
Design Optimizations to Improve Placeability of
Partial Reconfiguration Modules

Markus Koester and Wayne Luk
Department of Computing,

Imperial College London, UK
Email: {mkoester, wl}@doc.ic.ac.uk

Jens Hagemeyer and Mario Porrmann
System and Circuit Technology,

University of Paderborn, Germany
Email: {jenze, porrmann}@hni.uni-paderborn.de

Abstract—In partially reconfigurable architectures, system
components can be dynamically loaded and unloaded allowing
resources to be shared over time. This paper focuses on the
relation between the design options of partial reconfiguration
modules and their placement at run-time. For a set of dynamic
system components, we propose a design method that optimizes
the feasible positions of the resulting partial reconfiguration
modules to minimize position overlaps. We introduce the concept
of subregions, which guarantees the parallel execution of a
certain number of partial reconfiguration modules for tiled
reconfigurable systems. Experimental results, which are based
on a Xilinx Virtex-4 implementation, show that at run-time the
average number of available positions can be increased up to 6.4
times and the number of placement violations can be reduced
up to 60.6%.

I. INTRODUCTION

The reconfigurability of FPGAs allows the implementation
of adaptable and customizable hardware systems. Partially
reconfigurable FPGAs allow a part of the system to be changed
or adapted without the necessity of reconfiguring the whole
chip. Thus, the system component, which requires to be
reconfigured, can be replaced by a new one, while the remain-
ing components continue to operate without interruption. In
such systems, dynamic system components are represented by
partial reconfiguration modules (PR modules). The ability of
dynamically loading and unloading PR modules allows FPGA
resources to be shared over time. In this paper we focus on a
system with a partially reconfigurable region (PR region) that
consists of an array of reconfigurable tiles. A reconfigurable
tile is the atomic unit for partial reconfiguration.

The placement of a PR module is achieved by allocating
a reasonable amount of contiguous reconfigurable tiles. In
the context of reconfigurable computing various methods have
been proposed on how to place a PR module at run-time. In [1]
Bazarghan et al. describe the problem of placing a PR module
as an online bin-packing problem. Steiger et al. [2] discuss
the problem of online placement and scheduling of hard real-
time tasks for partially reconfigurable devices. Handa et al. [3]
introduce a placement algorithm aiming at reducing the degree
of fragmentation. In [4] a placement approach is introduced,
that considers the routing costs to existing instances of PR
modules. Lu et al. [5] introduce an algorithm for PR module
placement, which pre-partitions the area of the PR region into
blocks of different sizes. On the placement of a PR module

the blocks are split and merged to maintain contiguous free
resources.

All previously described methods assume a homogeneous
PR region and neglect the fact, that FPGAs are heteroge-
neous architectures. A partially reconfigurable region typically
comprises different types of resources, such as logic blocks,
memory blocks, and DSP blocks. The heterogeneity of the
resources significantly limits the placement of the PR modules
within the PR region. Placement approaches such as bin-
packing cannot be used unless the packing rule is adapted to
handle placement constraints caused by the heterogeneity. As
described in [6], [7] the configuration data (partial bitstream)
of a PR module can be placed at any position with the
same arrangement as the types of tiles from which it is built.
Thus, the placement of a PR module is restricted to a set of
feasible positions, which depends on the synthesis region the
PR module is generated from. In [8] a placement algorithm is
described, which considers the heterogeneity of the PR region.
The authors show that each PR module can have a different set
of feasible positions, causing a different resource utilization of
the reconfigurable tiles in the PR region.

In this paper we focus on design-time issues for heteroge-
neous partially reconfigurable regions. The synthesis region
of a PR module is the area in the device, that is used to
generate the configuration data (partial bitstream) from. It
defines the set of feasible positions for the PR module and
affects the placeability of the PR module at run-time. Hence,
the synthesis regions of the PR modules can be optimized
in such a way as to minimize the degree of overlap of the
corresponding feasible positions. We introduce a concept to
evaluate the degree of overlap at design-time by using an
overlap graph. Furthermore, we introduce the partitioning of
the reconfigurable tiles of the PR region into subregions,
which can be used to guarantee that a certain number of PR
modules can be placed in parallel. The proposed concepts are
demonstrated in an example implementation using a Xilinx
Virtex-4 FPGA.

