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Abstract—This paper presents a tool for exploring different
parallelization options for an application. It can be used to
quickly find a high-quality match between an application and
a multi-processor platform architecture. By specifying the par-
allelization at a high abstraction level, and leaving the actual
source code transformations to the tool, a designer can try out
many parallelizations in a short time. A parallelization may use
either functional or data-level splits, or a combination of both.
An accompanying high-level simulator provides rapid feedback
about the expected performance of a parallelization, based on
platform parameters and profiling data of the sequential appli-
cation on the target processor. The use of the tool and simulator
are demonstrated on an MPEG-4 video encoder application and
two different platform architectures.

I. INTRODUCTION

The design of System-on-Chip platforms is increasingly

based on utilizing multiple processors. These MPSoC devices

have the potential to provide high performance whilst enabling

fast time-to-market, maximizing design reuse and providing

flexibility through programmability.

However several serious challenges in designing MPSoCs

still remain, such as application partitioning and design space

exploration [1]. Another concern is the scalability of the plat-

form and application, i.e. how many processors are required,

and, as technology evolves, whether re-designs will be needed.

The exploration methodology presented in this paper aims to

facilitate the programming of multi-processors by automating

the transformations required to partition an application. It

targets data-dominated signal processing applications, such as

image and video codecs. These kind of applications often have

multiple opportunities for parallelization, both on a functional

and data level, but finding the optimal solution is not trivial.

By avoiding much of the manual work and by providing quick

feedback to the designer, this process becomes much more

efficient.

Figure 1 shows an overview of the exploration flow. It starts

from the C source code of a sequential application. Profiling

data is collected by source code instrumentation and execution

on a target platform or instruction set simulator (ISS). Based

on an initial Parallelization Specification (ParSpec), parallel

C code is generated by the MPSoC Parallelization Assist

(MPA) tool. A fast, high-level simulator (HLsim) generates
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Fig. 1. The exploration flow.

an execution trace, using the profiling data and a platform

specification. The designer can then adapt the ParSpec and/or

platform specification based on analysis of this execution trace.

The organisation of this paper is as follows: The MPA tool

and generation of traces are introduced in Section II and III,

respectively. Section IV details the exploration of different

parallelizations of an MPEG-4 encoder using the MPA tool

and HLsim. Section V discusses related work. Section VI

concludes the paper.

II. THE MPA TOOL

The MPSoC Parallelization Assist (MPA) tool analyzes

the application and generates parallel source code based on

the directives specified by the designer. The specification,

analysis, transformation and execution model are discussed in

the following sections.

A. Parallelization specification

The designer specifies the parallelization, which the tool

should generate, in a file separate from the application source

code. This ParSpec refers to labeled statements or blocks in

the source code which mark distinct functionalities of the

application. By keeping the parallelization specification in a

separate file, instead of directly annotating it in the source

code, many different parallelizations can be explored and

retained, starting from the same source code.
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parsection ParFrameProc:

parsecblock label frameProc::parallel_section

thread me_left:

looprange iterator v from 0 to 9

include label frameProc::MotionEstimation

thread me_right:

looprange iterator v from 9 to 18

include label frameProc::MotionEstimation

thread mc_tc_tu_ec:

include label frameProc::MotionCompensate

include label frameProc::TextureCoding

include label frameProc::TextureUpdate

include label frameProc::EntropyCoding

Fig. 2. An example ParSpec.
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Fig. 3. The dependency graph generated by the MPA tool for the ParSpec

of Figure 2. The square boxes represent threads, circles represent shared
variables. Blue arrows indicate FIFO communication. Red arrows indicate
loop-carried dependencies. Purple arrows indicate the communicated variables
are recognised as part of a reduction chain. The IN and OUT fields inside
the thread boxes are the thread arguments and return values.

The ParSpec consists of one or more parallel sections; out-

side a parallel section the application is executed sequentially

by a master thread. All code inside a parallel section must be

assigned to at least one thread.

A parallel section can contain both functional and data-level

splits. In the first case a functionality is assigned as a whole

to a thread. In the latter case a functionality is assigned to a

thread for a certain set of iterations of an enclosing loop only.

