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Abstract—Processors that deploy fine-grained reconfigurable 
fabrics to implement application-specific accelerators on-
demand obtained significant attention within the last decade. 
They trade-off the flexibility of general-purpose processors 
with the performance of application-specific circuits without 
tailoring the processor towards a specific application domain 
like Application Specific Instruction Set Processors (ASIPs). 
Vast amounts of reconfigurable processors have been pro-
posed, differing in multifarious architectural decisions. How-
ever, it has always been an open question, which of the pro-
posed concepts is more efficient in certain application and/or 
parameter scenarios. Various reconfigurable processors were 
investigated in certain scenarios, but never before a systemat-
ic design space exploration across diverse reconfigurable pro-
cessor concepts has been conducted with the aim to aid a de-
signer of a reconfigurable processor. 

We have developed a first-of-its-kind comprehensive design 
space exploration tool that allows to systematically explore 
diverse reconfigurable processors and architectural parame-
ters. Our tool allows presenting the first cross-architectural 
design space exploration of multiple fine-grained reconfigur-
able processors on a fair comparable basis. After categorizing 
fine-grained reconfigurable processors and their relevant pa-
rameters, we present our tool and an in-depth analysis of re-
configurable processors within different relevant scenarios. 

I. INTRODUCTION 
Employing reconfigurable processors [1, 2] affects the application 
development in two different ways. First, the application-specific 
hardware accelerators need to be designed for the reconfigurable 
fabric (typically in a hardware description language) and after-
wards, these accelerators need to be operated efficiently. To ob-
tain a benefit from the hardware accelerators the application pro-
grammer is required to insert Special Instructions (SIs) into the 
application (e.g. using inline assembly or compiler tools). In a 
way, both steps are comparable to the development process of 
Application Specific Instruction Set Processors (ASIPs)  [3]. 
However, reconfigurable processors need to determine which ac-
celerators should be loaded into the reconfigurable fabric at 
which time during the application execution. This is often accom-
plished by so-called prefetching instructions  [4] that trigger the 
upcoming reconfigurations.  

The difference between ASIPs and reconfigurable processors 
becomes noticeable when executing SIs. An ASIP provides all 
SIs statically, typically using the same fabrication technology like 
the core pipeline. A reconfigurable processor instead has to use a 
different fabrication technology for the SIs (FPGA-like reconfi-
gurable1). Additionally, it may not have an SI available when it 
shall execute, e.g. because the process of reconfiguration has not 
finished yet. The partitioning of the reconfigurable fabric (e.g 
how many SIs can be provided at the same time) has a high im-
pact on whether or not an SI is available when it is demanded. 
Furthermore, architectural parameters (e.g. the reconfiguration 
time) affect the ability to efficiently provide SIs on demand. 
                                                                          
1 coarse-grained reconfigurable hardware (e.g. ALU array with con-

figurable interconnects) is not the focus of this work 

Multifarious processors – varying in their concepts and the 
complexity of their run-time system – are presented and discussed 
in literature (see Section  II). However, it remains an open ques-
tion which of the proposed concepts is more appropriate in certain 
scenarios (e.g. for a specific CPU- and FPGA frequency or the 
logic capacity of the available reconfigurable fabric etc.). To 
practically investigate this question it is not adequate to compare 
the independently published performance values, because they are 
based on different assumptions, different applications, and differ-
ent normalizations (i.e. the definition of ‘1x speedup’). 
Our contributions are: 
• a novel comprehensive design space exploration tool that al-

lows to systematically explore diverse reconfigurable proces-
sors through a set of relevant architectural parameters, 

• an SI-based categorization of reconfigurable processors, and 
• an exploration of the impact of relevant architectural parame-

ters as well as cross-architectural comparisons on a comparable 
basis conducted with our design space exploration tool. 