The rest of the paper is organized as follows: Section II sum-
marizes the concept of tiled PR regions. Section III describes
the design-time evaluation of the degree of overlap by using
the overlap graph and the optimization of the placeability of
PR modules. Section IV provides an example of how to apply
the proposed optimization method to a set of dynamic system

978-3-9810801-5-5/DATE09 © 2009 EDAA

Logic Block

Block RAM

Base Region

PR Region

Reconfigurable
Tile - Type 1

Reconfigurable
Tile - Type 2

Embedded
Comm. Macro

1 1 1 1

1 2 1 1

1 1 1 1

1 2 1 1

21

Fig. 1. Example of a partitioning scheme using a PR region with reconfig-
urable tiles.

components on a Xilinx Virtex-4 FPGA. Experimental results
show the benefit of the proposed design-time optimizations.
Section V summarizes the paper.

II. TILED PR REGIONS

In [9] a module-based design flow for partial reconfigura-
tion is introduced, which is supported by the Xilinx design
tools. The design flow enables partial reconfiguration at the
granularity level of a PR region. This type of PR Region can
be classified as a single-module PR region, where the number
of PR regions describes the upper bound of dynamic system
components that can execute in parallel. The drawbacks of this
approach are that the size of a PR module is limited by the
size of the PR region, and that small PR modules occupy the
resources of the whole PR region.

An alternative to the single-module PR Region is the
tiled PR region described by Hagemeyer et al. [10]. In this
approach the partially reconfigurable region is subdivided into
reconfigurable tiles. Such tiled partitioning allows placement
of multiple PR modules in a PR region. A reconfigurable tile
can be considered as an atomic unit of partial reconfiguration.
A PR region may contain several different types of tiles
offering different amounts of available resources. The tiles of
the same type are built identically using the same number and
arrangement of resources. All static components of the system
are located in the so called base region. The communication
between the PR modules and the static system components is
realized by so called embedded communication macros [10].
In each tile a certain amount of resources are reserved for the
embedded communication macro. Every tile is connected to
its neighboring tile using the same type of resources. Figure 1
shows an example with a base region and a PR region, which
is partitioned into an area of 4 × 4 reconfigurable tiles. The
PR region in the example is heterogeneous, since two different
types of tiles are used. At run-time an instance of a PR module
is mapped to one or several contiguously aligned tiles. This
is done by partially reconfiguring the selected tiles using the
equivalent configuration data (partial bitstream) of the PR
module.

By manipulating the configuration data as described in [6],
[7], a PR module can be placed at any position with the same

m1

m2

m3

1 1 1 1

1 2 1 1

1 2 1 1

1 1 1

1 1 1 1

1 2 1 1

1 2 1 1

1 1 1

2 1

111

1

1 1 1

X m 1 1pos 1() = {(,)} X m

1 1
pos 2() =

{(,), }(,)1 4

X m

3 1
pos 3() =

{(,) }, (,), (,)3 2 3 3

1

1 1

1

1

1

1

1

1

1

2

2

1

1

1

1 1

1 1

1 1

1 1

x

y

Fig. 2. Example of a set of PR modules and their feasible positions.

arrangement as the types of tiles from which it is built. If M
is the set of all PR modules in the system, then all placement
options of a PR module m ∈ M can be described by the
set of feasible positions Xpos(m) = {(x1, y1), (x2, y2), . . .}.
Without loss of generality, (xi, yi) ∈ Xpos(m) describes the
position of the tile at the lower left corner of the PR module
m with respect to the lower left corner of the PR region. A PR
module can take up any size from a single tile to all tiles of
the PR region. Figure 2 shows the PR region of Figure 1 and
an example of a set of PR modules with the corresponding
feasible positions. The values in each tile indicate the type of
tile.

