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Abstract—Future computing systems will feature many cores
that run fast, but might show more faults compared to exist-
ing CMOS technologies. New software methodologies must be
adopted to utilize communication bandwidth and the computa-
tional power of few slow, reliable cores that could be employed
in such systems to verify the results of the fast, faulty cores.
Employing the traditional Triple Module Redundancy (TMR)
at core instruction level would not be as effective due to its
blind replication of computations. We propose two software
development methods that utilize what we call Smart TMR
(STMR) and fingerprinting to statistically monitor the results
of computations and selectively replicate computations that
exhibit faults. Experimental results show significant speedup
and reliability improvement over traditional TMR approaches.

I. INTRODUCTION

The end of Moore’s Law for silicon-based systems is in
sight [1]. We will soon witness the integration of nano-
devices such as carbon nano-tube based transistors and
wires, quantum dots, spintronics and molecular devices
into silicon systems, and even possibly total replacement
of silicon circuits by these new technologies. Self-assembly
techniques will probably replace or augment lithographic
fabrication processes to integrate orders of magnitude
larger systems [2].

In recent years, we have been forced to model variations
in the behavior of devices to avoid large failure rates and
high manufacturing costs [3]-[9]. Device variations and
failure rates are expected to increase in future technologies
to the point that unreliability of computing systems will
create major challenges in further scaling of such systems.
No matter what technology (e.g., carbon nano-tubes or
molecular devices) emerges as the dominant technology to
carry Moore’s law forward, future computing systems will
have many computational nodes and communication links
with high error rates.

We will soon be at a point that such error rates have
to be treated as first-class citizens in designing electronic
systems, much like the way we model power, area and
performance in today’s systems [10]-[12]. Using a large
number of computing elements and replicating computa-
tions both in space (parallelism) and time (multiple runs of
the algorithm on the same subset of computing elements)
will help us reduce the errors in the final solutions of the
problems that need to be solved on these inherently unreli-
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able machines. Existing fault tolerant methodologies do not
consider the whole range of programming abstraction from
algorithms to devices. Techniques such as Triple Module
Redundancy (TMR) would not scale well because as the
system becomes larger and the fault rates increase, more
defects will appear on the sub-systems to the point that the
replication of resources would show no advantage over the
original system. The authors in [13] showed that replicating
resources on an FPGA using future technology models will
be useful only to a certain point, after which the added area
will incur additional faults and render redundancy useless.
Smarter, more selective methodologies have to be adopted
that can continue the Moore’s law in the near and long-term
future.

In this paper, we propose a new programming model that
uses concepts from the field of randomized algorithms and
requires programmers to address parallelism and reliability
explicitly. The underlying architecture consists of a robust
processor (e.g., implemented in CMOS) connected to a
host of faulty processors (future CMOS or more fancy
technologies). For any given algorithm, the programmers
are asked to specify how the algorithm is partitioned across
the faulty processors, how the results are to be verified
and combined by the robust processor and how erroneous
operations should be dispatched to faulty processors again
for re-computation. The key point is that the verification al-
gorithms must be much faster than the actual computations
because presumably the robust processor is much slower
than the faulty ones, and that is where the randomization
would be useful.

The rest of the paper is organized as follows. Section
II describes the underlying assumptions. Section III covers
background material for our verification mechanisms. In
Section IV, we list different applications that we have imple-
mented to test the effectiveness of our proposed methods.
Experimental results are presented in Section V and the
paper is concluded in Section VI.

II. ARCHITECTURE

In this section, we will outline our assumptions about the
architecture and its fault models. We will also describe our
proposed parallelism and fault tolerance software methods
that we will employ in our experiments. Fig. 1 shows
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Fig. 1. Example of how our fingerprinting methodology works. (STMR is
similar but NOT the same). (a) the robust processor divides computations
among fast, faulty processors. (b) computations are performed in parallel.
(c) results are sent back and verified by the slow, robust processor.
(d) computations that were faulty are sent to be "repaired" using re-
computation and/or TMR.

the architecture in which a robust processor is connected
to three faulty processors. We use the terms core and
processor interchangeably. In our experiments in Section
V, we will use up to nineteen faulty processors that are
connected to the robust processor.

We assume that the robust processor is fabricated us-
ing a technology similar to today’s technology in which
fault rates can be brought down very close to zero us-
ing circuit techniques. On the other hand, faulty cores
are built using future technologies. These processors are
much faster than the robust processor but might exhibit
permanent or transient faults. In this study, we aggregate
computation, memory and communication faults into a
single probability that an atomic operation (e.g., a scalar
multiplication) generates a faulty output. A more detailed
model in which memory, communication and computation
faults are modeled differently could easily be derived from
our existing models.

