
Gate Sizing for Large Cell-Based Designs
Stephan Held

Research Institute for Discrete Mathematics, University of Bonn,
Lennéstr. 2, 53113 Bonn, Germany

Email: held@or.uni-bonn.de

Abstract—Today, many chips are designed with predefined
discrete cell libraries. In this paper we present a new fast gate
sizing algorithm that works natively with discrete cell choices
and realistic timing models. The approach iteratively assigns
signal slew targets to all source pins of the chip and chooses
discrete layouts of minimum size preserving the slew targets.
Using slew targets instead of delay budgets, accurate estimates
for the input slews are available during the sizing step. Slew
targets are updated by an estimate of the local slew gradient.

To demonstrate the effectiveness, we propose a new heuristic to
estimate lower bounds for the worst path delay. On average, we
violate these bounds by 6%. A subsequent local search decreases
this gap quickly to 2%. This two-stage approach is capable of
sizing designs with more than 5.8 million cells within 2.5 hours
and thus helping to decrease turn-around times of multi-million
cell designs.

I. INTRODUCTION

Continuously decreasing feature sizes allow more and more
cells on a single chip. On ASIC designs, the number of cells
reached 6 million already in 130 nm technology and more than
10 million in 65 nm. Therefore, efficient gate sizing algorithms
for large instances are of high interest.

The mathematically best-founded approaches for the gate
sizing problem rely on geometric/convex programming and
assume continuously sizeable cells or transistors. Delay and
slew functions are modeled as posynomials [6]. A geometric
programming formulation finding a global optimum was given
in [13]. In [3], Lagrangian relaxation and the subgradient
method were applied to a simpler class of posynomials, but
larger instance sizes. This approach was recently revisited
and enhanced in [17]. In the last years, gate sizing has been
extended to optimize statistical timing constraints [1], [14], [15],
and [11]. Besides numerical and running time challenges on
large instances, the apparently optimal geometric programming
approaches lack from the need to approximate delays by
posynomials and their continuity requirement.

However, many chips, in particular ASIC designs, are
designed with predefined discrete cell libraries. Due to the
increasing complexity of design rule checking, this approach
will rather expand with decreasing feature sizes. Often such
libraries are too sparse to allow for fast and simple nearest
rounding [10]. In [10] a dynamic programming approach for
improved rounding was proposed, but its running time will be
rather too high for large designs. In fact, an efficient rounding
procedure providing a quality guarantee is not yet known.

The probably fastest approaches for gate sizing in practice
are delay budget approaches such as [4], [5], and [8]. These

approaches repeatedly (re-)distribute delay budgets to all cells.
Then for each cell the minimum size meeting the budgets is
determined independently from other cells. Newer budgeting
approaches can be found in [16], [12], and [7]. Using simplified
delay models and continuously sizable cells, as for the
geometric programming formulations, optimality can be proven
in some cases, e.g. [16]. For delay budgeting linear/nonlinear
programming, or minimum cost flow algorithms are applied.

Due to the mentioned problems of simplified delay models,
continuity assumptions, numerical and running time challenges,
we propose a different approach that works natively with a
discrete library and given delay models. First, we run a fast
global gate sizing that falls into the category of delay budgeting
heuristics. But, instead of delay budgets we distribute slew
(transition time) targets, which is equivalent assuming that delay
and slew functions are strictly monotone increasing in the input
slew and downstream capacitance. However, slew targets enable
a more accurate cell sizing. The cell size preserving a slew
target depends basically on the load capacitance and the input
slews. During the sizing step we traverse the netlist reverse to
the signal direction, so that the downstream RC-networks are
known for each sized cell. The input slews are not known, as
the preceeding cells are still to be sized. Here, the slew targets
at the predecessors provide the capability to compute good
estimates for the input slews.

Then, after the fast global sizing, we run a local search on
the most critical paths to guide the worst path delay further
into a local optimum.