In any reconfigurable system, the number and the size of
the concurrently executable PR modules are restricted by the
number of available resources of the reconfigurable unit. In
this context we introduce the term allocation width, which
can be described as follows. A PR system has an allocation
width of nalloc, if for any possible configuration of (nalloc−1)
instances of PR modules, it is still possible to place one in-
stance of any PR module. In a tiled PR region a fixed allocation
width cannot be guaranteed in any case, since the placement
is subject to the current configuration of PR modules and the
degree of fragmentation. However, an application can require
a reconfigurable unit with a certain allocation width, since the
execution of essential dynamic system components should not
be delayed or reject.

Applications that do not demand a particular allocation
width should be designed to be able to handle placement
violations. A placement violation is the situation when the
application is requesting the placement of a PR module,
but in the current configuration there are not enough free
contiguous resources available to place an instance of the
requested PR module. There are three basic policies to handle
placement violations. The first option rejects the placement
and the application is forced to execute an alternative system
component. This can be a software or hardware component
using different types of resources or a different algorithm
implementation. The second option delays the placement until
the execution of one of the existing instances of PR modules is
finished, and a suitable number of resources are released. The
third option rearranges the existing instances of PR modules

(1,1)

(1,1) (1,4)

(3,1) (3,2) (3,3)

m1

m2

m3

2 1

111

1

1 1 11

1

1

1

1

Fig. 3. Example of an overlap graph

aiming to reduce the fragmentation to be able to place the
requested PR module. In [11], [12] suitable defragmenta-
tion methods are introduced. However, such defragmentation
brings overhead such as lengthening the reconfiguration time
to relocate existing instances of PR modules.

III. PLACEABILITY OF PR MODULES

In this section we describe a scheme to evaluate the degree
of position overlap and the corresponding placeability of PR
modules at design-time. With respect to run-time placement,
the PR modules vary according to their resource requirements,
their shape, and their feasible positions. The feasible positions
of the PR modules are known at design-time and depend on the
selected synthesis region. If a PR module is placed at one of
its feasible positions, it affects the availability of the feasible
positions of the other PR modules. Those feasible positions
become unavailable that utilize at least one tile of the selected
position. The overlap graph G = (V,E) is an undirected graph
that enables visualizing these resource dependencies. It shows
which of the feasible positions of the PR modules overlap
with each other. The graph can be used with arbitrarily shaped
PR modules. For simplicity we will focus on rectangular PR
modules in the following. A vertex v = (m, x, y) ∈ V
represents a feasible position (x, y) ∈ Xpos(m) of the PR
module m ∈M . The set of all vertices is defined as

V =
⋃

m∈M

{(m, x, y) | (x, y) ∈ Xpos(m)}. (1)

Hence, the number of vertices is the same as the sum of
feasible positions of all PR modules. For a vertex v1 =
(m1, x1, y1) ∈ V and a vertex v2 = (m2, x2, y2) ∈ V an edge
(v1, v2) is created, if v1 6= v2 and the area of PR module m1

at position (x1, y1) overlaps with the area of PR module m2 at
position (x2, y2). Figure 3 shows the overlap graph for the PR
modules of the example in Figure 2. The overlap graph can
be further adapted to take into account the temporal relations
between PR modules if they are known at design-time. In this
case the edges between PR modules, which are never used at
the same time, can be removed.

With the overlap graph we can evaluate the degree of
overlap for each feasible position of the PR modules. For this
purpose we introduce the position weight. Using the overlap

1
3

1
6

1
6

1
9

1
9

1
9

(a) Probability weights wp(v)

13
18

11
18

5
18

7
18

12
18

13
18

(b) Position weights wpos(v)

Fig. 4. Probability and the position weights.

graph the computation of the position weights is done in two
steps. First the probability weights

wp(v) = palloc(m)/|Xpos(m)| (2)

are computed for each vertex v = (m, x, y) ∈ V , where
palloc(m) denotes the probability of an allocation of the
PR module m. The probability weight wp(v) indicates the
probability of a feasible position to be chosen, if all tiles
in the PR region are available and a random placement
is applied. Figure 4(a) shows the corresponding probability
weights for the PR modules shown in Figure 2 with a fixed
palloc(m) = 1/|M |. In the example of the 3 PR modules the
allocation probability is ∀m ∈ M : palloc(m) = 1/3 and PR
module m2 has 2 feasible positions, such that the probability
weight for its feasible positions is wp(v) = 1/(3 ∗ 2) = 1/6.