To the best of our knowledge, this is the first cross-architectural 
design space exploration of multiple fine-grained reconfigurable 
processors on a fair comparable basis. Our design space explora-
tion tool provides a valuable aid when developing systems with 
fine-grained reconfigurable fabrics. We will describe the concepts 
and advantages/disadvantages of different processor categories in 
Section  III after summarizing the relevant reconfigurable proces-
sors from literature in Section  II. Furthermore, we will explain the 
assumptions and realization of our cross-architectural design 
space exploration tool in Section  IV and explain how it can be 
used to explore the diverse reconfigurable processors. In Sec-
tion  V, we present and analyze cross-architectural comparisons 
before concluding in Section  VI. 

II. RELATED WORK 
Besides coarse-grained reconfiguration1 (like ADRES  [5]) fine-
grained reconfigurable systems can be partitioned into general 
frameworks and specific processors. General Frameworks like 
[6, 7] provide a generic environment into which dedicated IP-
cores can be loaded on demand. Typically, they are equipped with 
a general-purpose CPU core that may host an operating system 
 [8] to perform the reconfigurations. Many of these frameworks 
use the Xilinx FPGAs and tools  [9] to realize the reconfiguration 
in practice. 

Some of the early reconfigurable processors like CoMPARE 
 [10] provide a reconfigurable fabric that is coupled to the pipeline 
of the core processor similar to an ALU and that can be reconfi-
gured to comprise the hardware implementation of a single SI at a 
time. CHIMAERA  [11] instead couples the processor core with a 
reconfigurable fabric that may contain multiple SIs with at most 9 
inputs and 1 output value (register addresses are hardcoded within 
the SI) at the same time. The MOLEN processor  [12] offers an in-
struction set extension to access a reconfigurable fabric. The in-
struction set extension can be parameterized to support only one 
or multiple SIs at a time. The SIs are executed by a general in-
struction that obtains the address of the configuration bitstream as 
parameter to identify the demanded SI. 
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The RISPP processor introduces a new concept of SIs  [13] in 
conjunction with a run-time system  [14] to support them. Each SI 
exists in multiple implementation alternatives, reaching from a 
pure software implementation (i.e. without using the reconfigura-
ble fabric) to various hardware implementations (providing dif-
ferent trade-offs between the amount of required hardware and 
the achieved performance). The concept is to break SIs into ele-
mentary reconfigurable data paths that are connected to imple-
ment an SI. A run-time system dynamically chooses one alterna-
tive out of the provided SI implementations, depending on the 
current application requirements. 

III. RECONFIGURABLE PROCESSOR ALTERNATIVES 
A. SI-Based Categorization of Reconfigurable Processors 
We have systematically analyzed the reconfigurable processors 
presented in Section  II and will now present a categorization that 
covers these processors as well as discloses potential processor 
candidates that were not yet considered in research prototypes. 
Besides the later presented architectural parameters (see Sec-
tion  B), the basic distinguishing attribute is the concept to provide 
SI implementations, i.e. ‘how many SIs may be available at the 
same time?’ and ‘how many implementation alternatives exist per 
SI?’. We assume that all SIs may also be executed using the In-
struction Set Architecture of the core pipeline to bridge the SI re-
configuration time. This is typically realized using a simple trap 
mechanism or a special branch instruction that jumps to a handler 
when the SI is not available in hardware. Furthermore, all proces-
sors have certain similarities due to technical constraints of avail-
able reconfigurable fabrics and their tools. The implementation of 
a hardware description into a reconfigurable fabric always fea-
tures a rectangular outline, as this is the typical shape into which 
the ‘place & route’ tools can place the implementation. Further-
more, these rectangular SI implementations cannot be placed at 
each arbitrary position within the reconfigurable fabric. To estab-
lish the communication between the CPU and the SI, dedicated 
communication ports are provided at fixed locations within the 
reconfigurable fabric. To connect an SI implementation to these 
communication ports, the rectangular SI implementation needs to 

be aligned to these communication ports. This leads to the notion 
of SI Containers (SIC), i.e. a rectangular region in the reconfigur-
able fabric that provides a communication port to the SI imple-
mentation that is currently loaded into this container. 