To demonstrate the effectiveness of our approach, we propose
a new heuristic to estimate a lower bound for the delay on the
most critical path in the design. By comparing with these
bounds on several industrial ASIC designs, we show that
we exceed this bound by only 6% on average. A subsequent
local search reduces this gap quickly to 2%. Furthermore we
demonstrate the extreme speed of our algorithms by comparing
our gate sizing algorithm with an industrial tool.

The rest of the paper is organized as follows. In Section II
we briefly describe the gate sizing problem and introduce our
notation. The fast global gate sizing is explained in detail in
Section III. A short description of the local search is given
in Section IV. In Section V the lower bounds for the worst
path delay are explained. Experimental results are given in
Section VI. We conclude the paper with some discussion and
outlook.

II. THE GATE SIZING PROBLEM

Let C be the set of cells, and P the set of pins on a chip.
By P (c) we denote the set of pins of a cell c ∈ C, and by
Pin(c) and Pout(c) its input pins and output pins. We assume
that C contains one fixed cell to represent primary inputs and
outputs of the chip.

The timing constraints we consider are based on static timing
analysis [9] with slew propagation. The signal propagation is
described by a directed timing graph GT on the set of pins
(V (GT) = P). For easier notation, we assume that a single
signal with latest arrival time at(p), slew slew(p), and earliest
required arrival time rat(p) is propagated to each pin p in the
design. The slack slack(p) := rat(p) − at(p) indicates the
criticality of the timing signal in p. If slack(p) ≥ 0 the paths
through p could be delayed by that amount without violating
the timing constraints. Otherwise, at least the most critical path
through p needs to be accelerated by −slack(p). See [9] for
details on static signal propagation.

We point out that our algorithms can easily be used for
delay models with arbitrary signal waveforms, maintaining
single valued slew targets to guide the waveforms. For simpler
notation we assume the propagation of single slew values
throughout this paper.

The (discrete) gate or cell sizing problem consists of
assigning each individual cell c ∈ C to a library cell B ∈ B
from a discrete cell-library B. By [c] ⊂ B we denote the
set of logically equivalent library cells to which c may be
assigned. In typical formulations the assignment should be
chosen such that some objective function, e.g. the total power
or area consumption, is minimized while all timing constraints
are met, i.e. slack(p) ≥ 0 for all p ∈ P .

Besides slacks, slew limits, slew(q) ≤ slewlim(q) for
all input pins q ∈ Pin(c), c ∈ C, and capacitance limits,
downcap(p) ≤ caplim(p) for all output pins p ∈ Pout(c), c ∈
C, must be preserved.

As gate sizing is mostly applied when no feasible solution
exists, a practical objective is to maximize the worst slack, but
to also push less critical negative slacks towards zero. Such a
solution reduces the need for other more resource-consuming
optimization routines.

III. FAST GLOBAL GATE SIZING

The slew targeting algorithm is summarized in Algorithm 1.
It iteratively assigns a slew target slewt(p) to all output pins p ∈
Pout(c), c ∈ C. In line 1 slew targets are initialized such that
the slew limits will just be met at subsequent sinks (accounting
for the slew degradations on the wires).

Then, in line 3 cell sizes are chosen such that the slew targets
are met. The slew targets are updated based on an estimate
of the slew gradient that guides the cell to a locally optimum
solution in line 5.

To bound the running time, the algorithm avoids incremental
timing updates. Instead, the timing is updated for the complete
design by a timing oracle in line 4 once per iteration. This way
the algorithm could also take full advantage of a parallel timing

1: Initialize slew targets for all cell output pins
2: repeat
3: Assign cells to library cells (Section III-A)
4: Timing analysis
5: Refine slew targets (Section III-B)
6: until Stopping criterion is met
7: Return best assignment of all iterations

Algorithm 1: Fast Gate Sizing

engine. The subroutines in lines 3 and 5 can be parallelized
as well.