The position weight wpos(v) of a feasible position is com-
puted by summing up the probability weights of the adjacent
vertices. The set of adjacent vertices Vadj is defined as

Vadj(v) = {vadj | (v, vadj) ∈ E}, (3)

and the resulting position weight is calculated by

wpos(v) = wp(v) +
∑

vadj∈Vadj(v)

wp(vadj). (4)

The position weights for the PR modules of Figure 2 are
shown in Figure 4(b). The position weights reflect the degree
of overlap. E.g., the placement of an instance of m2 at
position (1, 4) only blocks the position (3, 3) of m3, while
the placement of an instance of m2 at position (1, 1) blocks
the positions (1, 1) of m1 and (3, 1) of m3. Therefore, the
position weight 5/18 of position (1, 4) of m2 is lower than
the one from position (1, 1).

A metric to evaluate the degree of overlap of all feasible
positions is to generate a sort of average value of the position
weights of all feasible positions. As the probability weight
wp(v) reflects the probability of a feasible position to be
selected at a random placement, the overlap weight of all PR
modules is defined as follows:

wovr(V) =
1
|V |

∑
v∈V

wpos(v) · wp(v) (5)

The average value of the position weights is divided by the
total number of feasible positions |V | to balance the degree

of overlap and the number of feasible positions. The synthesis
regions of the given PR modules can be selected in such a
way as to minimize wovr(V). A small wovr(V) indicates that
the overlaps of feasible positions of the PR modules are small.
Minimizing the overlap weight aims at maximizing the number
of available positions after placement of a PR module at run-
time.

A PR module of a dynamic system component can be
synthesized in various options. Hence, a dynamic system com-
ponent can be represented by different PR module variants.
Each PR module variant can have a different shape or location
of the synthesis region resulting in a different set of feasible
positions. But with the increasing number of PR module
variants the amount of memory for storing the corresponding
configuration data increases as well. Therefore, it is necessary
to limit the number of PR module variants or even consider
only one PR module for each dynamic system component. An
objective at design-time is to select a suitable number of PR
module variants for each dynamic system component aiming
to optimize the placeability at run-time. The selected PR
modules can be evaluated by computing the overlap weight.
If a PR module of a new dynamic system component requires
to be added to an existing system, the degree of overlap with
the existing PR modules can be minimized by selecting the
PR module variant causing the minimum overlap weight. If a
small number of PR modules (e.g. | M |≤ 10) is required to
be added to the system, the set of PR modules with a minimum
overlap weight can be determined by exhaustive search. For
a large number of new dynamic system components heuristic
approaches are required, since the search space needs to cover
all combinations of PR module variants.

For those applications that are not tolerant of placement
violations, the system is required to guarantee that a certain
number of PR modules can be executed in parallel at all
time. Therefore, the selection of PR module variants can be
performed to obtain a certain allocation width. In the context
of tiled PR regions, the PR region can be partitioned into
disjoint subregions. If r(m) = (#Slices, #BRAMs, ...) is
the resource requirement for the PR module m ∈M and rsub

is the number of available resources in a subregion, then rsub

has to satisfy
∀m ∈M : r(m) ≤ rsub. (6)

The resources occupied by an instance of any PR module are
located completely within a subregion, such that at any time
as many PR modules can be executed in parallel as given by
the number of disjoint subregions. Therefore, the number of
subregions corresponds to the allocation width.