 

Category-1: Single SI Container   Early investigated reconfi-
gurable processors (e.g.  [10]) provide exactly one SIC as shown 
in Fig. 1. This SIC has a fixed size of logic that is determined 
while designing the system. If the SIC is too small, then not all 
potential SIs fit within. Instead, if it is too big (i.e. providing more 
logic resources than what is actually required or beneficial), then 
this has a negative effect on the hardware utilization and the time 
it takes to reconfigure the entire SIC. Additionally, large SICs 
come with the problem of internal fragmentation, i.e. the availa-
ble reconfigurable fabric can only be utilized to implement one SI 
at a given time although the sole amount of reconfigurable fabric 
might be sufficient to implement more. 

 

Category-2: Multiple SI Containers   The extension of Catego-
ry-1 partitions the reconfigurable fabric into multiple SICs such 
that potentially multiple SIs are available at the same time (see 
Fig. 1). For a given logic capacity of the reconfigurable fabric, the 
question arises whether to partition it into few rather big SICs or 
into more rather small SICs (depending on the requirements of 
the targeted applications etc.). Prominent examples of this catego-
ry are [11, 12]. 

 

Category-3: Multiple Overlapping SIs   The major conceptual 
difference of Category-3 compared to Category-1 and 2 is the 
partitioning of the reconfigurable fabric. Instead of partitioning it 
into SICs, it is partitioned into Data Path Containers (DPCs) as 
shown in Fig. 1. This modification is based on the observation 
that SIs are sometimes composed out of more elementary compu-
tations, e.g. transform operations like DCT, inverse DCT, or (in-
verse) Hadamard Transformation (HT) require some computa-
tional butterflies that have similarities. Therefore, when e.g. re-
quiring the four SIs for (inverse) DCT and (inverse) HT within a 
loop, it may be more beneficial to load just one transform butterf-
ly into the reconfigurable fabric and to share it among the four 
different SIs (i.e. the SI implementations overlap, because they 
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Fig. 1. Classification of Reconfigurable Processors, Differing in the Realization of Special Instructions (SIs) 



share some DPCs). It is also noticeable that the amount of SIs that 
may be available in the DPCs is not fixed. It actually depends on 
the SIs and their capability of reusing data paths. Using the con-
cept of SICs (Category-1 and 2) for providing the above-
mentioned four SIs in the same loop, four SICs have to be availa-
ble and the butterfly functionality has to be loaded into each of 
them. Thus, further reconfigurable fabric is required. 

However, to partition the reconfigurable fabric into DPCs, 
these DPCs have to be able to communicate with each other to 
eventually realize the functionality of the SI. Therefore, a com-
munication system (e.g.  [15]) needs to connect the DPCs. On the 
one hand, this communication system might affect the scalability 
of the system, while on the other hand the actually required logic 
capacity of the reconfigurable fabric might be reduced, depending 
on the potential to share data paths between the SIs. 

 

Category-4: Single Partitioned SI Container   On the one hand, 
this category combines Category-1 and 3, i.e. one SIC is internal-
ly partitioned into multiple DPCs. On the other hand, this catego-
ry introduces the new concept of multiple different implementa-
tions per SI. This extension is based on the observation that an SI 
often requires multiple instances of a certain data path. E.g., the 
DCT SI internally executes the transform butterfly multiple times, 
depending on the size of the input data on which the DCT shall 
execute. Depending on the logic capacity of the reconfigurable 
fabric, either multiple instances of the butterfly can be loaded into 
different DPCs to be executed in parallel or one instance is se-
quentially executed multiple times to eventually achieve the same 
functionality. This leads to an SI implementation with less area 
requirements at the cost of reduced performance. 

The concept of providing multiple implementations per SI and 
partitioning the SI into data paths allows for upgrading the cur-
rently available SI implementation by loading further data paths. 
Thus upgrading allows moving the execution towards a more pa-
rallel scheme. The concept of upgrading potentially reduces the 
problem of a long reconfiguration time. For instance, Category-1 
and 2 only provide a single implementation per SI and the com-
plete SIC has to be reconfigured to load it. Thus, bigger SICs au-
tomatically increase the reconfiguration time. 