The stopping criterion in line 6 is met when the current cell
assignment compared to the last iteration

1) worsens the worst slack, and
2) increases a weighted sum of the absolute worst negative

slack (WS), the absolute sum of negative slacks (SNS)
divided by the number of endpoints, and the average cell
area.

If the criterion is met, the assignment of the previous iteration,
which achieves the best present objective value, is recovered.
The criterion is never met while the worst slack is improving. A
lower worst slack is tolerated if it is accompanied by sufficiently
large gains in the average negative slack or average cell area.
We now explain the cell assignment and slew target refinement
in detail.

A. Assigning Cells to Library Cells

Cells are assigned to the smallest equivalent library cell such
that the slew targets at all of their output pins (usually there is
only one output pin) are met. This choice depends on the input
slews and output loads, respectively the layout and sink pin
capacitances of the output nets. These values, in turn, depend
on the sizes of other cells.

As the downstream network usually has a bigger impact on
the cell timing than the input slew, it is be preferable to know
the exact downstream capacitances when sizing a cell. Let the
cell graph GC be defined as the directed graph that contains
a vertex for each c ∈ C and an edge e = (c′, c) ∈ E(GC) if a
pin p′ ∈ Pout(c′) is connected with a pin q ∈ Pin(c). Cells are
processed in order of decreasing longest distance (under unit
edge lengths) from a register in the acyclic subgraph, which
arises from GC by omitting edges entering register vertices.

1) Input Slew Estimation: When a cell c ∈ C is sized,
the successor sizes are already known except for registers
as successors. The input slews slew(q), q ∈ Pin(c), depend
heavily on the unknown predecessor sizes. However, the slew
targets at the predecessor pins help us to estimate reasonable
input slews.

For a pin q ∈ Pin(c) with predecessor p′ ∈ δ−
GT (q), as in

Fig. 1, we estimate the final slew in p′ as the weighted sum

est slew(p′) := θ slewt(p′)− (1− θ) slew(p′).

The weighting factor θ ∈ [0, 1] shifts from pure predecessor
target (θ = 1) to ”real” timing analysis (θ = 0) with each
global iteration. In the beginning, the predecessor slews will

c

p′

q p

Fig. 1. A cell c and a predecessor.

end up closer to est slew(p′) than to slew(p′). Later, when
a change of the predecessor size is less likely, the computed
slew values dominate the formula.

To obtain an estimate for slew(q), we need to add the slew
degradation on the wire slew degrad(p′, q) to est slew(p′).
When the pin capacitance of q changes, slew degrad(p′, q)
will change too. This change can be approximated quickly by
an RC-delay model for the wire.

2) Sizing: Given the estimated predecessor slews and the
layout of the output network, the minimum cell size for c
preserving the slew targets (and load capacitance limits) can
be computed performing a local timing analysis through c and
its downstream wires for all available library cells in [c]. Note
that a level of cells with equal distance labels can be sized
independently and thus in parallel.

In the special case, where the delay and slew propagation
through a cell is parameterized by the two parameters load
capacitance and input slews, this sizing step can be accelerated
via table look-up. The mapping to the minimum cell size can be
pre-computed for each input/output pin pair in the cell-library
for finite sets of equidistant support points for each of the three
parameters:
1) load capacitance, 2) input slew, and 3) slew target.

For more complex delay models, e.g. current source models,
such tables would probably become too large and inefficient.

In general, the cell graph is cyclic and the assignment
algorithm needs to traverse the cells several times until no
more registers are altered. In practice, we observed only a few
re-assigned cells even in the second iteration. To speed up the
overall algorithm, we perform only a single iteration, leaving
it to the next global iteration to remove sub-optimal or illegal
assignments.

