
In-Network Reorder Buffer To Improve Overall NoC Performance

While Resolving the In-Order Requirement Problem

Woo-Cheol Kwon, Sungjoo Yoo*, Junhyung Um, Seh-Woong Jeong

Computing Platform, System LSI Division, Semiconductor Business, Samsung Electronics

*Department of Electronic and Electrical Engineering, Pohang University of Science and Technology

ABSTRACT

Data-intensive functions on chip, e.g., codec, 3D graphics, pixel

processing, etc. need to make best use of the increased bandwidth of

multiple memories enabled by 3D die stacking via accessing

multiple memories in parallel. Parallel memory accesses with

originally in-order requirements necessitate reorder buffers to

avoid deadlock. Reorder buffers are expensive in terms of area and

power consumption. In addition, conventional reorder buffers suffer

from a problem of low resource utilization. In our work, we present

a novel idea, called in-network reorder buffer, to increase the

utilization of reorder buffer resource. In our method, we move the

reorder buffer resource and related functions from network

entry/exit points to network routers. Thus, the in-network reorder

buffers can be better utilized in two ways. First, they can be utilized

by other packets without in-order requirements while there are no

in-order packets. Second, even in-order packets can benefit from in-

network reorder buffers by enjoying more shares of reorder buffers

than before. Such an increase in reorder buffer utilization enables

NoC performance improvement while supporting the original in-

order requirements. Experimental results with an industrial

strength DTV SoC example show that the presented idea improves

the total execution cycle by 16.9%.

1. Introduction
SoCs are requiring more and more on-chip data bandwidth. DTV

chips are pursuing UD (ultra definition) video decoding [1],

sophisticated pixel processing for video quality enhancement, etc.

Mobile SoCs are now supporting HD video coding and 3D graphics

[2]. This trend of requiring higher data bandwidth will accelerate as

innovative applications are expected to be realized on many-core

SoCs [3]. In order to support the ever increasing data bandwidth on

chip, the notion of 3D stacked (DDR or SRAM) memory has been

introduced [4][5]. 3D stacked memory enabled by TSV (through

silicon via) offers multiple independent memory channels thereby

higher memory bandwidth.

Data-intensive functions on chip, e.g., codec, 3D graphics, pixel

processing, etc. need to make best use of the increased memory

bandwidth, possibly, concurrently accessing multiple memory

channels (in short, multiple memories throughout this paper).

Compared with conventional implementations of those data-

intensive functions for one or two memories, we may require a new

architectural feature, memory access parallelization, in order to

exploit multiple memories. However, there are two practical

limitations in obtaining memory access parallelization. First, when

existing IPs are reused, they need to be redesigned to use multiple

memories concurrently. However, such a redesign may require high

design and verification costs due to the restructuring of internal

architectures (functions as well as interfaces) to exploit parallel

memory accesses. Second, when designing a new IP, the level of

memory access parallelism may need to be chosen considering the

trade-off between the possible performance improvement and the

overhead of silicon resource and design efforts. Memory parallelism

may vary from one design (e.g., 2 wide memory ports) to another

(e.g., +16 narrow memory ports). However, it will be practically

difficult to design a new IP to support all the possibilities of

memory parallelism (in a configurable way) or to support only the

highest parallelism since it may incur significant design efforts

(especially for configurable designs) or an overdesign (when the

highest parallelism is targeted).

Thus, there can be a mismatch between the memory access

parallelism of IPs and available parallelism in memory. Suppose the

case that the memory access parallelism of IP (e.g., two memories

are assumed) is smaller than the actual memory parallelism (e.g.,

eight memories). From the viewpoint of IP, its memory accesses

have in-order requirements since it is designed to access only a

limited number of memories in parallel. Thus, it has a limited

number of independent streams of memory access. In other words,

it has in-order requirements on each of independent streams

(identified by the transaction ID1 in the case of AXI bus protocol

[6]). When such an IP is used in SoCs with a larger memory

parallelism (e.g., eight memories), the increased memory bandwidth

may not be fully exploited due to the limited memory access

parallelism, i.e., the in-order requirements (See Section 3 for the

example of in-order requirement).