Figure 2 shows a simple example of a ParSpec. It shows

a possible parallelization of a typical hybrid video encoder

application. It consists of 5 basic functionalities which are

distributed over 3 threads. One of the functionalities, the

MotionEstimation, is split over two threads by assigning the

iterations which process the left part of the video frame to one

thread and the right part to an other. The other functionalities

are grouped together and assigned to the third thread.

In addition to splitting the iterator range into smaller sets

of consecutive iterations, it can also be split into interleaved

sets by specifying a step size. Also, if the designer wishes

to do so, the dependency analysis of certain variables can be

circumvented by declaring the variable to be “shared” and

manual synchronization added in the form of LoopSyncs. This

will be discussed in more detail in Section II-D.

B. Analysis

Scalar dataflow analysis is done on the sequential applica-

tion, for the function(s) containing the parallel sections and

all functions (indirectly) called from the parallel sections.

This results in Factored Use-Def (FUD) chains [2] for all

accessed variables. From these FUD chains, the flow (Read

after Write), anti (Write after Read), and output (Write after

Write) dependencies can easily be derived.

By default each thread gets a local copy of the variables

it accesses. These copies can be stored in the local memory

of the processor executing the thread, resulting in efficient

memory accesses without interference from the other threads.

This also means that the kernel profiling results obtained from

the single threaded simulation can be reused for the multi-

threaded case.

Each time a flow dependency crosses a thread boundary, the

last definition has to be communicated from the producing

thread to the consuming thread. This is done by inserting

communication primitives into the generated partitioned code.

We use FIFO style communications channels between threads

in a parallel section. Flow dependencies crossing the parallel

section boundary (i.e., between the master thread and one of

the slave threads) result in input and/or outputs of the slave

threads which are communicated via thread arguments and

return values when spawning and joining.

For the majority of the variables, each thread accessing

it has a local copy and therefore anti dependencies are not

relevant. Only for shared variables, i.e., those not handled

by the tool, do they have to be taken into account and

the necessary synchronization (not communication) has to be

added (i.e., a LoopSync). Also pure output dependencies, i.e.

data that is unconditionally and completely overwritten at the

destination, can be ignored for non shared data. Conditional

and/or partial output dependencies are treated in the same

way as flow dependencies, i.e., the last produced value is

communicated via a FIFO.

Statements involving variables with thread boundary-

crossing dependencies are represented as nodes in a paral-

lelization model. For all dependencies that potentially need

communication (or synchronization), all nodes executing the

source of the dependency, and all nodes executing the des-

tination of the dependency are computed. For each node the

threads executing it and the corresponding iteration domains

are derived from the parallelization model. For each destina-

tion node, all source nodes that produce its value are collected.

If one of the source nodes is executed by the same thread

as the destination node, communication happens inside the

thread and no communication/synchronization has to be added.



Otherwise, the iteration domains of the source nodes have to

be compared with the one of the destination node to determine

overlap. If there is an overlap, a FIFO is created for the

variable to be communicated between the two threads, right

after the kernel containing the source node. If there is no

overlap, no communication is needed.

Besides the source code, the tool also generates a graphical

view of the parallelization which shows the dependencies it

has found. An example of such graph is shown in Figure 3.

C. Transformation

After the analysis, all required acts of communication are

known. All variables to be communicated between the same

two threads at the same point in the code are combined into

a token and will be communicated via the same FIFO, to

minimize the number of FIFOs and as a heuristic to help

reduce the per-token overhead. If the iteration domains of

the threads at the source and the destination of the FIFO are

not the same, guard conditions based on the iterator values

are added around the put and/or get function calls to make

sure that all tokens put in the FIFOs will also be consumed

and vice versa. The FIFO depths are determined based on

the parallelization and the LoopSyncs. This is a different

problem from classical buffer allocation problems for flow

graph models, such as Synchronous Data Flow [3], because

the form of the flow graphs is restricted as a result of them

being derived from sequential programs, and because of the

presence of LoopSyncs.

