
Efficient OpenMP Support and Extensions for MPSoCs with

Explicitly Managed Memory Hierarchy

Andrea Marongiu
University of Bologna

Via Risorgimento, 2

40136 Bologna - Italy

Email: a.marongiu@unibo.it

Luca Benini
University of Bologna

Via Risorgimento, 2

40136 Bologna - Italy

Email: luca.benini@unibo.it

Abstract—OpenMP is a de facto standard interface of the shared
address space parallel programming model. Recently, there have been
many attempts to use it as a programming environment for embedded
MultiProcessor Systems-On-Chip (MPSoCs). This is due both to the ease
of specifying parallel execution within a sequential code with OpenMP
directives, and to the lack of a standard parallel programming method
on MPSoCs. However, MPSoC platforms for embedded applications
often feature non-uniform, explicitly managed memory hierarchies with
no hardware cache coherency as well as heterogeneous cores with
heterogeneous run-time systems.

In this paper we present an optimized implementation of the compiler
and runtime support infrastructure for OpenMP programming for a
non-cache-coherent distributed memory MPSoC with explicitly managed
scratchpad memories (SPM). The proposed framework features specific
extensions to the OpenMP programming model that leverage explicit
management of the memory hierarchy. Experimental results on different
real-life applications confirm the effectiveness of the optimization in terms
of performance improvements.

I. INTRODUCTION

The advent of MPSoCs on the marketplace raised the necessity

for standard parallel programming models. Exploiting parallelism has

historically resulted in significant programmer effort, which could be

alleviated by a programming model that exposes those mechanisms

that are useful for the programmer to control, while hiding the details

of their implementation.

OpenMP is a de-facto standard for shared memory parallel pro-

gramming. It consists of a set of compiler directives, library routines

and environment variables that provide a simple means to specify

parallel execution within a sequential code. It was originally used as

a programming paradigm for SMP machines, but in the recent past

many MPSoC-suitable implementations of translators and runtime

environments have been proposed [4][8][9]. OpenMP specification

provides a model for parallel programming that is portable across

different shared memory architectures. The interface is invariant,

while different implementations can match many architectural tem-

plates, each dealing with specific hardware features. Customising an

implementation to a target platform allows getting high performance

on that machine. However, achieving an efficient implementation

is challenging because of three main reasons. First, MPSoCs are

typically heterogeneous architectures, with different processing tiles

featuring non homogeneous OS support. Second, they are often

characterized by a complex memory hierarchy, with a physically

distributed shared memory. Finally, the implementation of synchro-

nization directives must be carefully optimized since they strongly

impact the performance of the parallelized code.

In this paper we present an OpenMP implementation for a non-

cache-coherent MPSoC with explicitly managed memory hierarchy.

Code transformation and calls to the runtime are automatically

instantiated by a customized GCC 4.3.2 OpenMP compiler. We

address all the main issues concerning support of parallel execution

in the absence of a homogeneous threading model, data sharing be-

tween processors and efficient implementation of the synchronization

(barrier) directive.

A key element in achieving an efficient OpenMP implementation

for MPSoCs is exploitation of the local memories. OpenMP does not

provide very useful means to exploit data locality, nor to cope with

physically distributed shared memory. With the proposed framework

we make the following contributions:

1) We present specific extensions to the OpenMP model that allow

the programmer to specify with custom directives and clauses

which arrays are likely to achieve significant benefits when

mapped to local memories

2) We provide an optimized implementation of the proposed

interface

3) We couple the provided custom compiler support with tools for

automated array access profiling and efficient allocation

Specifically, the accesses to the candidate arrays annotated with

custom #pragmas are monitored during an off-line profiling phase

to determine which data items are more frequently referred within

a given array and by which processor. These data are allocated

by the custom runtime support onto the local scratchpads (SPM).

When entire arrays do not fit into SPMs, the memory allocator

enables a second compilation step. Every reference to target arrays is

instrumented in order to partition it in chunks that will be mapped to

different SPMs based on access count. Experimental results show

that this optimization allows significant improvements on many

benchmarks with repect to the use of a data cache for the considered

MPSOC architecture.