B. Refining Slew Targets

In Step 5 of Algorithm 1, the slew target slewt(p) is refined
for each output pin p of a cell c based on what we call the
global and local criticality of p. The global criticality slk+(p)
is simply the slack

slk+(p) := slack(p) = rat(p)− at(p)

at p. The pin p is globally critical if slk+(p) < 0.
The local criticality should indicate whether the worst of

the slacks in p and any direct predecessor pin of c can be

Input: A cell c, γ,max change, and an iteration number k

1: θk ← 1/ log(k + const);
2: slk−(c)← min{slack(p′)|p′ ∈ Γ−

GT (Pin(c))};
3: for all p ∈ Pout(c) do
4: slk+(p)← slack(p);
5: lc(p)← max{slk+(p)− slk−(c), 0};
6: if slk+(p) < 0 and lc(p) = 0 then
7: ∆ slewt← −min{θk ·γ ·|slk+(p)|, max change};

8: else
9: slk+(p)← max{slk+(p), lc(p)};

10: ∆ slewt← min{θk · γ · |slk+(p)|, max change};
11: end if
12: slewt(p)← slewt(p) + ∆ slewt;
13: Project slewt(p) into [slewt([p]), slewlim(p)];
14: end for

Algorithm 2: Fast Gate Sizing—Refining Slew Targets

improved either by accelerating c, i.e. by decreasing slewt(p),
or by decreasing the input pin capacitances of c, i.e. increasing
slewt(p). First, we define the predecessor criticality of the cell
c by

slk−(c) := min{slack(p′) | p′ direct predecessor pin of c}.
Obviously, slk+(p) ≥ slk−(c) for all cells but registers, since
a path that determines the slack in p must contain one of the
predecessor pins. Registers may have smaller output slacks
than their predecessors, as inputs and outputs may belong to
different data paths. We define the local criticality lc(p) of p
by

lc(p) := max{slk+(p)− slk−(c), 0}.
If lc(p) = 0 then p is either located on a worst-slack path
through a most critical predecessor of c, or p is an output
pin of a register whose output path is at least as critical as
any path through its predecessors. We call p locally critical if
lc(p) = 0.

Algorithm 2 shows how the slew targets of the cell c
are updated in a global iteration k ∈ N. If p is globally
and locally critical, we decrease slewt(p) by subtracting a
number that is proportional to |slk+(p)|, but does not exceed
some constant max change (lines 7 and 12). Otherwise we
increase slewt(p) by adding a number that is proportional to
max{lc(p), slk+(p)} (lines 9, 10, and 12).

The constant γ ∈ R can be considered as an estimate for
the virtual term ∂slew(p)

∂slk+ . Thus, if slewt(p) is tightened and
assuming linearity, γ·|slk+| represents the required slew change
to reach a non-negative slack in p. If slewt(p) is relaxed,
γ ·max{slk+, lc} expresses the required slew change, either
to align the slack in p with the worst predecessor slack (if
slk+ ≤ lc), or to decrease the slack to zero (if slk+ > lc ≥ 0).
As we modify all cells in each iteration, γ should be just a
fraction of ∂slew(p)

∂slk+ . In practice, we simply set γ to a small
constant. The multiplier θk is a damping factor that is intended
to reduce potential oscillation.

In line 13 the slew target is projected into the feasible range.
Here, the maximum slew limit slewlim(p) for the output pin
p is induced by the attached sinks:

slewlim(p) :=
min{slewlim(q)− slew degrad(p, q) | q ∈ δ+

GT (p)},
where slew degrad(p, q) is an estimate of the slew degradation
as in Section III-A1. The value slewt([p]) denotes the lowest
possible slew, that is achievable with any equivalent cell,
given the current load capacitance and input slew. It prevents
unrealistically small slew targets.

1) Enhanced Slew Target Refinement: As described so far,
Algorithm 1 yields already good results. But, in some cases it
leads to overloaded cells that cannot be enlarged further, or to
locally non-critical cells that cannot be downsized sufficiently
because of too large successors. In an entire timing optimization
flow, gate sizing is alternated with repeater insertion absorbing
such situations. However, this can lead to unnecessary repeaters.