For each thread, a thread function is created containing

all the code that it has to execute, the communication and

synchronization, and the input and output variables. The

boundaries of the loops that are data split are adjusted, and

the parallel section is replaced with thread spawning/joining

code.

Subsequently, reduction chains of associative/commutative

operations (e.g., addition, min/max computations) crossing

thread boundaries are detected and the computations are

reordered to reduce the dependencies between the different

threads as much as possible.

Finally, a configuration function is created that configures

all the parallel section, thread, FIFO, and LoopSync data

structures for the parallel application.

The tool avoids transforming kernels identified by the

designer (typically inner-loops or loop-nests), so as not to

disrupt any back-end compiler optimizations, such as software

pipelining.

D. Communication and Synchronization

The main method of communicating data and synchronizing

threads is through first-in-first-out (FIFO) buffers. However,

if the designer wants to specify her own synchronization for

accessing a certain variable, she can declare this variable

shared and specify a LoopSync. This can be useful when a

dependency, often between different threads in a data-level

split, is in fact not as strict as it appears to be from the

static analysis. A LoopSync specifies a skew or a range of
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Fig. 4. The execution model. An application can contain multiple parallel
sections. When in a parallel section, there can be point-to-point communica-
tion between threads.

allowed skews between one or more loops whose iterations

are distributed over two or more threads. It is essentially a pair

of dependence vectors denoting the lexicographical distances

of flow- and anti-dependences that must be respected for the

loop.

Often the need for a LoopSync occurs because the static

analysis only considers arrays as a whole, not each element

individually. Future work would include extending the analysis

to avoid such false dependencies, or to enable checking the

correctness of a manually specified LoopSync.

The execution model, depicted in Figure 4, currently as-

sumes that a processing core is assigned a single thread, i.e.

all functionalities that are mapped to a core are statically

scheduled in one thread. This avoids scheduling overhead and

increases predictability.

The MPA tool generates code which targets a run-time

library of which the implementation can be optimized for a

particular platform. The main functions of this run-time library

are thread and FIFO management, LoopSyncs and platform

configuration.

At the start of a parallel section, all threads are started and

FIFO’s are initialized, if needed. Just before the end of the

parallel section, all threads are synchronized through a barrier

and joined again with the master thread. During the execution

of a parallel section, the threads operate in an asynchronous

fashion, synchronizing only with other threads when needed

for communication, either through FIFO channels or Loop-

Syncs.

III. EXECUTION ENVIRONMENT

Currently two execution environments for the parallelized

applications have been implemented. If the target platform is

available, either in the form of real hardware or as a Virtual

Platform, this can be used to evaluate a solution generated by

MPA.

In case the target platform is not available or simulation

is too slow, or if the goal of the exploration is to define the

platform, a High-Level Simulator can be used to evaluate a

solution.



Fig. 5. An example VCD trace generated by HLsim. In this case it reveals that two of the threads in fact never execute concurrently due to a dependency
communicated via FIFO’s F2 and F3. A solution can be to declare the variable creating this dependency as shared, and protecting access to it with a LoopSync.

A. Native platform

In case the target platform is running an operating system

(OS), the RTlib can be implemented on top of the native thread

functionality provided, such as Pthreads. The scheduling of the

threads is thus dynamically handled by the OS. This can create

some overhead, but experiments on the Linux OS have shown

that this is minimal. If the platform is not running an OS, a

fixed thread-to-processor assignment is used.

B. High-level simulation

The high-level simulator (HLsim) enables the designer

to quickly evaluate a specific parallelization based on the

application profile and some platform parameters.
1) Application profiling: The principle of HLsim is based

on annotating the kernel profiling information back into the

parallel code by means of function calls. The implementation

of these calls can be changed to select recording or playback

of the profiling data. Recording is best done using a cycle-

accurate Instruction Set Simulator (ISS), extended with a

memory-mapped I/O-module or foreign-function interface for

interfacing with the profiling library, which executes in host

context, to ensure minimal interference with the program

execution.