 

Category-5: Multiple Partitioned SI Containers   This category 
is the combination of Category-2 and 3 (see Fig. 1), i.e. it can 
provide multiple SIs at the same time and each SI can be up-
graded, as the SICs are partitioned into DPCs. Compared to Cat-
egory-3 it solves the scalability problem (i.e. the inter-DPC com-
munication bus does not cover all DPCs but only those within one 
SIC). This is accomplished by fixing the number of supported SIs 
at design time and thus it requires specific knowledge of the ap-
plication requirements. 

 

Category-6: Multiple Data-Path Containers   Combining the 
advantages of Category-3 and 5, Category 6 provides a homoge-
neous region of DPCs which may be used to implement one ra-
ther big SI (i.e. using most of the DPCs) or multiple small SIs. 
This decision can be re-evaluated whenever the SI is demanded 
and thus the system can adapt to changing run-time requirements 
like changing SI execution frequencies in the application or dif-
ferent SI demands of different applications in a multi-tasking en-
vironment. Category-3 instead is just able to provide one fixed 
implementation per SI whereas Category-5 is limited to the num-
ber of SIs it can support, thus both are lacking adaptivity (like re-
quired in a multi-tasking scenario). The advantage of the greater 
flexibility comes at the disadvantage of potential scaling prob-
lems for the inter-DPC communication system (similar to Catego-
ry-3) as well as the additional overhead of a run-time system that 
actually makes the decisions on how to deploy the provided flex-
ibility depending upon the current system state. 

Category-1, 2, and 6 were actually investigated in literature [10-
15]. However, Category-3 and 5 are advantageous as well since 
they reduce the overhead compared to Category-6: 
• Category-3 solves to potential fragmentation problem of Cate-

gory-1 and 2 without introducing the need to maintain multiple 
implementation alternatives per SI as in Category-6. 

• Category-5 solves the problem of the rather long reconfigura-
tion time of Category-1 and 2 (i.e. until the full SI is reconfi-
gured) without demanding the central bus system of Category-
6 that connects all DPCs with each other. 

B. Relevant Architectural Parameters 
Besides different concepts of SI-implementations for the recon-

figurable fabric, further parameters and properties of the sur-
rounding system are relevant for evaluating the performance. 
Table I shows the parameters that our design space exploration 
tool supports, covering all performance-wise relevant parameters. 

TABLE I.   ARCHITECTURAL PARAMETERS 
Parameter Symbol Physical Unit

CPU frequency fCPU [MHz]
FPGA frequency fFPGA [MHz]
Reconfiguration bandwidth R [MB/s]
#Memory ports P N/A
Bit width per port W [Bits]

 

• The Operating Frequency of the FPGA and the core pipeline 
may differ. In general, the non-reconfigurable fabric (core 
pipeline) can run with a faster frequency than the reconfigura-
ble fabric (FPGA) due to the different fabrication technologies. 

• The Reconfiguration bandwidth determines the time it takes 
to reconfigure parts of the FPGA (e.g. an SIC or DPC). The re-
configurable fabric is reconfigured by loading new configura-
tions (i.e. bitstreams). The size of these bitstreams and the re-
configuration bandwidth determine the reconfiguration time. 

• The number of memory ports (that can access data memory 
in parallel at independent addresses) and the bit width per 
memory port determine the amount of input data that is avail-
able to perform computations. Note that only SIs that execute 
on the reconfigurable fabric may use the extended memory 
access. To be compliant to the ISA, the core pipeline always 
uses one memory port with 32-bit width. 