IV. EXAMPLE IMPLEMENTATION

In order to implement a tiled PR region using Xilinx Virtex-
4 FPGAs, a suitable region has to be selected. In the Virtex-4
architecture a column of a clock region, which is referred to
as a frame, is the smallest partially reconfigurable unit. Hence,
the area of a PR region should be multiples of a frame, and
the smallest possible height for a reconfigurable tile is the

2
 x

 1
0

G
ri

d
 o

f
R

e
c
o

n
fi

g
u

ra
b

le
 T

il
e
s

Base Region (Static Logic) PR Region (Reconf. Logic)

FPU (all)

CORDIC
rec2polar

AES128 decode

AES128 encode

CORDIC sinh/cosh

Fig. 5. Partitioning of the Xilinx Virtex-4 FX100 FPGA using (2 × 10)
tiles.

height of a frame. In the example implementation we vertically
divide the FPGA, such that the resources located left of the
center column are dedicated to static system components (base
region), and the resources located right of the center column
are considered for the tiled PR region. Figure 5 shows an
example of the partitioning for a Virtex-4 FX100 FPGA.

We consider three different partitionings for the tiled PR
region with an area of (1× 10), (2× 10), and (3× 10) tiles.
The tile sizes are chosen with respect to the ratio between the
resources needed for the communication infrastructure and the
resources available for the partially reconfigurable logic. Inside
a tile, the number of resources for interconnecting the tiles
and the base region does not depend on the tile size but on the
specification of the communication infrastructure. To maintain
a certain degree of available resources for partially reconfigu-
rable logic within each tile, the tile size should therefore not be
too small. The number of available resources of the different
tiles are shown in Table I. The interconnection of the tiles
is realized by an embedded communication macro supporting
a shared bus for 32-bit data width, and 14-bit address width.
The bus structure features 16-bit dedicated control signals with
2-bit dedicated signals, which are implemented by using the
techniques described in [10].

Since the various resource types (Slices, BRAMs, DSPs) of
Virtex-4 FPGAs are arranged in columns, the reconfigurable
fabric can be considered as homogeneous in the vertical

TABLE I
AVAILABLE RESOURCES OF THE TILES.

PR Region Tile Type Slices BRAMs DSPs

(1x10) center 1536 16 4

left 768 8 4

right 768 8 -

left 512 4 4

center 512 8 -

right 512 4 -

(2x10)

(3x10)

TABLE II
EXAMPLE SET OF DYNAMIC SYSTEM COMPONENTS.

Application Component Slices BRAMs DSPs

decryption 1382 13 -

encryption 1009 9 -

arctan 1985 - -

rec2polar 728 - -

polar2rec 501 - -

sinh/cosh 2162 - -

all 1435 - 12

add/sub 557 - -

divider 922 - -

mulitplier 338 - 8

AES128

CORDIC

FPU

direction. This homogeneity can be used to define subregions
based on the following principle. Starting from the bottom tile
row of the PR region, the area of the subregion is gradually
expanded until it contains enough available resources so that
each single PR module can be placed. The process repeats with
the next subregion, which is located on top of the preceding
subregion, until the top row of the tiles in the PR region is
reached.

The test system comprises the embedded PowerPC of the
Virtex-4 FX100 FPGA and the dynamic system components
listed in Table II. As a benchmark we have generated different
random load and unload sequences B2, B3, . . . , B6 for the
selected dynamic system components. For the benchmark Bn

the value of n reflects the number of instances of PR modules
that are executed in parallel. Each benchmark removes the
earliest placed instance of PR module and places a new
randomly chosen PR module. In the case of a placement
violation, the placement is repeated with a new randomly
selected PR module until it succeeds. Each sequence contains
10000 placement requests. The placement is done by selecting
the free feasible position with the least position weight wpos.

In the following example we only select the FPU compo-
nents and generate one PR module for each component using
the PR regions (1 × 10), (2 × 10), and (3 × 10) without
subregions. For each PR region we generate two sets of
PR modules. One set contains the PR modules with feasible
positions optimized with respect to a minimal overlap weight
(min. wovr). The set is derived by computing the overlap
weight for every possible combination of synthesis regions
for the PR modules and selecting the combination with the
least overlap weight. The second set of PR modules contains

0

10

20

30

40

50

60

70

80

B2

Benchmark

B3 B4 B5 B6

(2x10) min. wovr

(3x10) min. wovr

(2x10) max. | |Xpos

(3x10) max. | |Xpos

(1x10) min. wovr

(1x10) max. | |Xpos

A
v
r.

