routing path and hop number from each
node to sink. Both approximations are reasonably accurate due
to regular network structure defined in Figure 3. It can also
be used for non-regular structure, if the whole network can be
divided into nearly regular regions. The value of this model
is also supported by experimental evidence of energy savings
resulting from cluster sizing based on the Equation 6 (see
Section V), where both approximations are relaxed. Thus, the
intra-cluster cost for cluster k follows.

Cintra,k = b0

s∑
i=1

λi∑
j=1

(α + βdη
j ) ≈ b0

s∑
i=1

λi(α + βdη
0)

≈ b0s(
√

s − 1)(α + βdη
0) (6)

where dj is the one-hop communication distance.

We now consider inter-cluster communication energy. Sup-
pose the distance d between the sink and a region is much
greater than the diameter of the region. We can approximate
the distance between each cluster-head to sink in this region as
d. For a connected regular sensor network, other sensor nodes
serve as relay stations between this region and the sink. The
node-to-node distance is d0. Therefore, d

d0
hops are required

to reach the sink node. Based on Equation 2, the inter-cluster
cost for cluster k is calculated as follows:

Cinter,k = b0((1 − e−
d0

c+s ln 2)(s − 1) + 1)
d

d0
(α + βdη

0) (7)

The total cost of the m2/s clusters in this region is obtained
as follows:

Cwsn =
∑

(Cintra,k + Cinter,k)

= b0[s(
√

s − 1)(α + βdη
0) +

((1 − e−
d0

c+s ln 2)(s − 1) + 1) ×
d/d0(α + βdη

0)]
m2

s
(8)

By setting the derivative to zero, the optimal value of cluster
size sopt can be obtained. Considering that the cluster size s
is much less than c, we simplify the expression by ignoring
s in the exponential term and achieve an analytical result for
the optimal cluster size.

sopt = 3

√(
2d

d0
e−

d0
c ln 2

)2

(9)

Equation 9 can be used to determine the optimal cluster size
sopt of a region with specific distance and density. Further
views on Equation 9 reveal the relationship between the
optimal cluster size sopt and spatial correlation parameters,
such as d and c. If the node-to-sink distance d is long or the
correlation level c is high, large clusters are better than smaller
ones. The optimal cluster size sopt, however, is inversely
proportional to d0. This implies that sopt is larger in dense
regions (small d0) and smaller in sparse regions (large d0).
This fits well with the analysis in Section II.

IV.B. DDC Algorithm

Equation 9 provides a way to determine the optimal cluster
size, and served to guide our design of the DDC algorithm (see
Algorithm 1). The clustering flow can be divided into three
steps: (1) select a region for clustering; (2) decide the optimal
cluster size for a region; (3) form the cluster by absorbing
other nodes; and repeat the process. Lines 1–2 initialize the
clustering progress. Lines 3–18 show the iterative clustering
procedure. We start clustering in the regions farthest from the
sink. At the beginning of each clustering progress, the farthest
unclustered node from sink is selected as the first node in
the cluster (Line 5). We use its distance d to the sink as the
reference to calculate the optimal cluster size (Line 6). The
cluster’s nearest unclustered neighbor nodes are absorbed as
members in the cluster (Line 8–14). Once the optimal cluster
size sopt is reached, the process is terminated and another
clustering process starts, until all nodes belong to clusters
(Line 15–18). Line 19 chooses a proper cluster-head for each
cluster based on the shortest distance metric.

Algorithm 1 DDC Algorithm

1: insert all nodes into aggregate S
2: aggregate CS (cluster set) = null (empty set)
3: while S �= null do
4: aggregate CC (current cluster) = null
5: find the farthest node from the sink in S : vi
6: calculate the optimal cluster size : sopt
7: insert vi into CC
8: while S �= null do
9: if size of CC scc = sopt then

10: break
11: end if
12: find neighbors of CC in S : nb
13: find a node vn in nb to minimize the cluster’s width and height
14: insert vn into CC
15: end while
16: insert CC into CS
17: remove nodes in CC from S
18: end while
19: select the nearest-to-sink node as the cluster-head for each cluster

V. EXPERIMENTAL RESULTS

This section first describes the experimental setup. We then
compare the proposed DDC algorithm with a uniform-size
clustering method. Both uniform density and non-uniform
density networks are considered.
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V.A. Experimental Setup
We choose the total transmission cost per cycle to analyze

the performance of DDC and to compare it to the uniform
square clustering scheme, which divides the network into
uniform-size clusters. The networks in the experiments are
randomly generated by the method presented in Section III-A.
We vary the parameters of the model in ranges that might be
encountered in a WSN and examine the impact on the total
cost. The following experimental parameters are used:

• Network size: 10×10–30×30 nodes.
• Node-to-node distance d0: 10 m–40 m.
• Data correlation constant c: 1–100.
• Distance-independent energy constant α: 0.1 μJ–10 μJ
• Distance-dependent energy constant β: 0.01 μJ–2.0 μJ

V.B. DDC in Uniform Density Network
Figure 6 illustrates spatially-adaptive clustering using the

DDC algorithm. Note the variation in cluster size with chang-
ing distance to the sink. Figure 7 compares the energy cost
of DDC with uniform-size clustering for different network
size. The transmission energy saved by DDC increases with
network size. The spatially-adaptive strategy achieves more
savings due to greater optimal cluster size differences in larger
networks. When the network size reach 30×30 nodes, the total
energy savings are up to 24%. Figure 7 also shows the energy
savings achieved by the DDC approach for different sink node
locations. However, the absolute energy cost may vary, which
implies that energy can be reduced by carefully selecting
the different sink node’s location. These results indicate that
the proposed DDC approach is more energy efficient than
uniform-size clustering for a wide range of network sizes.

Compared with uniform-size clustering, Figure 8 shows the
variation of energy savings by DDC for different densities
d0 and correlation levels c in a 20×20 network. The energy
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savings due to DDC increase with network density. Increased
node density has the same effects as bigger network size.
Figure 8 also indicates that for very high or low correlation
levels c, the advantage of DDC wanes. This can be intuitively
explained by the following extreme case. When the correlation
level is high enough to make the best cluster size equal to the
network size, DDC has no advantage over uniform-size clus-
tering. When the correlation level is very low, clustering does
not help. Therefore, DDC shows a more distinct advantage
in dense networks than in sparse networks. With a typical
correlation level c, DDC has a considerable energy saving (up
to 16% for a 20×20 network), but when c is too low or too
high, the advantage of DDC decreases.

Figure 9 shows the impacts of distance-dependent and
distance-independent communication energy costs on the en-
ergy saving of DDC compared with uniform-size clustering.
β varies on the (logarithmic) x-axis of Figure 9. Each curve
is drawn with a distinct α, ranging from 0.1 μJ to 10 μJ. In
the typical ranges for β (0.001 μJ to 1 μJ) and α, DDC has
a distinct advantage over uniform-size clustering (more than
20% energy savings). The energy savings reduce when β
increases over a threshold, because larger β leads to more
sensitivity to the transmission distance. When both β and α
are small (α = 0.1 μJ), the transmission cost approaches zero.
Thus, the difference between DDC and uniform clustering
decreases. However, when α is larger, DDC remains superior.

V.C. DDC in Non-Uniform Density Domain
In order to monitor different physical phenomenon, sensor

networks with non-uniform densities can be deployed. In this
section, we evaluate DDC’s advantages in networks composed
of two regions of differing densities. For general networks
with non-uniform density, density-based partitioning should
be done before clustering. However, a detailed treatment of
the partitioning problem is beyond the scope of this paper.
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This section compares DDC’s energy cost of data gathering
with that of the uniform size clustering scheme for two-part
non-uniform density domains shown in Figure 10(a).

Figure 11 shows the variation in DDC energy savings,
relative to uniform-size clustering, when the density of part
B is changed from half to double the value in part A. We
observe a rapid decrease in energy savings when the density
approaches 1. This corresponds to the uniform-density case.
From the curve shape we draw the conclusion that DDC saves
more energy in non-uniform density networks.

Suppose the densities of Region A and B in Figure 10(b)
are fixed, and the area of Region B increases from zero to
the whole sensing field. Figure 12 shows the DDC energy
savings trend when the area ratio between Region A and B
changes. We observe that energy savings reduce at the high
and low area ratios in Figure 12, because those situations
approximate the uniform-density case. We can also observe
that the energy saved by DDC increases (up to 36%) in the
middle segments of the curves. It can be explained by the fact
that the area variation of Region B makes Region A a shape-
irregular field, for which the uniform-size clustering scheme
is poorly suited. In contrast, DDC algorithm does not have
such a limit. This analysis demonstrates that DDC has the
most benefit over uniform clustering in energy consumption
for non-uniform density sensor fields.

VI. CONCLUSIONS

Distance and density are two key factors in WSN data aggre-
gation and clustering techniques. We have shown how these
two factors impact energy consumption, and have proposed
DDC, an energy-efficient adaptive-size cluster formation algo-
rithm that considers the impact of these factors. Experimental
results show that DDC performs well in uniform and non-
uniform density networks and improves energy consumption
up to 24% and 36% relative to past work.
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