In such situations the slew targets of successor cells should be
relaxed to enable smaller sizes. Slew targets of locally uncritical
cells are relaxed automatically by Algorithm 2. Now, when
refining the slew target of a locally critical pin p ∈ Pout(c), c ∈
C, we consider the largest estimated slew est slew(p′) of a
most critical predecessor pin

p′ ∈ arg max{est slew(r) | r ∈ Γ−
GT (Pin(c)),

slack(r) = slk−(c)}.
If est slew(p′) > slewt(p), we increase the slew target in

p by

slewt(p) := λ · slewt(p) + (1− λ) · est slew(p′)

with 0 < λ ≤ 1. The effect of an extraordinary high
value of est slew(p′) declines exponentially in the number
of subsequent cell stages. In our experiments in Section VI
we have chosen λ = 0.7. Note that less critical predecessors
r ∈ Γ−

GT (Pin(c)) with slack(r) > slk−(c) are not considered
for relaxing slewt(p).

To enable the enhanced slew target computation, the cells
must be traversed in signal direction, reverse to the sizing step.
Again, the slew targets of all cells in a level of equal longest
path distance from a register can be updated in parallel.

IV. LOCAL SEARCH GATE SIZING

The local search is applied to further improve the result of
the fast global gate sizing. Iteratively, it collects a small set
of cells attached to the most critical nets and sizes them one
after another to their local optimum based on more accurate
slack evaluations. The next iteration starts with collecting cells
from scratch.

First, for collecting cells, we traverse all nets by increasing
slack at their source pins and select all cells that are attached
to the current net and to all nets that have the same slack at
their sources. As soon as more than K ∈ N cells are collected
the traversal of the nets stops. Note that this procedure will
collect at least the cells on the most critical paths and their
direct successors for any choice of K. It is important to select

PO

PI

Critical Path Pcrit
Pin with ignored timing
Registers

Fig. 2. Lower delay bound computation

not only the critical cells but all cells attached to a net, because
the pin capacitances of the noncritical cells affect the timing.
In our experiments we have chosen K as 0.2% of the total
number of cells in the design.

Then, for sizing, the collected cells are traversed in the
order of decreasing longest path distance from a register as in
Section III-A. A cell c ∈ C is assigned to a library cell B ∈ [c]
of minimum size such that

min{0, slk−(c), slk+(p) | p ∈ Pout(c)}
is maximized. The slacks are computed by an exact analysis
within a small neighborhood around c. The neighborhood
contains its predecessor cells and all direct successors of c and
its predecessor pins.

The algorithm stops when the worst slack could not be
improved in the last iteration. For running time reasons,
this criterion could be modified to stop when the worst
slack improvement falls below some threshold or when some
maximum number of iterations is reached.

V. LOWER DELAY BOUNDS

To demonstrate the quality of our gate sizing approach, we
compare the results of the two gate sizing algorithms with
estimated lower bounds for the achievable delay of the most
critical path P crit . For this purpose, we size all cells in the
design to a minimum size such that capacitance limits are
obeyed. We ignore and remove any arrival times and required
arrival times on pins that are not located on P crit as shown
in Fig. 2. This way the arrival times and required arrival times
on P crit are independent from any other input or output.

Now P crit is sized by running the local search algorithm
from Section IV w.r.t. to an infinite slack target (instead of ’0’),
until no more improvement can be found. Note that cells on any
side branching from P crit are set to a minimum possible size
and therefore have a minimum impact on the load capacitances
of the cells on P crit. The following theorem follows from
standard geometric programming arguments.