IV. OUR DESIGN SPACE EXPLORATION TOOL 
To be able to simulate/evaluate the diverse reconfigurable proces-
sors and relevant architectural parameters described in Section  III, 
we designed and implemented a flexible design space exploration 
tool supporting a wide set of configurable parameters. Note that 
we do not intend to automatically explore the design space, but 
rather we provide an accurate and configurable simulator with a 
corresponding tool chain that allows comparing reconfigurable 
processors on a fair basis and investigating the impact of diverse 
architectural parameters. Fig. 2 visualizes the major components 
and interactions of our simulator as a UML class diagram. It is 
partitioned into three major parts: the core pipeline and run-time 
system (managing the application execution and reconfigura-
tions), the SIs (representing their implementations, execution 
times, etc.), and the FPGA. The FPGA is an abstract class that 
can be instantiated as a SIC FPGA (for Category-1, 2, 4, 5 in 
Fig. 1) or as a DPC FPGA (for Category-3 and 6). Note that the 
SICs can contain zero (Category-1 and 2) or multiple (Category-
4, 5) DPCs internally. Correspondingly, each DPC belongs to 
zero (Category-3 and 6) or one (Category-4 and 5) SIC. 

The SIs are composed of at least two implementations: one us-
ing the data paths and one using the Instruction Set Architecture 
(ISA) of the core pipeline. The SIs and their composition are de-
termined by an external XML file that defines all required infor-
mation like the name of the SI, the instruction format and opcode 



(to be able to decode it out of the application binary) and the 
available implementations with the latency and data path re-
quirements. Furthermore, the data paths contain the information 
on the bitstream size (to determine the reconfiguration time for 
Category-3 to 6) and the logic requirements (to determine how 
many fit into an SIC for Category-1 and 2). The XML file is iden-
tical for all processors, as it provides all possible SI implementa-
tions. When the simulation starts, the set of all possible imple-
mentations is automatically restricted, corresponding to the con-
straints of the selected processor category. For instance, when 
only one hardware implementation shall be available per SI, then 
the fastest implementation that fits into the SICs is selected stati-
cally. However, for different data memory ports and bit widths, 
different XML files exist. They are semi-automatically created as 
part of our tool chain, taking the actual data-flow graph of the SI 
(the data paths correspond to the nodes in the graph) with the cor-
responding load/store activities as input and then scheduling it, 
i.e. determining a starting time for each data path. This schedule 
is automatically performed for all possible resource constraints 
(i.e. how many instances of a certain data path are available at the 
same time) to obtain all implementation alternatives. 

The simulation of the pipeline receives the application binary 
along with the ISA as input. The ISA is automatically extended 
by the SI information from the XML file to be able to decode all 
instructions. The non-SI instructions are actually not executed by 
the pipeline, but a branch trace (containing all taken branches in 
their actually executed sequence) is provided to mimic the exact 
application execution. This allows abstracting our simulator from 
the actual ISA2 and reduces the simulation time, as we are inter-
ested in investigating different processor categories and architec-
tural parameters for one fixed branch trace. The branch trace is 
derived from an instruction set simulator (ISS). We have assured 
that the execution in our simulator for reconfigurable processors 
matches the actual execution. Therefore, we have modeled the 
pipeline in our simulator and provided the information which in-
struction requires how many cycles in which pipeline stage (e.g., 
                                                                          
2 it is currently setup for MIPS and SPARC-V8; the SI instruction 

format and opcode for both ISAs are provided in the XML file 

the mult instruction stalls the execution stage). However, the reg-
ister file and data memory accesses are not simulated, thus, al-
though at any time we know which instruction is currently in 
which pipeline stage, we cannot determine the current content of 
the register file or the actual data memory accesses. To simulate 
the exact data memory accesses (to e.g. attach a cache simulator) 
an additional data access trace needs to be provided from the ISS. 
Currently, each load/store instruction is configured to require two 
cycles. When the pipeline issues these memory accesses then the 
cycle time corresponds to the CPU frequency, otherwise to the 
FPGA frequency. This mimics the scenario that all accesses to the 
instruction memory and stack are cache hits and that all accesses 
to the data input stream are handled by a scratchpad memory. 
This allows us to investigate the differences of the processor cat-
egory without affecting the results by cache effects. 