Since such in-order requirements prevent designers from fully

utilizing the increased memory bandwidth, it is imperative to devise

solutions to resolve the problem. Recently, a notion called

transaction ID renaming is presented in [7] to address this problem

of increasing effective memory utilization in presence of in-order

requirements. The key idea is to manage two independent sets of

transaction ID on master and network sides, respectively. In order to

realize this notion, the authors present an NoC component called

request parallelizer which consists of reorder buffer (ROB) and

transaction ID management block. The request parallelizer is

located at NoC entry and takes in-order requests2 from master IP(s)

and renames transaction IDs between master and network ID sets.

Our observation shows that, although the request parallelizer

improves performance by resolving the in-order problem, its

1 We assign a distinct transaction ID to an independent stream of

accesses. Thus, the accesses of the same transaction ID need to be

processed in order. The order of memory accesses with the same

transaction ID needs to be maintained at the I/O port of the master.

However, memory accesses with different transaction IDs can be

processed out of order. AXI protocol has ‘transaction ID’ and OCP

has ‘tag ID’ to represent to which transaction, i.e., to which

independent stream of accesses the request/data/response belongs.
2 We define packet types in Section 4.2.1.

978-3-9810801-5-5/DATE09 © 2009 EDAA

implementation is not area-efficient. Its area (dominated by the

ROB) occupies a significant portion, up to 30.1%, of total NoC area

[7]. In addition, according to our observation, the utilization of ROB

is low. It is used only when in-order packets are in transit.

In our work, in order to improve the utilization of ROB resource

previously used only for in-order packets, we propose to move the

ROB from the NoC entry (i.e., the request parallelizer) to NoC (i.e.,

the network router). To do that, we present a novel idea called in-

network reorder buffer (in short, INROB). We also present a

microarchitecture of router to realize the idea. In the presented idea,

the resource of the original ROB in the request parallelizer becomes

additional virtual channels (VCs) in the network router. The

additional VCs are used for normal VC operations (when there is no

in-order packet) as well as reorder buffer operations (when there is

any in-order packet traversing the router). Assuming that the same

amount of resource (that was used by the ROB in the request

parallelizer) is now used for the additional VC’s, our idea can offer

double benefits: (1) improving overall NoC performance (by

allowing other packets to use the additional resource and by

allowing in-order packets to enjoy more share of ROB) and (2) still

supporting the in-order requirements.

This paper is organized as follows. Section 2 reviews related

work. Section 3 exemplifies the in-order requirement problem, and

presents existing solutions and their limitations. Section 4 presents

the idea of in-network reorder buffer, a method of virtual channel

management and a router microarchitecture. Section 5 reports

experimental results. Section 6 concludes the paper.

2. Related Work
The deadlock problem due to the in-order requirement (to be

explained in Section 3) can be resolved by limiting parallelism. In

[8], multiple outstanding requests are allowed towards different

destinations as far as there is only one outstanding request per

destination. In [7], the notion of transaction ID renaming is

presented and request parallelizers are placed at network entry or

fork points to transform in-order requests into out-of-order ones

using the transaction ID renaming and the reorder buffer. However,

as Section 3.2 will show, such an implementation of ID renaming

and reorder buffer can suffer from a low resource utilization.

Reorder buffers are used in multi-path routing methods to

maintain the in-order requirement at the reconvergent points

[9][10][11]. Compared with the reorder buffer in existing multi-path

routing methods, e.g., [11], the usage of reorder buffer in this paper

(and in [7]) is different in that the reorder buffer and ID renaming is

applied to the bi-directional transfer of multi-cast memory access

requests (from a master to multiple slave DDR memories) and

corresponding data (from the slave memories to the master) while

the conventional reorder buffer in adaptive routing handles only the

uni-directional data transfer (e.g., from a slave DDR memory to a

master). However, reorder buffer usage in both [7] and conventional

adaptive routing can suffer from a problem of low utilization of

reorder buffer to be explained in Section 3.2.

There have been presented several router architectures for NoC

purposes [12][13][14]. Among them, the notion of flit reservation

flow control in [14] is similar to ours in that flit buffers are reserved.