Theorem 1: Assuming posynomial delay functions and con-
tinuously sizable cells, The local search computes the minimum
possible delay for the path P crit.
By complete enumeration on several thousand paths from
different designs and libraries, and with lengths bounded by
10, we verified empirically that this holds for the discrete
problem in practice as well. Note that the quality of this bound
depends on the state of the design. With ideal zero wires it will

Chip Fast Gate Sizing Local Search Sizing
Delay Bound ÷ Delay Bound ÷

Fazil 5.85 5.14 1.14 4.30 4.22 1.02
Franz 4.25 4.05 1.05 4.69 4.63 1.01
Lucius 1.20 1.15 1.04 1.60 1.55 1.03
Felix 2.21 1.95 1.13 2.15 1.93 1.11
Lucius45 0.69 0.61 1.13 0.63 0.62 1.02
Minyi 2.96 2.92 1.02 2.96 2.96 1.00
Maxim 2.49 2.37 1.05 2.47 2.41 1.02
Tara 1.54 1.43 1.07 1.48 1.46 1.01
Karsten 9.00 8.64 1.04 8.66 8.64 1.00
Fidelio 5.93 5.77 1.03 5.77 5.77 1.00
Arijan 3.25 3.20 1.01 3.20 3.20 1.00
David 4.96 4.73 1.05 4.86 4.73 1.03
Valentin 0.15 0.15 1.00 0.15 0.15 1.00
Trips 6.00 5.37 1.12 5.64 5.40 1.04
Avg. 1.06 1.02

TABLE I
DEVIATIONS FROM DELAY BOUNDS

(delays in nanoseconds)

be rather weak. In the next Section we will see that our gate
sizing algorithms come close to this bound on placed designs
with estimated wires.

VI. EXPERIMENTAL RESULTS

We ran comprehensive experiments on 14 industrial ASIC
designs, provided by our industrial partners at IBM. We thank
the University of Texas at Austin for granting us access to the
“Trips” data [2], our largest instance. The instances arise from
four different technologies, namely 45, 65, 90, and 130 nm. The
first three columns in Table II list the instances by technology
and number of cells |C| in thousands. The instances range
from small RLMs to full chips with almost 6 million cells. All
instances are placed, and estimated global routes are used for
wire extraction. The designs are buffered, so that results are
not distorted by unavoidable capacitance and slew violations.
But, positive slacks are not achievable in most cases. We ran
all experiments w.r.t. a slack target of 0.25 nanoseconds, which
was not achievable for any design.

Table I shows the deviations from the lower delay bounds
on the critical paths according to Section V. For each chip the
critical path after fast gate sizing and the delay of the most
critical path after the local search are given, as well as their
delay bounds. The columns labeled by “÷” show the ratio of
the actual delays to their lower bounds. Note that the most
critical paths and therefore the delay bounds can be different
after fast gate sizing and after local search sizing. The average
deviations after fast gate sizing and refine gate sizing are 6%
and 2%, with a maximum final deviation of 11% on Felix. On
many designs we can even close the gap. Here, the critical
paths have only a few branchings or the delays are dominated
by wires.

During the fast gate sizing the slacks usually improve rapidly
during the first 3–4 iterations. Then, the worst slack sometimes
starts oscillating slightly. Fig. 3 shows exemplary how the
worst slack (WS), the sum of negative slacks (SNS), and the

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Iteration

-8

-6

-4

-2

0

2

4

6

O
b
je

ct
iv

es

WS (nanoseconds)
SNS (seconds)
Area

Fig. 3. Objectives during the course of the fast gate sizing on David
(the area numbers are scaled linearly to fit into the figure)

area evolve during the course of the fast gate sizing on the
design David. The area consumption increases until iteration 7
and decreases slightly afterwards.

Table II shows a comparison with a contemporary industrial
gate sizing tool using the same underlying timing engine.
The industrial tool is currently used for the design of high
performance ASICs and processor blocks. Its approach is to
start with a minimum area solution preserving capacitance and
slew limits. Then, it incrementally improves the timing of the
critical paths in an area efficient way, selecting a subset of
the critical cells with a large ratio of their slack gain to their
area increase (similar to [6] but selecting multiple cells per
iteration). It is run until no further improvement is found.