The online monitoring in Fig. 2 is initialized with offline profil-
ing data that is derived from the ISS and that is updated at run 
time. The relevant information that is demanded by the prefetch-
ing unit is the expected SI execution frequency. For Category-6 
this information is used to select implementations for the de-
manded SIs and thus to determine the DPC-distribution among 
the SIs. The simulator creates a detailed log file containing infor-
mation about the current system state and the decisions made. The 
planned reconfigurations are printed along with the current state 
of the FPGA and the information, which SI implementation is 
currently available, e.g. in which SIC. Furthermore, statistics on 
the SI executions are shown, e.g. which SI implementations were 
executed since simulation start or in the recent time. 

V. DESIGN SPACE EXPLORATION 
In the following, we use our design space exploration tool to in-
vestigate the categorized reconfigurable processors and architec-
tural parameters from Section  III. Our goal is to examine the arc-
hitectural parameters as well as performing a cross-architectural 
comparison on a comparable and fair basis. To be able to investi-
gate the advantages and drawbacks of the processor categories it 
is mandatory to benchmark them with applications that actually 
challenge them. For instance, many of the typical ASIP standard 
benchmarks from MiBench  [16] and MediaBench  [17] are rather 
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Fig. 2. Internal Composition of our Design Space Exploration Tool, showing Module Interactions 



small application kernels that often contain only one inner loop 
that corresponds to the major hot spot. For a reconfigurable pro-
cessor this means that only the first execution of this loop actually 
demands a reconfiguration, because afterwards the application 
just executes the same loop with the same SIs again. 

We decided to perform an in-depth analysis of an H.264 video 
encoder as a detailed case study instead of summarizing the re-
sults of multiple applications from MiBench or MediaBench3. 
H.264 is a rather complex application with three subsequent outer 
loops (i.e. Motion Estimation, Encoding Engine, and Loop Filter) 
that are executed for each input frame. They contain multiple ap-
plication kernels and demand run-time reconfiguration to adapt 
the hardware towards the currently executing outer loop. Table II 
summarizes relevant parameters of the SIs and DPs that we have 
implemented for this application. The bitstream sizes and logic 
requirements for the DPs were taken from actual hardware im-
plementations to adapt our simulator to the running FPGA proto-
type. It requires 10.6 seconds to execute the application (encoding 
20 frames in QCIF resolution, i.e. 176x144) on the corresponding 
GPP (i.e. a Sparc-V8 without hardware accelerators) at 100 MHz 
and 2.1 seconds at 500 MHz. Altogether, we have performed 
4620 different simulation and will now present relevant results for 
the different categories and parameters. 

TABLE II.   PROPERTIES OF THE SIS AND DPS FOR OUR BENCHMARK 
Parameter Value Comment 

# SIs 9 4/1 in/out register (e.g. for mem. addresses)
# Data Paths 10 2/2 32-bit in/out values 
SI composition 1 - 4 DPs Utilizing multiple instances per DP
SI memory 
accesses 

0 – 128 
words 

For some SIs the input from register file is 
sufficient, others work on data memory

DP Bitstream 42,719 - 
43,638 Byte 

Bitstream for partial reconfiguration on
Xilinx Virtex-II xc2v6000 FPGA

DP logic re-
quirements 

16 – 192 
slices 

Note: these readings correspond to the pure 
computational logic without the necessary 
interconnection overhead 

 

Category-1 and 2:  We first investigate Category-2 (including 
Category-1 as a special case) regarding its behavior for varying 
amount of SICs. Fig. 3 shows how the available reconfigurable 
fabric may be partitioned into SICs, providing either more SICs 
(different lines) or more reconfigurable fabric per SIC. It is noti-
ceable that the number of SICs does not change the performance 
when the SICs are only one CLB4 wide. Many SI implementa-
tions do not fit into a one CLB-wide reconfigurable fabric. Thus, 
they cannot be provided in this case. When only one SIC is avail-
able, setting its size to be larger than 4 does not improve the per-
formance further because the sequential execution of the SIs that 
cannot be executed in the reconfigurable fabric (because only one 
SIC is available) limits the performance. 