However, the purposes of flit buffer reservation are different since

[14] aims at the reduction in the turnaround time in flit control

while ours reserves flit buffers to realize the reorder buffer.

3. Background

3.1 In-Order Requirement Problem
Figure 1 illustrates the in-order requirement problem and a solution

that resolves it by limiting parallelism. Figure 1 (a) shows a 2x2

NoC connected with two masters, and two DDR memories (via their

memory controllers). Figure 1 (b) shows a scenario of memory read

accesses from the masters. In the scenario, master 2 sends a request

A to memory 1 at time 1. Master 1 sends a request C to memory 2 at

time 2 and a request D to memory 1 at time 3, respectively. Master

2 sends a request B to memory 1 at time 4. Assume that each master

uses a distinct transaction ID for its memory accesses. Thus,

memory accesses are in-order ones for each of masters. For instance,

request A needs to be served earlier than request B from the

viewpoint of master 2. However, requests from different masters are

independent from each other. 3 Thus, memory controller 1 can

reorder independent requests A and D (the same for memory

controller 2) in order to increase memory utilization. Suppose that

memory controller 1 reorders the two requests A and D since

request D accesses an already open row in the DDR memory. Thus,

the data of request D (in short, data D) is read out earlier than data

A as Figure 1 (b) shows. Suppose also that memory 2 serves request

B earlier than request C due to the same reason of favoring the open

row access.

Figure 1 Multiple memory accesses and deadlock problem

We assume zero NoC delay in our examples in Figures 1, 2, and 3.

However, our arguments hold in presence of real NoC delay. As

shown in Figure 1 (b), at time 6, master 2 cannot receive data B due

to the in-order requirement that master 2 needs to receive data A

before data B. Thus, master 2 stops data B at its input port while

waiting for data A. The same situation occurs at master 1. At time 7,

master 1 stops data D at its input port while waiting for data C.

However, data A and C cannot advance due to the blocked data D

and B, respectively. Thus, a deadlock happens.

Figure 1 (c) shows a solution to resolving the deadlock by limiting

parallelism. As shown in the figure, it does not issue requests D and

3 The requests and data with the same shading in the figure have the

same transaction ID.

Master 2

Memory 1

Memory 2

Master 1 C

DA

A A

B

B

C

C D

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D

B

16 17

Master 2

Memory 1

Memory 2

Master 1 C

D A

A

B C

B

D

(a) NoC example

(b) Deadlock

(c) A parallelism-limiting solution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Master

2

Master

1

Mem

Ctrl.
1

Mem.

1

Mem

Ctrl.
2

Mem.

2

VC

VC

VC

VC

VC

VC

VC

VC

R1 R2

R3 R4

B until data C and A are received by the masters. By doing that, the

deadlock does not occur since each IP can have outstanding

requests for only one destination memory. However, performance

suffers from limited parallelism.

3.2 Existing Transaction ID Renaming Solution
Figure 2 (a) illustrates a recent solution of transaction ID renaming

[7]. It breaks the in-order requirements by managing two sets of

transaction ID: master ID and network ID. The transaction ID is

renamed by a block called request parallelizer (RP). The RP has an

internal reorder buffer (ROB) as Figure 2 (a) shows. When a new

inorder read request is issued by a master to the RP, first, the

availability of ROB is checked. If there is an available buffer space

for the return data of the request, the RP reserves it for the return

data of the request4, issues a new network ID to the request and

sends the renamed request to the network. When the data arrive at

the RP, they are stored in the previously reserved buffer space. Then,

the data in the ROB are transferred to the master according to the

original issue order of requests by the master.