 A
va

il
a

b
le

 P
o

si
ti

o
n

s
[%

]

Fig. 6. Percentage of available positions of the FPU PR modules.

0

10

20

30

40

50

60

B2

Benchmark

B3 B4 B5 B6

(2x10) min. wovr

(3x10) min. wovr

(2x10) max. | |Xpos

(3x10) max. | |Xpos

(1x10) min. wovr

(1x10) max. | |Xpos

P
la

ce
m

e
n

t
V

io
la

ti
o

n
s

[%
]

Fig. 7. Percentage of placement violations using the FPU components.

the ones optimized with respect to the maximum number of
feasible positions (max. |Xpos|). Figure 6 shows the average
percentage of available positions of the PR modules for each
benchmark. A larger number of available positions indicates
a lower degree of fragmentation and a better placeability
of additional instances of PR modules. As the number of
concurrently placed instances of PR modules increases, the
number of available positions decreases. When comparing the
different sets of PR modules, we find that the overlap weight
optimized PR modules using the (2 × 10) PR region offer
the most available positions, followed by the overlap weight
optimized PR modules using the (3 × 10) PR region. The
average number of available positions of the overlap weight
optimized PR modules is up to 6.4 times larger (benchmark
B5) than one from the PR modules optimized with respect to
the maximum number of feasible positions.

Figure 7 confirms the result, as the percentage of place-
ment violations of the set of overlap weight optimized PR
modules is significantly lower than the percentage of place-
ment violations of the other sets of PR modules. A lower
number of placement violations suggests a large degree of
resource utilization of the PR region. By using the overlap
weight optimized PR modules the placement violations can

TABLE III
PERCENTAGE OF PLACEMENT VIOLATIONS USING ALL COMPONENTS.

B2 B3 B4 B5 B6

tiled 0.0 0.1 3.7 22.2 41.2

tiled subregion 0.0 0.0 7.3 22.4 39.8

tiled 0.0 0.1 3.2 22.9 43.7

tiled subregion 0.0 0.0 8.3 23.6 41.8

0.0 0.0 100.0 100.0 100.0single-module

Benchmark

(2x10)

(3x10)

PR Region

be reduced by up to 60.6% (benchmark B5). For the chosen
FPU components, the (2 × 10) PR region has the best run-
time behavior, although the (3× 10) PR region offers a larger
degree of placement options.

When only the CORDIC components are used, the set of
overlap weight optimized PR modules is identical to the set of
PR modules optimized for the maximum number of feasible
positions. This is due to the fact that all tiles offer the same
amount of slices, and the CORDIC components use slices only.
So the overlap weight optimization only has an impact on
placement if the dynamic system components use different
types of resources, like in the case of the FPU components.

Table III shows the percentage of placement violations using
all dynamic system components. It focuses on the impact of
using subregions in the PR region. By using subregions an
allocation width of nalloc = 3 can be achieved, while the tiled
PR regions (2 × 10) and (3 × 10) without subregions cause
placement violations in the benchmark B3 and therefore only
have an allocation width of nalloc = 2. For single-module PR
regions the benchmarks B4, B5, and B6 cannot accommodate
the requested PR modules and they are therefore not suitable.
Using tiled PR regions, more than 90% of the requested PR
modules of the benchmark B4 can be placed. This shows the
increased placeability of PR modules of tiled PR regions over
single-module PR regions especially for applications that are
able to handle placement violations.

V. CONCLUSION

When using tiled PR regions in heterogeneous reconfigu-
rable architectures, the placement algorithm should be able
to deal with the limited feasible positions of a PR module.
The placement quality does not only depend on the placement
algorithm, but on design-time aspects such as the chosen
synthesis regions of the PR modules and their corresponding
feasible positions. In this paper we propose a design method
for selecting a synthesis region for PR modules aiming to
optimize placement at run-time. The key idea is to compute a
position weight for each feasible position of every PR module
and to generate an overlap weight, which quantifies the degree
of position overlaps. The overlap graph is a data structure to
derive the position weights. As shown by experiments, the
overlap optimization can significantly improve the placement
of PR modules. In addition to the overlap optimization, the
paper introduces the concept of subregions in a tiled PR region.
The use of subregions allows a fixed allocation width and is

therefore particularly suitable for applications that are not able
to handle placement violations.