Parameter Invest.
Values

Category 1, 2
fCPU [MHz] 100
fFPGA [MHz] 100
R: [MB/s] 66

P: 2
W: [Bits] 128
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Fig. 3. Category-1 and 2: Partitioning the Hardware into SICs 

                                                                          
3 note that many of their sole application hot spots (e.g. DCT, SAD, 

VLC, or FIR) are components of the H.264 encoder  
4 Configurable Logic Block: determining the amount of reconfigur-

able logic on the FPGA 

Category-4 and 5:  In Fig. 4, we present a design space explora-
tion for Category-5 (multiple partitioned SICs; including Catego-
ry-4 as a special case). Altogether, 2016 different simulations for 
this category are summarized. It is noticeable that the number of 
available SICs and DPCs are dominating the other readings, i.e. 
they determine the basic shape of the results. Again, we can see 
that one SIC is not sufficient for this application. It is noticeable 
that Category-5 does not suffer as much from overdesigned SICs 
(i.e. too many DPCs per SIC, resulting in a rather long reconfigu-
ration time) as Category-2, because not necessarily the whole SIC 
but only the required DPCs need to be reconfigured. 

 

Category-3, 5, and 6 with different frequencies:  Here, we in-
vestigate the impact of the individual parameters and we cross-
compare different processor categories to each other. Fig. 5 inves-
tigates the impact of different CPU- and FPGA frequencies for 
Category-3, 5, and 6. For Category-5, we decided to provide two 
SICs, because from Fig. 4 we learned that two SICs achieved the 
best performance for less than eight DPCs and for more than eight 
DPCs it still achieved a better or similar performance (compared 
to three or more SICs). As seen, all processor categories require a 
critical amount of DPCs to cover the major hot spots. Category-3 
and 6 require only five DPCs to reach this point (see Fig. 5) be-
cause they are not limited in the decision of how many SIs to real-
ize with the given amount of DPCs. For instance, they can spend 
all available DPCs to implement the two SIs for Motion Estima-
tion and the single SI for Loop Filter respectively, while support-
ing 3-6 SIs in the Encoding Engine (depending on the amount of 
available DPCs). 

When less DPCs than the critical amount are provided, then the 
CPU frequency has a noticeable impact on the overall execution 
time of all processor categories. When providing a sufficient 
amount of DPCs, the FPGA frequency has the larger impact. For 
instance in Category-6 with fFPGA=100 MHZ, changing fCPU from 
100 to 500 MHz results in 3.28x performance improvement when 
utilizing 3 DPCs but only 1.23x for 20 DPCs. Instead, for 
fCPU=500 MHz, changing fFPGA from 50 to 100 MHz results in 
1.09x for 3 DPCs, but 1.86x for 20 DPCs. As long as not all ma-
jor hot spots are covered by a hardware implementation, they are 
executed rather sequential (i.e. by the core pipeline) and therefore 
the CPU frequency has the higher impact. After the critical point, 
these hot spots are executed in a parallel manner on the FPGA 
and therefore the FPGA parameters are more relevant. 

For the FPGA the amount of parallelism also depends on the 
amount of input data that is available for the DPCs. While the 
readings in Fig. 5 were obtained using two memory ports with 
128 bits each, the readings in Table III summarize the behavior 
when only one 32-bit port is available. It is noticeable that the 
FPGA frequency has a much higher impact than before because 
now the computation on the FPGA is performed in a more se-
quential way (although still more parallel than on the core pipe-
line), because insufficient input data is available. 