Figure 2 Reorder buffer usage at the entrance of NoC [7]

The transaction ID renaming outperforms the solution of Figure 1

(c) since it allows masters to issue multiple outstanding requests to

multiple memories (i.e., multiple outstanding requests per memory),

which enables higher memory utilization by memory access

reordering. However, it has two limitations. One is a high area

overhead of reorder buffer. According to [7], the ROBs in the RPs

occupy up to 30.1% of total NoC area. The other limitation is its

low utilization of such an expensive ROB resource. Figure 2 (b)

illustrates the limitation. In this case, there are two RPs, each for

master 1 and 2, respectively. Assume that master 1 tries to make

four consecutive read requests A, B, C and D (B and D to memory 1,

and A and C to memory 2). Assume also that the ROB in the RP

supports up to two outstanding requests for reorder operation. As

shown in Figure 2 (b), master 1 can have three outstanding

requests. 5 Request D can be issued only after master 1 finishes

receiving data A. From the viewpoint of resource utilization, the

ROB for master 2 is not utilized in this scenario. In our work, we try

4 Buffer reservation is necessary to avoid the deadlock [7].

5 Note that the first request A does not reserve the ROB since it

does not have any in-order requirement with previously issued

requests.

to utilize the unused ROB resource of master 2 by moving it to the

network router in order to improve the overall performance of NoC

as well as that of master 1’s requests.

4. In-Network Reorder Buffer Scheme
In this section, we first introduce the basic idea of in-network

reorder buffer (INROB). Then, we explain the management of

INROB and present the micro-architecture of network router to

realize the INROB. In our work, we assume that the control and

data network share the same routers in the NoC.

4.1 Basic Idea
Figure 3 illustrates the case that the ROB resources (and transaction

ID renaming functions) are moved from the request parallelizers to

the network routers as compared with Figure 2 (a). Figure 3 (a)

shows that the routers have additional virtual channels (VCs) called

reorder VCs (RVCs). We show RVCs in the figure only for the

illustrative purpose in order to explain that some additional VCs are

added to the router (to be exact, as VCs for the data network). In

reality, there is no difference between normal VC and RVC since

any VC can be used for a reorder or normal purpose by the virtual

channel management to be explained in Section 4.2. In the NoC

with the INROB, the router needs to maintain the in-order

information while performing transaction ID renaming.

Figure 3 Proposed idea: in-network reorder buffer

Assume the same scenario shown in Figure 2 (b) with the NoC of

Figure 3 (a). Each router is assumed to have the additional RVC to

support the reservation of (the return data of) one request.6 Thus, the

overall ROB resource is the same as in Figure 2 (a). Master 1 issues

four read requests from time 1 to 4. Request A traverses routers R1

and R4 without transaction ID renaming and RVC reservation since

it does not have any in-order requirement with previously issued

requests. Router R1 is a fork router towards the two memories.

Request B is renamed at router R1 and an RVC is reserved for the

return data of request B. Request C is renamed at R1. However,

request C cannot reserve any RVC at R1 since request B already

used up the RVC quota allocated to router R1. Thus, the renamed

request C is routed to router R4 and reserves an RVC at the router.

Due to the same reason (R1’s RVC is occupied by request B),

request D is renamed at R1 and reserves an RVC at R2.

6 To be exact, the RVC quota is allocated on an input port basis as

explained in Section 4.2.

Master

2

Master

1

Mem

Ctrl.

1

Mem.

1

Memory 1

Memory 2

Master 1

D

C

A

A B

A

D

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D

16 17

Mem

Ctrl.

2

Mem.

2

B C

VC

VC

VC

VC

VC

VC

VC

VC

Dedicated

ROB
C

B

C

B

ROB

Request
Parallelizer 2

Request
Parallelizer 1

ROB

R1 R2

R3 R4

18 19

(a) Request parallelizers located at network entry

(b) A case of low resource utilization with reorder buffers

VC

RVC

VC

RVC

VC

RVC

VC

RVC

Master

2

Master

1

Mem

Ctrl.

1

Mem.

1

Memory 1

Memory 2

Master 1

Mem

Ctrl.

2

Mem.

2

In-network

ROB

D

C

A

A B

A

D

DB C

C (R4)

B

C

B (R1)

R1 R2

R3 R4

D (R2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

3 cycles

reduction!

(a) In-network reorder buffer

(b) Execution cycle reduction by in-network reorder buffers

At time 6, memory 2 sends data C to router R4. They are stored

in the previously reserved RVC at R4. At time 7, memory 1 sends

data B to router R1. They are stored in the RVC at R1. At time 8,

memory 2 provides data A. They pass the two routers (R4 and R1)

and arrive at master 1. At time 10, R1 detects the end of data A’s

transfer. R1 starts to transfer data B since data B is now independent.