III. PROGRAMMING MODEL

Our proposed methodology requires programmers to
follow a template, similar to what object-oriented programs
require. In OOP, programmers are required to specify public
and private data members and methods, object construc-
tion and destructions, exceptions, etc. At a higher level of
abstraction, we require that the programmers specify:

1) Dispatch: how the computations are to be divided
and dispatched to the processors. Inner and outer loops
of algorithms, in addition to when data gather and syn-
chronization should be performed are specified here. Fig.
1(a) shows this step.

2) Main run: how individual faulty processors should
perform computations (Fig. 1(b)). This is where the bulk

of computations take place. Depending on the verifica-
tion method employed, programmers might use the faulty
processors to generate some form of signature (similar to
CRC error-checking codes) to be later used by the robust
processor for a light-weight voting. We will address this
issue in more detailed in the next subsections (STMR and
fingerprinting).

3) Voting: how the robust processor should receive sig-
natures and run a light-weight verification algorithm to
determine if the results are correct (Fig. 1(c)).

4) Repair: finally, how unresolved faulty operations
should be handled, e.g., be sent for re-computation (Fig.
1(d)). In this paper, we assume that TMR is also used for
this step on parts of the data that exhibited faults.

For the verification process, we propose two methods
and compare their effectiveness to the traditional TMR:
one is STMR, and the other is fingerprinting. The next two
subsections describe these methods in more detail.

A. STMR

Similarly to the traditional TMR method that is applicable
to every application, this approach first broadcasts all the
data of size R to all N processors (N =3 in Fig. 1. Note that
in the figure, data is divided between the processors but in
STMR the whole data is broadcast to all). But unlike TMR,
it requires the N processors to locally compute a signature
and send that for voting / verification. A signature is a vector
of size R/K, where each of its components is generated
by compressing (XORing) K consecutive elements of the
output (called a "chunk" of data) into one number. We also
call K the "Partition Size". Essentially generating a signature
is similar to down-sampling the output.

This method is faster than TMR for small fault rates
because only NxR/K elements need to be sent back in the
voting step to the robust processor for voting. If a majority
of signatures for a chunk of data agree, then the processor
needs to read the chunk from only one of the agreeing faulty
processors (as opposed to N in TMR). If the signature of a
chunk does not pass successful voting, that chunk of data
(i.e. K elements) will be dispatched for traditional TMR in
the repair step.

For small values of the atomic fault rate p, the larger the
K, the faster is the voting time (both communication and
voting), but the slower is the repair step because the chunk
of data that is sent for re-computation is larger. On the other
hand, if p increases, many of the chunk signatures will fail
voting and the whole process of generating signatures be-
comes redundant and causes a runtime increase compared
to TMR. To strike a balance between these factors, K should
be proportional to 1/p. See the appendix section for more
details.

B. Fingerprinting
The term "Randomized Algorithms" refers to the class of
algorithms that trade-off runtime (resources) with the accu-

racy of results. Among the techniques used in randomized
algorithms is fingerprinting.



Fingerprinting refers to the process of selecting subsets
from two sets P and Q to check whether P=Q or not [14].
The subsets are called "fingerprints" and are much easier
to check for equality than the original problems. There
may be many ways that a fingerprint can be generated
for a given problem. Choosing many random fingerprints
will increase the probability of correctly identifying whether
P=Q or not. An example of fingerprinting is the Freivalds
algorithm [15], which checks the correctness of large matrix
multiplications. Assuming that an unreliable machine has
computed C=AX B (A, B and C are large n x n matrices),
the Freivalds method randomly chooses a vector a € {0, 1}"
and computes § = A.(B.a) and y = C.a. If B # v, output
"C #Ax B" (we have implemented a modified version of
the Freivalds algorithm. See Section IV). If f fingerprints
are generated, the probability of not catching the error is
at most 1/2f. Note that checking one fingerprint would
take O(n?), as opposed to O(n3) of a direct method that
re-computes A x B and compares the result to C.

In our fingerprinting method, the dispatch step might
divide the original data into N chunks, N being the number
of faulty processors, and send each chunk to only one
processor. This is in contrast to TMR and STMR that send
the whole data to all processors. In fingerprinting, the voting
step would generate fingerprints on each chunk of data and
would determine if it is calculated correctly. This again is
in contrast to TMR and STMR, where data from N different
processors must be transmitted and compared. The repair
step is the same for both STMR and fingerprinting.

IV. APPLICATIONS

We have implemented the parallel version of a number
of applications and have developed fingerprinting and/or
STMR verification processes for them. Each of the subsec-
tions below presents details on each application.