TABLE III.   AVERAGE EXECUTION TIME (BETWEEN 14 AND 24 DPCS) 
WHEN ONLY PROVIDING 1 MEMORY PORT WITH 32 BIT 

Cate-
gory fFPGA [MHz] fCPU=100 MHz fCPU=200 MHz fCPU=500 MHz

3 50 1.1699 s 1.1334 s 1.0880 s
5 50 1.2389 s 1.1575 s 1.0732 s
6 50 1.1286 s 1.0999 s 1.0487 s
3 100 0.6520 s 0.6186 s 0.5840 s
5 100 0.7125 s 0.6220 s 0.5738 s
6 100 0.6032 s 0.5760 s 0.5526 s

 

 

Memory Settings:  To analyze the impact of the memory settings 
further, Table IV shows the simulation results when varying the 
amount of memory ports and their bit widths. It is noticeable that 
the settings with two ports (e.g. 2*32 bits) always outperform the 



corresponding single-port settings (i.e. providing same total bit 
width; e.g. 1*64). Improving from 1*32 to 2*32 results in a 1.68x 
speedup, but improving from 2*64 to 2*128 only achieves 1.15x. 

TABLE IV.   AVERAGE EXECUTION TIME (BETWEEN 14 AND 24 DPCS) 
FOR CATEGORY-6 USING DIFFERENT MEMORY PARAMETERSa 

# Memory Ports Port bit width Average Exec. Time 
1 32 0.6032 s 
2 32 0.3594 s 
1 64 0.4165 s 
2 64 0.2703 s 
1 128 0.3244 s 
2 128 0.2347 s 

a: fCPU=100 MHz, fFPGA=100 MHz, R=66MB/s 
 

Reconfiguration Bandwidth:  Finally, we investigate the impact 
of different reconfiguration bandwidths on the overall perfor-
mance. Fig. 6 shows how the execution time decreases for in-
creased bandwidth. For clarity, we have omitted the readings with 
less than four DPCs because they are significantly slower due to 
insufficient logic capacity of the reconfigurable fabric (as shown 
in Fig. 5). Instead, we want to investigate the importance of the 
bandwidth when all other bottlenecks (e.g. insufficient input data 
or insufficient DPCs etc.) are removed. As shown, a rather slow 
bandwidth (1-15 MB/s) can be compensated by a higher amount 
of DPCs and vice versa, a low amount of DPCs (5-15) can be 
compensated by a faster bandwidth. For 25 DPCs, increasing the 
bandwidth from 25 MB/s to 66 MB/s only leads to a speedup of 
1.06x. However, for 10 DPCs a speedup of 1.26x can be obtained 
when increasing to 66 MB/s. 

Parameter Values
Category 6

fCPU [MHz] 100
fFPGA [MHz] 50
R: [MB/s] 1-25

P: 2
W: [Bits] 128
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Fig. 6. Impact of the Reconfiguration Bandwidth 

VI. CONCLUSION 
We have presented a novel comprehensive design space explora-
tion tool with a wide set of parameters. We used it to investigate 
the impact of relevant architectural parameters as well as to per-
form cross-architectural comparisons on a fair comparable basis. 
By categorizing existing reconfigurable processors, we unveiled 
further – up to now not-yet-considered – processors (i.e. Catego-
ry-3, 4, and 5) and provided an initial evaluation of them. Sum-

marizing our results, we conclude that Category-6 provides the 
highest performance and the highest flexibility. However, it is not 
the focus of our simulator to estimate the necessary overhead for 
the run-time system to support this processor category. If the high 
flexibility or performance is not required in a certain scenario, 
then Category-3 and 5 may be good candidates to trade-off per-
formance vs. overhead. Our design space exploration tool 
presents an important design aid for system designers dealing 
with reconfigurable processors, as it allows a systematically 
cross-architectural design-space exploration of multiple fine-
grained reconfigurable processors on a comparable basis. 
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Parameter Invest. Values
Category 4, 5

fCPU [MHz] 100
fFPGA [MHz] 50, 100
R: [MB/s] 33, 66, 100

P: 1, 2
W: [Bits] 32, 64, 128

Parameter Invest. Values
Category 3, 5, 6

fCPU [MHz] 100, 200, 500
fFPGA [MHz] 50, 100
R: [MB/s] 66

P: 2
W: [Bits] 128
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Fig. 4. Exploring Different Parameters for Category-4 and 5 Fig. 5. Cross-Architectural Comparison (Category-3, 5, and 6)

for Different CPU and FPGA Frequencies 
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