II. RELATED WORK

OpenMP implementations for MPSoCs have been presented in

[4][8][9]. In [4] the authors deal with implementing parallel tasks

in the absence of OS. They provide optimized implementation of

the barrier directive and reduction clause, but they do not

provide any optimizations aimed at exploiting local memories. In

[8][9] custom extensions to the OpenMP API are given to enable

parallel execution on DSPs. They also provide custom directives to

optimize memory allocation exploiting scratchpads. Unlike ours, their

approach is dynamic, in that it relies on data movement through

DMA, but it is subject to transfer latency. To alleviate it the authors

propose data pre-fetching and double buffering optimizations. The

authors of [12] present dataflow analysis techniques that take into

account OpenMP semantics and provide a series of optimizations

such as removal of unnecessary cache flushes to preserve coherence,

redundant barrier removal and privatization of dynamically allocated

objects. Compiler support for explicitly managed memory hierarchies

978-3-9810801-5-5/DATE09 © 2009 EDAA

has been proposed in [7]. Here the authors propose an intermediate

representation which model programs as bulk operations (data trans-

fers or kernels). Such level of abstraction allows them to efficiently

partition data across the different levels of the memory hierarchy.

Static methods for efficient mapping of data items to SPMs are

discussed in [2][11][13]. In [2] is proposed a compiler-directed

method for allocating heap data onto SPMs. In [11][13] the use of

SPM is proposed as an alternative to caches on MPSoCs. The authors

of [11] present a technique for partitioning the application’s scalar and

array variables into off-chip DRAM and on-chip SPM with the goal

of minimizing the total execution time of embedded applications. In

[13] a compiler-based technique is proposed to analyze the program

and select both program and data parts to be places into the SPM.

They compare energy results with an equivalent cache-based solution.

Although similar to our static allocation approach, all these works

don’t focus on data partitioning on multiple scratchpads.

Dynamic allocation techniques are proposed in [14]. Here the

authors partition the program into regions and allow changes in the

allocation at the beginning of each region (allocation is fixed within

regions). Most frequently used data in that region are copied into the

scratchpad. Dynamic approaches are also presented in [5][6], where

the authors propose a compiler strategy aimed at reducing extra off-

chip memory accesses caused by interprocessor communication. This

optimization exploits reuse of data in SPM, and is based on loop

tiling and on the optimal choice of the tile processing schedule that

minimizes interprocessor communication. Although these dynamic

approaches have the advantage of reusing the SPM during program

execution, they focus on loop nests and need precise information

about the loop structure and array access patterns to guarantee the

legality of the tiling transformation. Our profile-based approach can

deal with a broader range of parallel constructs, and does not require

precise information on memory access pattern at compile time.

III. TARGET ARCHITECTURE

Figure 1 shows the simplified block diagram of the target archi-

tectural template. It consists of a configurable number of processing

tiles, each of which features private L1 data and instruction caches,

as well as a local scratchpad. Each processor has access to on-chip

private and shared memory, as well as a big off-chip shared DRAM

memory. Support for synchronization is provided through a special

hardware semaphore device.

This architectural template matches several existing MPSoC de-

signs such as the IBM Cell BE, TI OMAP, Cradle 3SoC, in which a

high performance CPU is coupled with an array of DSPs or generic

hardware accelerators (e.g. Image Processing Units, video/audio

accelerators). These coprocessors usually run custom lightweight

runtime middleware rather than homogeneous OSes, they typically

don’t use MMUs and hardware cache coherency is not supported. To

guarantee a consistent view of the shared memory from concurrent

multiprocessor accesses it can be either configured to be non-

cacheable or explicitly managed with software-controlled cache flush

operations.

These features call for specific modifications to the standard

OpenMP interface and implementation, as discussed in the following

Sections IV and V.

IV. OPENMP SUPPORT FRAMEWORK

An OpenMP implementation consists of a code translator and

a runtime support library. The framework presented in this paper

is based on the GCC 4.3.2 compiler, and its OpenMP translator

(GOMP). The OMP pragma processing code in the parser and the

 PROCESSING
TILE #1

DCACHE

LOCAL

MEMORY

HARDWARE
SEMAPHORES

SHARED
MEMORY

DRAM
CONTROLLER

ICACHE

PROCESSING
TILE #2

DCACHE

LOCAL

MEMORY

ICACHE

PROCESSING
TILE #N

DCACHE

LOCAL

MEMORY

ICACHE

CPU CPU CPU

SHARED
MEMORY

PRIV
MEM N

PRIV
MEM 2

PRIV
MEM 1

Fig. 1. Shared memory architecture.

lowering passes have been customized to match the peculiarities of

our architecture. All the major directives and clauses are supported

by our implementation. Work-sharing constructs support all kinds of

static and dynamic scheduling, and all synchronization constructs are

supported. The runtime library (libgomp) has been re-implemented

from scratch due to the absence of an homogeneous threading model.