Our combined algorithm achieves 0.09 nanoseconds (ns)
better worst slacks (WS) and 61% lower sums of negative slacks
(SNS in milliseconds) on average. The significantly better slack
distributions are accompanied by an area increase of 7%. The
better SNS enables efficient downsizing of branching cells
from the critical paths and thus enables better worst slacks.
Note that both algorithms were driven towards a slack target
of 0.25 ns. Thus, the SNS can be negative even if the WS is
not.

The running times in columns 7 and 14 were obtained in
sequential runs on an Intel Xeon server with 3.0 GHz. On
average our algorithm is faster by a factor of 2.17. But, the
total running time over all designs is smaller by a factor of
5. For large instances the running time of the industrial tool
grows up to 14 hours (on Valentin), while the running time of
our algorithm grows to at most 2.5 hours for nearly 5.9 million
cells (on Trips). About 1/3 of our running time is consumed
by the local search. The maximum number of iterations for the
fast gate sizing was restricted to 10. Within the fast gate sizing
about 50% of the running time is consumed by the timing
analysis in step 4 (in Algorithm 1). The running time of the
local search refinement consists mostly of timing analysis.

Industrial Tool New Combined Fast Gate Sizing and Local Search
Chip Tech. |C| WS SNS Area Time WS SNS Area Time

nm in K ns ms h:m ns ∆ ms ÷ ÷ h:m ÷
Fazil 130 64 −1.27 −31 574 0:03 −1.20 0.07 −19 0.60 612 1.06 0:01 0.54
Franz 90 69 0.09 −1 740 0:03 0.16 0.07 −1 0.45 747 1.01 0:02 0.55
Lucius 65 71 −0.48 −24 268 0:02 −0.34 0.14 −13 0.52 301 1.12 0:01 0.67
Felix 130 76 −0.64 −34 689 0:04 −0.56 0.08 −22 0.64 782 1.13 0:01 0.41
Lucius45 45 118 −1.04 −62 888 0:03 −0.94 0.10 −47 0.75 940 1.06 0:02 0.66
Minyi 65 245 −0.51 −11 4906 0:04 −0.48 0.02 −1 0.08 4880 0.99 0:03 0.69
Maxim 65 428 −1.41 −403 5466 0:42 −1.33 0.08 −247 0.61 6347 1.16 0:09 0.21
Tara 65 778 −0.51 −53 5808 0:26 −0.51 0.01 −12 0.23 5967 1.03 0:07 0.30
Karsten 130 3056 −3.76 −186 41106 1:03 −3.52 0.24 −65 0.35 41363 1.01 0:30 0.48
Fidelio 65 3694 −3.86 −3369 57370 1:26 −3.85 0.01 −1421 0.42 60641 1.06 0:46 0.54
Arijan 90 3754 −1.11 −635 63522 10:39 −0.84 0.28 −47 0.07 65710 1.03 1:04 0.10
David 90 4334 −1.44 −1311 60800 1:43 −1.51 −0.07 −209 0.16 62457 1.03 1:31 0.88
Valentin 90 5378 −1.62 −3880 79362 14:49 −1.48 0.14 −1581 0.41 92464 1.17 1:57 0.13
Trips 130 5879 −2.15 −4563 69739 10:45 −2.08 0.07 −823 0.18 76407 1.10 2:35 0.24
Avg. 0.09 0.39 1.07 0.46

TABLE II
COMPARISON WITH AN INDUSTRIAL TOOL

VII. CONCLUSIONS & OUTLOOK

We have presented a new combined algorithm for the
discrete gate sizing problem without specific assumptions
on the underlying delay model. We demonstrated that gate
sizing for multi-million cells can be solved within a few hours,
while the worst path delays almost reach their lower bound.
Parallelization has not yet been exploited and promises further
speed-up.