At time 11, memory 1 sends data D to the RVC of R2. At time 12,

when the transfer of data B finishes, R1 informs R4 of the

completion of data B’s transfer by sending a control packet called a

RVC release packet (in short, release packet). On receiving the

release packet, router R4 starts to transfer data C to master 1. At

time 14, when the transfer of data C finishes, R1 sends a new RVC

release packet to R2 to inform that data D are now independent and

ready to be transferred.

Compared with the scenario in Figure 2 (b), the concept of

INROB improves by three cycles the total execution cycle of

completing the four requests. The improvement in Figure 3 (b)

mainly results from the fact that the requests of master 1 can utilize

more ROB resources (supporting three requests) in Figure 3 (b) than

in Figure 2 (b) (supporting only two requests).

4.2 Reorder Virtual Channel Management

Basically, the router supports normal VC management [15]. In

addition to the basic function, we add new functions: transaction ID

renaming, RVC reservation and release.

4.2.1 Packet Types
The NoC has two types of packets: control and data packets. The

control packet has three sub-types: request, response and release

packets. The request packet has two modes, complete and

incomplete modes, for the purpose of RVC management.

Completeness represents the requirement or status of RVC

reservation. All the requests start from the master with the complete

mode. Then, when it is assigned a new network ID (at the fork

router to be explained in Section 4.2.3), its mode changes to the

incomplete mode since RVC reservation is required. After the

reservation finishes, the mode changes back to the complete mode.

We denote a request packet with the complete (incomplete) mode

with a CR (IR) packet.

The request packet has a field called ROB_size which represents

the required size of ROB. Initially, it is set to the size of

corresponding data packet. When the request finishes RVC

reservation, this field becomes zero indicating that the mode

becomes complete.

4.2.2 Reorder VC Budgeting
Each input port of router has a quota, i.e., a threshold in RVC usage.

Setting the threshold, i.e., RVC budgeting plays an important role in

the efficiency of INROB. There can be a design space for both

design-time and runtime RVC budgeting. We will investigate this in

our future work. In the experiments, we used a uniform RVC

allocation (one RVC per input port) whose details will be given in

Section 5.

RVC budgeting needs a special attention not to cause deadlock in

network routing. To be specific, in order to avoid deadlock, RVC

budgeting takes the same approach of building a deadlock free NoC

with adaptive routing [16]. We assume that a deadlock free network

is already designed (e.g., by using distance classes, deadlock free

routing such as dimension order routing, etc.). Then, additional

resources (e.g., RVCs) are added (with RVC budgeting) on top of

the deadlock free network.

4.2.3 Transaction ID Renaming
The transaction ID renaming (between master and network IDs) of

the original request parallelizer is performed by the router (called

fork router) where request packets with the same master ID

bifurcate towards different destinations. Note that the router

renames request packets with the same transaction ID only when

their destinations are different. In order to detect the difference in

the destination, the router keeps the information of destination (i.e.,

outport) per active transaction ID.7 Thus, the router monitors the

transaction ID of incoming packet and checks to see if it matches

any of active transaction IDs. If so, the destination check is

performed. If the bifurcation in destinations is detected, then the

router performs transaction ID renaming and changes the mode of

incoming request into the incomplete mode since it now requires

RVC reservation.

Renaming is implemented as assigning an increasing counter

value to the NoC sequence field of request packet. The transaction

ID of data/response/release packet follows that of the corresponding

request packet. The fork router also issues release packets in a look-

ahead manner as explained in Section 4.2.5.

4.2.4 Reorder VC Reservation
Figure 4 shows the pseudo code of RVC reservation. For each

incoming incomplete request (IR) packet, the RVC availability

(within the RVC budget) is checked for the port of return data path

(line 2). If there is availability, the router tries to reserve the VC up

to the ROB_size of the IR packet within the RVC budget (line 3). If

the reservation is incomplete, i.e., only a part of required buffer

space (no buffer space) is reserved, the ROB_size field of the

packet is updated (unchanged) (lines 4-5). Then, the request packet

is routed towards its destination (line 6). The IR packet can arrive at

the last router connected to the destination without completing the

reservation. In such a case, the request is kept at the last router as a

pending request occupying a VC in the control network. We set a

threshold of maximum number of pending IR packets that a router

can support. Thus, if the threshold is reached, the router blocks

incoming IR packets until the pending ones are resolved. The

pending request will be resolved later when a release packet arrives

at the router as explained in Section 4.2.5.