The control flow path is stored along with each sample,

such that the correct sample can be found for each call, even

if the code has been parallelized. Because the profiling data

is sample based, and not averaged, all the dynamic behaviour

and correlations between samples are preserved.
2) Platform modelling: In addition to kernel timings and

synchronization, delays for data transfers through FIFO’s can

be estimated based on the size of the data and the platform

parameters. However it does not take into account the effects

of a cache. Even though the absolute results may therefore be

inaccurate, the relative results, such as speed-up, can be used

in the exploration of the design space.

The application is executed using a simulation kernel which

models timing and concurrency, such as SystemC or Tipsy [4].
3) Simulation results: The simulation will generate a VCD

trace file in which thread and kernel activity, FIFO fill levels

and LoopSync status are traced. The designer can analyze

this data to see if any bottlenecks occur and whether the

parallelization is well balanced. Based on this analysis either

the platform or the parallelization can be adjusted.

Figure 5 shows a part of such a trace file. The signal

representing a thread is high when it is active. The “thread

waiting info” signals indicate why a thread is inactive, for

example because it is blocked when trying to read from an

empty FIFO, write to a full FIFO, or is outside its allowed

iteration range of a LoopSync.

In addition to the VCD trace, a report is generated that

summarizes the overall results, and statistics on thread and

FIFO activity, etc. The simulation speed for our example

is about 1 QCIF frame per second for a 6-thread MPEG-4

encoder application on a 3.2GHz Pentium 4 PC.

IV. MPEG-4 ENCODER CASE STUDY

To demonstrate the capabilities of the MPA tool, an explo-

ration of different parallelization options for a video encoder

was undertaken. First, we demonstrate the feasibility of the

execution model on an actual multi-core platform. Secondly,

we show the correlation between the HLsim estimations and

the actual results for the same platform. Finally, an exploration

is done for an embedded platform.

The application which is used for the experiments is an

MPEG-4 SP encoder [5], an industry standard hybrid video

encoder.

A. Feasibility of the execution model

Although the methodology targets embedded platforms,

current cache-coherent shared memory MPSoCs only have a

limited number of cores. Therefore an 8-core x86-based plat-

form, consisting of two 2.1GHz quad-core AMD “Opteron”

processors running the Linux operating system, is used to show

the feasibility and scalability of the execution model.

A set of parallelizations is generated ranging from one to

seven threads. Using the Pthreads based RTlib, the execution

times are measured for a sequence with 4CIF resolution.

Figure 6 shows the measured speed-up relative to the single

threaded implementation. For two and three threads, the pro-

cessor effective utilization is between 70 and 75 percent, for

four to six threads it is around 60 percent. The seven thread

parallelization does not improve the execution time anymore,

which can be attributed to the overhead of data communication

between threads and the resulting cache effects.
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B. HLsim validation

The same set of parallelizations as used for the speed-up

measurements is used to estimate the speed-up using the High-

Level Simulator. The results, shown in Figure 6, show a strong

correspondence between the HLsim estimation and the actual

measurement. Only with the seven thread implementation the

HLsim incorrectly predicts an improvement in execution time.

C. Exploration

The general approach to traversing the design-space is to

first make an initial ParSpec, based on the required perfor-

mance and the top-level profile report. First, functionalities

should be data-split if a single processor can not deliver the

required performance; secondly, functionalities can be grouped

together in order to achieve a balanced distribution of compute

cycles. After this first iteration the efficiency can be assessed

by inspecting the trace file and generated report.

If a data-split into equally sized, consecutive parts results in

unbalanced execution, then probably the execution times are

not evenly distributed over the range which is split. This may

occur for example in the MPEG-4 encoder when a specific

area of the video frame contains more motion and thus the

motion estimation requires more processing time. A solution

can be to choose the data-split at a different loop level, and/or

to make an interleaved split where loop iterations are allocated

to threads in a cyclic manner rather than a block. Both types

of split are supported by MPA.

Once the application had been prepared, i.e. annotated with

kernel labels and profiled, the exploration of the parallelization

design space using HLsim can be performed in about half a

day.

1) ARM11 RISC: Considering the execution profile of

the ARM11, a RISC processor for embedded applications,

in Figure 7, it is clear that the MotionEstimation (ME) is

dominating the overall performance; it consumes almost 2

times the number of cycles of all other kernels together. So if

the ME is split off, and executed in parallel with the rest of the

application, a speed-up of 1.4 can be expected (Figure 8B).
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indicate threads. Thus, on the left side (A), the sequential implementation is
shown.