The proposed estimates of lower bounds are generally useful
to judge and improve the quality of discrete gate sizing
algorithms and implementations. In fact, they helped us to
eliminate several flaws from our tools.

REFERENCES

[1] Agarwal, A., Chopra, K., Blaauw, D., and Zolotov, V.: Circuit optimiza-
tion using statistical static timing analysis. Proc. DAC (2005), 321–324.

[2] Burger, D., Keckler, S.W., McKinley, K.S., Dahlin, M., John, L.K., Lin,
C. Moore, C.R., Burrill, J., Mcdonald, R.G., Yoder,W., and the TRIPS
team: Scaling to the end of silicon with edge architectures. Computer
37 (7), 2004, 44–55.

[3] Chen, C.-P., Chu, C.C.N., and Wong, D.F.: Fast and exact simultaneous
gate and wire sizing by Lagrangian relaxation. IEEE Trans. on Computer-
Aided Design 18 (7), 1999, 1014–1025.

[4] Chen, H.Y., and Kang, S.M.: iCOACH: a circuit optimization aid for
CMOS high-performance circuits. Integration, the VLSI Journal 10, 1991,
185–212.

[5] Dai, Z.-J., and Asada, K.: MOSIZ: a two-step transistor sizing algorithm
based on optimal timing assignment method for multi-stage complex
gates. IEEE Custom Integrated Circuits Conference (1989), 17.3.1–17.3.4.

[6] Fishburn, J. and Dunlop, A.: TILOS: A posynomial programming
approach to transistor sizing. Proc. ICCAD (1985). Digest of Technical
Papers, 326–328.

[7] Ghiasi, S., Bozorgzadeh, E., Huang, P.-K., Jafari, R., and Sarrafzadeh,
M.: A Unified Theory of Timing Budget Management. IEEE Trans. on
Computer-Aided Design 25 (11), 2006, 2364–2375.

[8] Heusler, L.S., and Fichtner, W.: Transistor sizing for large combinational
digital CMOS circuits. Integration, the VLSI Journal 10, 1991, 155–168.

[9] Hitchcock, R.B., Smith, G.L., and Cheng, D.D.: Timing Analysis of
Computer Hardware. IBM Journal of Research and Development 26 (1),
1982, 100–105.

[10] Hu, S., Ketkar, M., and Hu J.: Gate Sizing For Cell Library-Based
Designs. Proc. DAC (2007), 847–852.

[11] Khandelwal, V., and Srivastava, A.: Variability-Driven Formulation for
Simultaneous Gate Sizing and Postsilicon Tunability Allocation. IEEE
Trans. on Computer-Aided Design 27, 2008, 610–620.

[12] Kursun, E., Ghiasi, S., and Sarrafzadeh, M. : Transistor Level Budgeting
for Power Optimization. Proc. of the 5th International Symp. on Quality
Electronic Design (2004), 116–121.

[13] Sapatnekar, S.S., Rao, V.B., Vaidya, P.M., and Kang, S.-M.: An Exact
Solution to the Transistor Sizing Problem for CMOS Circuits Using
Convex Optimization. IEEE Trans. on Computer-Aided Design 12 (11),
1993, 1621–1634.

[14] Singh, J., Nookala, V., Luo, Z.-Q., and Sapatnekar, S.S.: Robust gate
sizing by geometric programming. Proc. DAC (2005), 315–320.

[15] Sinha, D., Shenoy, N.V., and Zhou, H.: Statistical Timing Yield
Optimization by Gate Sizing. IEEE Transactions on VLSI Systems
14 (10), 2006, 1140–1146.

[16] Sundararajan, V., Sapatnekar, S.S., and Parhi, K.K.: Fast and exact
transistor sizing based on iterative relaxation. IEEE Trans. on Computer-
Aided Design 21 (5), 2002, 568 – 581.

[17] Wang, J., Das, D., and Zhou, H.: Gate sizing by Lagrangian relaxation
revisited. Proc. ICCAD (2007), 111–118.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