Figure 4 Reorder VC reservation

4.2.5 Reorder VC release
Reorder VC release is managed by a release packet sent by the fork

router that previously renamed the corresponding request packet.

The router sends the release packet for the next request in the

original request packet order. For instance, in the case of Figure 3

(b), at time 12, router R1 sends a release packet to R4 to inform that

data C becomes ready to be transferred since the previous data B

completes the data transfer. The release packet contains the

transaction ID of the corresponding packet (for which the ROB

setup was tried). The release packet has a higher priority than the

other packet types, request, response and data packets.

7 When there is any outstanding request, the transaction ID of the

outstanding request is called active transaction ID.

1 For each IR packet

2 If VC is available at the port of return data path
3 Reserve the VC as RVC at the port

4 If the reservation is incomplete

5 Update the ROB_size field in the packet
6 Forward the request packet towards the destination

Figure 5 Router behavior on receiving a release packet

Figure 5 shows the pseudo code of handling the release packet.

Upon receiving a release packet (for instance, at R4, time 12 in

Figure 3 (b)), the router checks to see if there is any RVC that the

release packet targets (line 1 in Figure 5). If so, it changes the status

of RVC into ‘Normal VC’ (line 2) since the corresponding request

(request C in the example) is now independent and does not require

RVC reservation. Then, the contents of RVC (now, normal VC) are

sent to the corresponding master. If the corresponding IR packet

resides at the router as a pending request (line 3) due to a partial

RVC reservation or a flow control, the router changes the status of

IR request from ‘incomplete’ to ‘complete’ since the request is now

independent (line 4). The CR (complete request) packet is

forwarded towards its destination (line 5).

The delay from the issue of release packet to the arrival of next

data at the fork node can affect the performance of INROB scheme.

In order to reduce the effect, the fork router performs a look-ahead

issue of release packet. When detecting the first flit of currently

ready data packet, the fork router issues a release packet to inform

the next data packet. As shown in Section 5, the look-ahead release

packet improves the performance of INROB scheme significantly.

4.3 Router Architecture
Figure 6 shows the structure of router supporting the concept of

INROB. It consists of three pipe stages: Route Compute/VC

allocation/RVC management – VC selection (for the input of

crossbar) – Outport arbitration (for the output channel of router).

The RVC management includes RVC allocation to an IR packet (if

there is available buffer space for RVC), status update from a

pending IR packet to a CR packet, VC allocation to an IR packet (if

it is blocked by the next router), and sending a release packet (if the

router is the fork one).

Figure 6 Router architecture

The look-ahead release packet makes multiple data streams

(corresponding to consecutive request packets) advance towards the

master. When the router performs port arbitration (pipe stages 2 and

3 for the inport and outport arbitration of crossbar), the router

utilizes the original in-order information (i.e., network ID which is

the sequence number in the packet header) to select the arbitration

winner as in [7].

5. Experimental Results
In our experiments, we use two test cases: synthetic ones and

industrial strength DTV SoC example.

5.1 Network-on-Chip
Figure 7 illustrates the entire architecture consisting of a 16 node

mesh NoC, eight processing elements (PEs, denoted with ‘P’ in the

figure) and eight memory sub-systems (denoted with ‘M’) each

consisting of a memory controller and a 32b DDR memory (CL-

tRP-tRCD=3-3-3, 4 banks/memory). We use a commercial memory

controller (PL340) [6]. The memory controller has the data FIFO of

size 16 (64b words).

Figure 7 A 16 node mesh NoC

The NoC uses 64b flits. The control packet has 1 flit, and the data

packet 8 flits. The router performs X-Y routing and wormhole

switching. For the data network, the baseline router has a 4-flit deep

buffer per VC and 2 VCs per input port. For the control network,

the router has four VCs (each 1-flit deep buffer) per input port.