Currently, the minimization of the overlap weight is done by
exhaustive search, which only allows a limited number of PR
modules to be added to the system. In future work, a heuristic
search algorithm will be developed that is able to find a near
optimum overlap weight for a large number of PR modules.
Furthermore, the proposed approach will be refined based on
further applications such as software defined radio [7], and
extended to cover a variety of tiled partially reconfigurable
devices.

ACKNOWLEDGMENT

This work was supported by the German Research Council
(DFG) and the UK Engineering and Physical Sciences Re-
search Council (EPSRC).

REFERENCES

[1] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast template placement
for reconfigurable computing systems,” IEEE Design and Test of Com-
puters, vol. Vol. 17, No. 1, pp. 68–83, 2000.

[2] C. Steiger, H. Walder, and M. Platzner, “Operating systems for reconfig-
urable embedded platforms: Online scheduling of real-time tasks,” IEEE
Transactions on Computers, vol. 53, no. 11, pp. 1393–1407, 2004.

[3] M. Handa and R. Vemuri, “Area fragmentation in reconfigurable op-
erating systems,” in Proceedings of the International Conference on
Engineering of Reconfigurable Systems and Algorithms. CSREA Press,
2004, pp. 77–83.

[4] A. Ahmadinia, C. Bobda, M. Bednara, and J. Teich, “A new approach
for on-line placement on reconfigurable devices,” in 18th International
Parallel and Distributed Processing Symposium (IPDPS 2004). IEEE
Computer Society, 2004.

[5] Y. Lu, T. Marconi, G. N. Gaydadjiev, K. Bertels, and R. J. Meeuws, “A
self-adaptive on-line task placement algorithm for partially reconfigu-
rable systems,” in Proceedings of the 22nd Annual International Parallel
and Distributed Processing Symposium (IPDPS 2008) - RAW2008, April
2008, pp. 1–8.

[6] H. Kalte and M. Porrmann, “REPLICA2Pro: Task relocation by bit-
stream manipulation in Virtex-II/Pro FPGAs,” in Proceedings of the
ACM International Conference on Computing Frontiers, 2006.

[7] T. Becker, W. Luk, and P. Cheung, “Enhancing relocatability of partial
bitstreams for run-time reconfiguration,” in IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE Computer
Society Press, 2007, pp. 35–44.

[8] M. Koester, H. Kalte, and M. Porrmann, “Task placement for het-
erogeneous reconfigurable architectures,” in Proceedings of the IEEE
2005 Conference on Field-Programmable Technology (FPT’05). IEEE
Computer Society, 2005, pp. 43–50.

[9] P. Lysaght, B. Blodget, J. Mason, B. Bridgford, and J. Young, “En-
hanced architectures, design methodologies and CAD tools for dynamic
reconfiguration of Xilinx FPGAs,” in 16th International Conference on
Field Programmable Logic and Applications, 2006, pp. 12–17.

[10] J. Hagemeyer, B. Kettelhoit, M. Koester, and M. Porrmann, “Design of
homogeneous communication infrastructures for partially reconfigurable
FPGAs,” in Proc. of the Int. Conf. on Engineering of Reconfigurable
Systems and Algorithms (ERSA ’07). CSREA Press, 2007.

[11] M. Koester, H. Kalte, M. Porrmann, and U. Rückert, “Defragmentation
algorithms for partially reconfigurable hardware,” IFIP International
Federation for Information Processing Series, vol. 240, pp. 41–53, 2007.

[12] J. Angermeier, S. Fekete, T. Kamphans, D. Koch, N. Schweer, J. van
der Veen, and J. Teich, “No-break dynamic defragmentation of recon-
figurable devices,” in Proceedings of International Conference on Field-
Programmable Logic and Applications (FPL 08), Heidelberg, Germany,
Sep. 2008.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