A. Matrix Multiplication (MM)

We use the Freivalds algorithm except that instead of
generating a binary vector a € {0,1}", we create a vector
a = (p1,p2..-pn), pi €11, where II is a pre-computed set
of prime numbers (in our experiments |II| = 17984). Using
prime numbers instead of binary will result in significantly
better chances of catching errors.

We also use STMR with K being selected dynamically as
follows: for problem size R (two R x R matrices to multiply),
there are about 2 x R atomic operations to compute a cell,
and the probability of a cell being faulty is pcerirauir =
1-(1-p)¢, ¢ being the number of atomic operations to be
done for one cell. We chose the base partition size to be
proportional to 1/pceriraui:-

B. FFT on Real Input Vectors

We make use of the observation that in FFT operations
performed on inputs that have only real components, the
output is going to be symmetric. If the input to FFT is vector

X =(x1,x2,...,xx) and the output is y = FFT(x), then the fol-
lowing symmetry properties hold for all components except
for i=1, k/2+1: Re(y;)= Re(yk-i+2), Im(yi) = —Im(yr-i+2).
We use this property as the fingerprint, comparing elements
of the output to see if the symmetrical ones match.

C. Bubble Sort (BS)

In the dispatch step of bubble sort implementation, we
first down-sample the input by randomly selecting a small
set from the input (regardless of the number of processors,
10% of the input size in our experiments) and use one of the
N faulty processors to sort it. The sorted sample would give
us a good idea about the distribution of numbers, which in
turn would help us only concatenate the results from the
faulty processors after the whole data is sorted. The values
in the down-sampled sorted vector act as N —1 threshold
values T; (i €N, i <N —1) to decide how to distribute the
original input among processors: we send numbers that
are between T;_; and T; to the i’" faculty processor for
sorting. If the down-sampled vector is statistically a good
representation of the input number distribution, we will
end up with a good load balancing among faulty processors.

The results from all faulty cores are gathered and fin-
gerprinting is applied. We use three fingerprinting methods
done by the robust processor: (1) check all elements from a
faulty core to see if they are in the right order. If not, reject
the result and send for repair. We call this strategy "total
check". (2) check only 50% of the numbers to see if they
are in the right order. This is called "50% check". (3) finally,
the "smart check" methods checks the list from the end to
see if the elements are in the right order. If elements i+1..k
out of the k elements are in the right order, we first check
to see if elements i+ 1..k are the largest of this batch, and
then send only elements 1..i for repair.

D. AES Encryption

We used a key (block) size of 16 to encrypt texts of size
16000 bytes. Partition sizes of STMR are selected statistically
based on the following estimations (see Section IV, Matrix
Multiplication): there are about 600 atomic operations to
compute a cell. We chose the base partition size to be
proportional to 1/pceiirauis, €.8., for p = 1075, we get
K =~160. Then, we chose fixed partition sizes around 160.

V. EXPERIMENTAL RESULTS
A. Simulation Environment

We have developed a simulation environment that emu-
lates parallel execution of the cores and keeps track of their
runtimes. We artificially insert random errors in the output
of computations of the applications that we implement
in this environment based on the atomic fault rate p.
Runtimes of faulty and robust cores are measured using
clock ticks and milliseconds (operating system calls) and
scaled based on their corresponding speedups. Since the
size of partitions in STMR affects the results, several ex-
periments were performed with different partition sizes for
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MM Dynamically and AES Statically. The chosen partition
sizes were around the estimations provided in Section IV.
For example the term PSR=0.5 in Fig. 6 and Fig. 7 means
that the partition size for a given fault rate is half the
size estimated by our calculations. Since our purpose is to
compare the effectiveness of our algorithms to that of raw
TMR, we have skipped the re-computation in the repair
step for MM, FFT and AES.

B. Fingerprinting vs. TMR

We performed experiments in which we ran Monte-
Carlo simulations with high resolution of the p value and
compared TMR with our fingerprinting methods.

Fig. 2 to Fig. 4 show the results of these experiments.
The x-axis in these graphs is the atomic fault rate p. Part
(a) of the figures shows average output correctness results
(the y-axis is the percentage of the elements of the output
vector that are correct), and part (b) of the figures shows the
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voting / fingerprinting time in terms of CPU ticks. To show
the detailed behavior of the algorithms, we have used many
points on the x-axis (200 values for the fault rate between 0
and 0.002) and have used CPU ticks for voting time. This is
in contrast to the rest of the graphs in the paper in which
we use only a handful of values of the atomic fault rate and
use milliseconds for reporting runtimes. Input size is 1024
for Fig. 2 and Fig. 3 and 2048 for Fig. 4. Three, 9 and 19
faulty cores are used with one robust processor in Fig. 2,
Fig. 3 and Fig. 4 respectively'.