5.2 Synthetic Test Cases
In the synthetic test cases, four PEs (among total eight) accesses

eight memories in three scenarios: random, local, and mixed traffics.

In the random traffic, the four PEs send in-order read requests to

eight memories with randomly generated addresses. Thus, the

memories are selected randomly for each read request. In the local

traffic, the four PEs send random in-order read requests to the near

memories more than other remote memories. We used the

weighting factor proportional to 1/2d where d is the distance

between the PE and the memory according to [17]. In the mixed

mode, one PE sends in-order read requests to eight memories

randomly while each of the other three PEs sends, to its own

designated memory, read requests that do not require RVC

reservation. In the three scenarios, each PE sends burst 8 read

requests to the memories depending on the given request rates (e.g.,

given 20%, a burst 8 request is sent every 40 cycles).

When the method in [7] is applied, the ROB size of request

parallelizer per PE is 4*8*64b (supporting five outstanding in-order

requests of 64b burst 8), which corresponds to eight (4-flit deep)

VCs in the data network. In the NoC with INROB, we distribute the

ROB resource of request parallelizers (equivalent to total 64 VCs)

to 16 routers. Thus, each router has four additional VCs (i.e., one

additional VC per input port) as the RVCs. The RVC budget is set

to one VC per input port. The threshold of the number of maximum

pending IR packets is set to three.8 For each input port, the router

keeps up to eight pairs of information of active transaction ID and

destination for the destination check.

We run RTL simulation with the NoC and PE models (written in

Specman), the RTL code of PL340, and the Denali DDR memory

8 We leave, for the release packet, one VC (among four) at the input

port of router in the control network.

1 If there is any RVC reserved for the corresponding packet

2 Change the status of RVC to normal VC
3 If the corresponding packet is pending at the router

4 Change the pending IR packet to a CR packet

5 Forward the CR packet towards the destination

VC

VC

VC

RVC

In0

In4

VC Allocator

VC Selector

Outport

Arbitrator

Out0

Out4

Route Computer

RVC Manager

P

M

P

M

M

P

M

P

P

M

P

M

M

P

M

P

model. The simulation runs until all the PEs complete the same

amount of memory accesses.

Figure 8 shows the simulation results. We measure latency from

the time when a packet of memory access request is issued from the

PE to the time when the data are completely received by the PE

from the memory. As Figure 8 shows, compared with the existing

method (RP) in [7], the presented methods (INROB_L and INROB)

decrease average read latency as the request rate increases. For

instance, in the case (shown with arrows in the figure) that the

request rate is 90% for the random traffic, the presented method

with the look-ahead release packet (INROB_L) gives 27.3%

reduction in average read latency.

The benefit of the presented method becomes much clearer in the

mixed traffic scenario as Figure 8 (c) shows. The presented method

(INROB_L) gives 32.8% reduction in the latency in the case of

request rate of 90%. The main reason of such a performance

improvement is that the packets that do not require RVC reservation

benefit from the increased resource, i.e., four VCs per router.

Figure 8 Performance evaluation under synthetic test cases

5.3 DTV SoC Case
We use an industrial strength DTV SoC case used in [7]. It supports

MPEG2 decoding for QFHD size (3840x2160) video processing [1].

We apply the presented approach to the backbone NoC, 4x4 mesh

as shown in Figure 7. The architecture has, as masters, four video

codec IPs and four different pixel processing IPs, e.g., noise

reduction, mixer, etc. The DTV example uses four DDR memories

(located at the central two columns in Figure 7). Each of the four

codec IPs accesses only its own dedicated DDR memory. Thus, the

memory accesses of codec IPs do not require RVC reservation.

Each of the other four IPs has two master transaction IDs and

accesses all the four memories. We use the same configuration of

NoC and memory controller as in the synthetic test cases.
Table 1 Performance comparison with the DTV case

 Avg. Latency Normalized Exec. Cycle

RP [7] 138 1

INROB 131 0.907

INROB_L 119 0.831

Table 1 shows the performance comparison. The presented method

gives 16.9% reduction in total execution cycle compared with the

method in [7]. The main reason is analyzed as follows. The

communication periods of the eight IPs do not always overlap with

each other. Thus, in our method, there are possibilities that the

codec IPs as well as the pixel IPs benefit from the increased VC

resource in the router. In this case, the look-ahead release packet

gives further improvement (7.6%) in the total execution cycle.