The original implementation of the libgomp library is designed as a

wrapper around the pthreads library. A #pragma omp parallel

directive is handled outlining the code within its scope into a new

function that will be mapped to parallel threads through a call to

pthread_create.

In our case we need to take a different approach, since we

cannot rely on a thread library that allows us to fork a thread

onto another core. Our runtime library implements the main()

function. Each processor loads its executable image of the program,

and then the execution is differentiated between master and slave

threads based on the core ids. After an initialization step, executed

by every thread, the master calls the application main() function

while the slaves wait on a barrier. Our custom translator replaces

every #pragma omp parallel directive with a call to our library

function do_parallel(), and passes it two arguments: the address

of the parallel function code, and the address of a memory location

where shared data is placed. In the function do_parallel() the

master updates the addresses at which the slaves will look for the

parallel function and the shared data. At this point it releases the

barrier and all the threads can execute concurrently the outlined

function. At the end of the parallel region the master core continues

executing sequential parts of the application, while the slaves come

back on the barrier.

In the OpenMP programming model barriers are often implied at

the end of parallel regions or work-sharing directives. For this reason

they are likely to overwhelm the benefits of parallelization if they

are not carefully designed taking into account hardware peculiarities

and potential bottlenecks. In our previous work [10] we tested the

scalability of different barrier implementations, and we noticed that

with an architectural template consisting in 8 cores and a shared bus

interconnect, there is a serious performance penalty when many cores

are idling on the barrier. This may happen when the application shows

load imbalance in a parallel region, or when most of the execution

time is spent in serial regions. The latter happens because the remote

polling activity of the slaves on the barrier fills the interconnect with

access requests to the shared memory and to the semaphore device. To

address this issue we devised a barrier implementation that exploits

the scratchpad memories. The master core keeps an array of flags

representing the status of each slave (entered or not), and notifies

on each slave’s local memory when everybody has arrived on the

barrier. Moving the polling activity from the shared memory to local

SPM and eliminating the necessity for lock acquisition allows us to

remove the congestion on the interconnect.

V. PROFILE-BASED EFFICIENT DATA ALLOCATION

Efficient utilization of the on-chip memory is of the utmost

importance to exploit the computational power of MPSoCs. The

advantages in placing data very close to the processor are significant

in terms of both energy and access latency. The cache memory is

clearly the most obvious implementation of this idea, but it may

not be the most efficient solution on MPSoCs. It is not uncommon

that caches are not used at all in MPSoC designs (e.g. the Cell

BE). The natural alternative to a data cache on such systems is the

scratchpad memory. Scratchpads are less energy consuming [1] and

more predictable than data caches. Though their access latencies are

equal (typically 1 cycle), SPM always guarantee the same access time,

whereas an access to cache is subject to conflict misses, thus making

it very difficult to predict execution time accurately. Furthermore, on

our target architecture cache coherency is not hardware-supported.

To mantain a consistent view of the memory between the processors

there is the need to perform a flush of the shared data at each

synchronization point. This rationale motivated the idea of providing,

within the OpenMP programming model, a means for the programmer

to specify the arrays on which most of the elaboration is done, and

that consequently should allow significant performance improvements

if mapped to local SPM.

OpenMP programs are heavily focused on parallel loops, and the

most common parallelization scheme is that in which the iteration

space is partitioned among threads in contiguous chunks. When data

(array) space and iteration space overlap, different threads access

exclusively different data slices (hereafter called tiles). This happens

with the image array in the following example code for histogram

creation:

#pragma omp p a r a l l e l s h a r e d (h i s t , image) num threads (4)

#pragma omp f o r

f o r (i =0 ; i <8; i ++)

f o r (j =0 ; j <8; j ++)

h i s t [image [i] [j]] + + ;

The iteration space of the outer loop is split in four chunks,

assigned to different threads. Since the image matrix is indexed with

the loop induction variables, each processor will access a different

tile. In this case, static compiler analysis is sufficient to devise an

array partitioning strategy that allocate tiles onto the SPM of the

processor that exclusively accesses them. This is illustrated in fig. 2

(same shades of yellow for the array tile and the processor SPM onto

which it is mapped).