The results show that our fingerprinting method clearly
outperforms TMR. Both methods produce more reliable
outputs when the number of cores increases, but finger-
printing is by far more effective in utilizing the processors
for better reliability, as is evident from the growing gap

lFewer runs per p value in Fig. 3 and Fig. 4 were used to cut on
simulation times. This has resulted in more fluctuations in the output,
though.
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between the two graphs as the number of processors
increases. Note that the fingerprinting method is able to
keep the output correctness rate close to 100% even for
relatively high values of p when the number of processors
increase from 3 to 9 (see Fig. 3(a)). But as the input size
grows, the number of levels in the "butterfly" operations
of FFT increases, which means an error at an early stage
would propagate to more output entries and thus output
correctness rates drop faster in the fingerprinting graph of
Fig. 4(a) compared to Fig. 3(a).

Fig. 5 shows the results of the comparison between TMR
and fingerprinting on the bubble sort application. Seven
faulty cores are used. The dispatch strategy described in
Section IV is employed. As can be seen, the fingerprinting
method results in much better reliability and runtime.

C. STMR vs. TMR

In this subsection, we compare our proposed STMR to
the traditional TMR. The results of the MM application are
presented in Fig. 6 and Fig. 7. Fig. 6 shows the results when
three faulty processors are used and Fig. 7 shows the results
for seven faulty processors. It can be seen that the voting
time is much smaller in STMR compared to TMR for small
and medium atomic fault rates. It can also be seen that the
number of successful signature checks largely depends on
the partition size.

Fig. 6(a) and Fig. 7(a) show that for low fault rates, STMR
voting times are well below the TMR line. As mentioned
before, partition size is selected dynamically and reduces
when the atomic fault rate increases to keep the voting
time as small as possible?.

AES results are very similar to MM results and a sample
is presented in Fig. 8.

D. Fingerprinting vs. STMR

We can compare the performance of fingerprinting to
STMR in Matrix Multiplication in Fig. 6(a) and Fig. 7(a).
It can be seen that when 3 faulty processors are used,
fingerprinting cannot adapt to the high fault rates and the
voting time increases rapidly. On the other hand, STMR

2As the atomic fault rates increase, the algorithm changes its U-curve
behavior shown in Fig. 9 and jumps from a curve with low output fault
rate to a curve with a higher output fault rate associated with the new
atomic fault rate. The U-curve is explained in the appendix.
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(b) ratio between voting and execution times
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(c) voting time

Bubble Sort (BS) size 10000, 7 faulty cores that are 7x faster than the robust core. Each point shows the average of 11 Monte-Carlo runs.

with proper partition size shows more stability against the
increment in the fault rate. When 7 faulty processors are
used, fingerprinting outperforms STMR because it is more
efficient in utilizing the processors.
VI. CoNCLUSION AND FUTURE WORK

In this paper, we proposed a new programming style in
which parallelism, reliability and fault tolerance are explic-
itly specified in the code. Our future work includes more
general architectures in which levels of faulty processors
can be connected together, and more accurate models of
the synchronization costs and communication faults.

APPENDIX: Modeling the Cost of STMR

As we mentioned in Section III, there is a tradeoff between
voting time and repair time (N, R and K defined in Section
III). The Total cost of STMR is as follows:

Coststmyr = Costsig + CoStyoring + COStrepair

Assuming that N—a (e €R, 0 <o < N-1) is proportional
to the mean number of comparisons throughout the TMR
process, we have:

COSISig (R)
Costrmr(R, N)

R—[R/K]
R@N —2a+1)(N -1)/2

Note that the cost of memory access is ignored. We define
"Leakage" to be the number of signatures that fail voting
and are sent back for repair. The lower and upper bounds
of Leakage for a given output fault rate FR are as follows:

min: [FRXR/K]
max: min{FRxXR, [R/K]|}

Therefore, the total cost of STMR is:
Coststmr(R, N) = Costsig(R) + Costryr([R/K], N)
+ COSITMR(LX K, N)

Leakage = L = {

According to the formula, the growth of cost in TMR on
signatures plays against that of repair as long as there are
signatures extracted in voting that are not sent for repair.
This leads to a curve similar to "U" when the cost is plotted
for different partition sizes. A typical U-Curve for a specific
error distribution (o =2), N=5 and R =10° is shown in Fig.
9, in which different curves correspond to different output
fault rates.
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