The next step is to apply a data-split. This can be easily

applied to this ME; but the designer has to take into account

that the efficiency of a data-split is often not 100%: pre-

and post-amble for pipelined execution, load imbalance and

synchronization overhead decrease the efficiency (Figure 8C).

To start with, a moderate data-split into two is explored,

which already results in a further speed-up (see the 3-thread

point in Figure 9). Further refinement shows that combining

the ME and MC functionalities often leads to better results, be-

cause these functionalities share much data, such as the video

frames, which otherwise has to be communicated (Figure 8D).

Figure 8 shows all “Pareto-optimal” parallelizations as

found by the exploration. Many more have been evaluated, but

are omitted for brevity. It shows that a wide range of solutions,

both in terms of performance and cost, can be generated.

V. RELATED WORK

There are many possible techniques for programming multi-

processor system-on-chips, but most of them are derived from

either scientific computing, a field in which large distributed

systems have been commonplace for many years, or from

hardware design, which is inherently parallel. This section

restricts itself to programming techniques based on the C pro-

gramming language, since this is the most widely accepted

language, especially for programming DSPs.

The closest technique to our methodology from the scientific

computing category is OpenMP [6]. It allows a designer to add

pragmas to the source code that specify which parts can be

executed in parallel. A compiler or pre-processor will translate

these pragmas into a multi-threaded application, usually tar-

geting a POSIX threading library. However, OpenMP assumes
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that there are no dependencies within parallel sections. In

practice this is seldom the case, especially at a coarse task

level. It is then up to the designer to either remove these

dependencies by, for example, loop-skewing, or to explicitly

handle the communication and synchronization of data be-

tween threads. Besides the fact that this can be error prone

and has to be redone for every parallelization, it also defeats

one of the major design goals of OpenMP, namely incremental

parallelization of the application (independently of the exact

run-time environment) using a high level of abstraction.

A tool which inspired some features of the MPA tool is

SPRINT [7]. It uses labels in the source code to let the

designer specify a task level functional pipeline. It extracts

dependencies by static analysis of the code and inserts FIFO’s

to handle them correctly. The tool generates a transaction level

SystemC model, in which each task can be further refined into

a hardware or software implementation. It does not support

data level splits. Also the designer has to manually add timing

estimates for each task, which makes it less practical for

exploring many different parallelization options.

In [8] a compiler is presented which targets multi-core DSP

platforms. It automatically parallelizes loop-nests by applying

strip-mining. In addition it partitions the data structures for

assignment to distributed memories. However this approach

can in general not exploit coarse grain parallelism, nor func-

tional parallelism. Only benchmark kernels were reported to

be successfully parallelized.

A methodology for exploring parallel mappings of appli-

cations is presented in [9]. It concludes that a combination

of task and data parallelism gives the best results in terms of

power consumption. The mapping is however still a manual

process. The MPA tool and design flow presented in this paper

could accelerate the methodology.

VI. CONCLUSIONS

The contribution of this paper is threefold. First the MPA

tool for parallelizing an application on a coarse task level is

presented. Parallelization is based on designer specification,

and combining both functional and data-level parallelism.

Secondly, a high-level simulator is presented to allow a

designer to quickly evaluate a parallel mapping generated by

the MPA tool. Finally, a case study demonstrates the use and

usefulness of the MPA tool and HLsim by applying them to

the industrially relevant MPEG-4 encoder application.

Additionally, the MPEG-4 case study shows the execution

model targeted by MPA can result in good speed-up of the

application. Many solutions can be explored, spanning a wide

range of platform configurations (1 to 7 threads), and resulting

in a Pareto curve of solutions from which the designer can

choose.

Future work on the MPA tool will focus on adding support

for distributed shared memory management, which will re-

move the requirement for coherent caches for shared data by

assigning data structures and scheduling transfers at design-

time. This will also increase the predictability and thus the

accuracy of the HLsim.
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