On the other hand is impossible to foretell the access pattern for

the hist array at compile time (blue tiles in fig. 2). A possible solution

to deal with array partitioning in this case is that of creating as

many tiles as processors – like in the previous case – and relying

on application profiling [3] to map each tile onto the SPM of the

processor that accesses it more frequently.

Partitioning an array and mapping the segments onto different

physical memories (i.e. addresses) requires address translation at

each array access. In the absence of harware support for that

 Address P1 P2 P3 P4

Tile 1
0x19000100

…
0x1900013c

16 0 0 0

Tile 2
0x19000140

…
0x1900017c

0 16 0 0

Tile 3
0x19000180

…
0x190001bc

0 0 16 0

Tile 4
0x190001c0

…
0x190001fc

0 0 0 16

proc 1

proc 2

proc 3

proc 4

0 … 7

0

1

2

3

4

5

6

7

 Address P1 P2 P3 P4

Tile 1
0x19000200

…
0x190002fc

0 15 1 0

Tile 2
0x19000300

…
0x190003fc

20 2 2 1

Tile 3
0x19000400

…
0x190004fc

1 1 9 1

Tile 4
0x19000500

…
0x190005fc

0 0 0 11

? ? ? ?

0 63 64 127 128 191 192 255

image

hist

Fig. 2. Motivation example for profile-based array partitioning. Each array
partition is allocated to the scratchpad of the processor that accessed it most
frequently

purpose this task has to be accomplished in software. Since manually

instrumenting memory accesses in a program is a tedious and error-

prone task (in contrast with the ease of use of the OpenMP API), we

seamlessly integrate this process in the compiler, making it invisible

to the programmer who simply has to annotate candidate arrays with

custom OpenMP directives and clauses.

The compiler-generated instructions for address translation rely

on metadata associated to the array, containing the base address at

which each tile can be found. These addresses can be provided by

the programmer, but this would require precise knowledge of the

program behavior and array access pattern. To deal with this problem,

orthogonally to the code instrumentation task, we developed tools to

automatically find the most efficient mapping of array portions to

scratchpads.

We enhanced our simulator to monitor every array access from

every processor during a first program run. The output of this step

is a trace containing the addresses of each array location, and the

associated access count (for each processor). Based on the access

frequency information we allocate array tiles onto the SPM of

the processor that accessed it most frequently. This is done by

automatically filling in the metadata associated to distributed arrays.

This information is loaded by our custom OpenMP runtime during

a second program run, and it is exploited to compute array address

translation. The complete tool-flow is depicted in fig. 3.

A. OpenMP Extensions

Candidate array variables can be declared within the code with the

custom distributed directive

i n t a [1 0] [1 0] ;

double b [1 0 0] ;

#pragma omp d i s t r i b u t e d (a , b)

The semantics of this directive is affected by the possible coupling

with one of two custom clauses, tiled and split. These are

provided to cope with three different scenarios.

1) If entire arrays fit into a SPM no tiling should take place.

This is clearly the most efficient solution, since once the base

address of an array is known to all processors, they can simply

access it preserving the original pattern. Consequently there is no

need for further complex code transformations, and no performance

Custom GOMP
compiler

SIMULATOR

Allocation
Algorithm

SIMULATOR

Array
variables
access
count

PROFILE RUN
All arrays in

shared memory

FINAL RUN
Arrays

in scratchpads

 Do entire arrays

fit in scratchpad?
Custom GOMP

compiler

NO

YES

Enable array splitting

and memory references

instrumentation

int a[5][2];
double b[5];

#pragma

omp distributed (a,b)

Array-to-memory MAP

Array tiling MAP

Hashing function

Fig. 3. Execution flow of the optimizer.

penalties due to the overhead such transformations bring. Using

the distributed directive with no associated clause informs the

compiler about a similar scenario. To explicitly map different arrays

throughout the global address space, the compiler transforms the

static array declaration into a pointer. and instantiates a call to

the distributed_malloc() runtime function for each variable

declared within the scope of a distributed pragma.

i n t ∗∗a ;

double ∗ ;

. . .

a = (i n t ∗) d i s t r i b u t e d m a l l o c (10∗10∗ s i z e o f (i n t)) ;

b = (double ∗) d i s t r i b u t e d m a l l o c (100∗ s i z e o f (double)) ;

This function is a custom malloc() that relies on array access

information collected during a profiling run of the program. If no

information is available, data is simply allocated in the off-chip shared

memory, otherwise arrays are allocated according to the following

rules:

• Arrays with overall maximum access frequency are allocated

first.