6. Conclusion
This paper presented a novel idea of in-network reorder buffer that

improves the utilization of reorder buffers by embedding them into

the network routers. Compared with the existing method, the

presented idea allows both in-order and other packets to utilize the

increased resource (reorder virtual channel, RVC) in the routers

while supporting the in-order requirements. We presented the

method of RVC management that performs the reservation and

release of RVCs. We also presented the micro-architecture of router

that supports RVC management. Experimental results show that the

presented idea improves overall system performance by 16.9% in

the case of DTV SoC example. In our future work, we will work on

the architectural exploration of RVC budgeting, IR packet threshold

assignment, QoS guarantee for in-order requests, etc.

7. References
[1] Y. Lin, “Design Challenge of a QuadHDTV Video Decoder”,

MPSoC School, 2007, available at http://tima.imag.fr/mpsoc.

[2] nVidia Tegra, http://www.nvidia.com/page/handheld.html.

[3] Intel Tera-scale Computing Research Program,

http://techresearch.intel.com/articles/Tera-Scale/1421.htm.

[4] S. Borkar, “Thousand-Core Chips - A Technology Perspective”,

Proc. DAC, 2007.

[5] T. Ezaki, et al., “A 160Gb/s Interface Design Configuration for

Multichip LSI”, Proc. ISSCC, 2004.

[6] AMBA3 protocol and components,

http://www.arm.com/products/solutions/AMBAHomePage.html.

[7] W. Kwon, et al., “A Practical Approach of Memory Access

Parallelization to Exploit Multiple Off-chip DDR Memories”,

Proc. DAC, 2008.

[8] A. Harris, et al., “Bus deadlock avoidance”, US Patent 7219178,

2007.

[9] J. Hu and R. Marculescu, “DyAD – Smart Routing for

Networks-on-Chip”, Proc. DAC, 2004.

[10] J. Kim, et al., “A Low Latency router Supporting Adaptivity

for On-Chip Interconnects”, Proc. DAC, 2005.

[11] S. Murali, et al., “A Multi-Path Routing Strategy with

Guaranteed In-Order Packet Delivery and Fault-Tolerance for

Networks on Chip”, Proc. DAC, 2006.

[12] E. Rijpkema, et al., “Trade offs in the design of a router with

both guaranteed and best-effort services for networks on chip”,

Proc. DATE, 2003.

[13] T. Marescaux and H. Corporaal, “Introducing the SuperGT

Network-on-Chip”, Proc. DAC, 2007.

[14] L. Peh and W. J. Dally, “Flit-Reservation Flow Control”, Proc.

HPCA, 2000.

[15] W. J. Dally, “Virtual Channel Data Flow Control”, IEEE Trans.

Parallel Distributed Systems, 3(2), March 1992.

[16] W. J. Dally and B. Towles, Principles and Practices of

Interconnection Networks, Morgan Kaufmann Publishers, 2004.

[17] NoC-Benchmark Working Group, “Network-on-Chip Micro-

Benchmark Specification”, OCP-IP, May 2008.

0

100

200

300

400

500

600

0

100

200

300

400

500

600

700

0

100

200

300

400

500

600

20% 40% 60% 80% 100%

RP

INROB

INROB_L

(a) Random (b) Local

(c) Mixed

A
v
e

ra
g

e
 R

e
a

d
 L

a
te

n
c
y
 (
C

y
c
le

s
)

A
v
e

ra
g

e
 R

e
a

d
 L

a
te

n
c
y
 (
C

y
c
le

s
)

A
v
e

ra
g

e
 R

e
a

d
 L

a
te

n
c
y
 (
C

y
c
le

s
)

20% 40% 60% 80% 100%

20% 40% 60% 80% 100%

Read Request Rate Read Request Rate

Read Request Rate

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