• Each array is allocated onto the SPM local to the processor that

accessed it most frequently.

• If there is not enough space on a SPM, the optimizer allocates

the array on a remote SPM.

2) When an entire array does not fit into a SPM tiling is mandatory.

In the (worst) general case – when multiple processors may access

different tiles – for every array reference there is the need to check

which tile is currently being accessed and at which offset. This

happens with the hist array in fig. 2, and brings the highest overhead.

When a distributed array is declared with the tiled clause,

it is partitioned into a number of tiles equal to the number of

cores (threads) participating in a parallel region. This implies the

need to instrument every array access in order to guarantee that the

correct memory location is accessed by each thread. Every statement

containing a distributed array access

/∗ O r i g i n a l code ∗ /

a [i ∗10+2][j] = foo () ;

is replaced with another statement referring to a new address

computed by means of some overhead instructions

/∗ Overhead i n s t r u c t i o n s ∗ /

/∗ Compute t i l e ID which t h e memory r e f e r e n c e b e l o n g s t o ∗ /

i n t t i l e = . . . ;

/∗ Lookup base a d d r e s s f o r c u r r e n t a r r a y t i l e ∗ /

i n t ∗ba se = t i l e s [t i l e] ;

/∗ Compute i n d e x f o r a l o c a t i o n w i t h i n t h e t i l e ∗ /

i n t i n d e x = . . . ;

/∗ Trans formed memory a c c e s s ∗ /

ba se [i n d e x] = foo () ;

The SPM address that replaces the original memory reference is

obtained by looking at the tiles metadata matrix which contains the

base address for each tile of every array declared as distributed.

The code to populate this matrix is generated at the end of the

memory allocation stage. It is loaded by the runtime environment

during execution, and made visible to the main program.

3) As already discussed, often arrays in OpenMP programs are

accessed in such a way that each processor operate on a different

tile, without sharing any location. Profiling information are useful

when this access pattern is statically undetectable – either in

case of input-dependent access pattern, or conservative compiler

assumptions. The compiler can be made aware of this pattern

through the use of the split clause. In this case array references

are instrumented in such a way that there is no check of which tiles

is being accessed, thus reducing the address translation complexity

and its overhead.

Since the access pattern to an array may change at different parallel

regions in the program, these clauses can be coupled with the use of

the parallel directive, and with the worksharing directives for

and sections. The code excerpt below gives and example of the

use of these clauses on the histogram example.

#pragma omp p a r a l l e l f o r t i l e d (h i s t) s p l i t (image)

f o r (i =0 ; i <8; i ++)

f o r (j =0 ; j <8; j ++)

h i s t [image [i] [j]] + + ;

VI. EXPERIMENTAL RESULTS

In this Section we describe our experimental setup and provide

performance results achieved on a set of code kernels and real

applications.

A. Virtual Platform Configuration

processors 4 RISC, 200Mhz

D-cache 16KB, 4 way set assoc., write-through

lat 1 cycle

I-cache 8KB, direct mapped

lat 1 cycle

private memory lat 2 cycles

on-chip shared memory lat 2 cycles

off-chip shared memory lat 70 cycles

AMBA AHB 32 bit, 200Mhz, arb 2 cycles

TABLE I
VIRTUAL PLATFORM CONFIGURATION PARAMETERS

Table I sumarizes the configuration parameters employed for our

experiments. As we already pointed out in Section III hardware

cache coherency is not supported. To guarantee a consistent view

of the shared memory from concurrent multiprocessor accesses it

can be configured to be non-cacheable but in this case it can only be

inefficiently accessed by means of single transfers. Cacheability of

the shared memory can be toggled, but in this case explicit software-

controlled cache flush operations are needed.

B. Benchmarks and Setup

To test our OpenMP programming framework and the proposed

custom optimizations we use the four microbenchmarks described in

fig. 4. For each application, we measure the execution time of various

BENCHMARK

SOURCE

DESCRIPTION

Matrix multiplication Fox Algorithm

Dense linear algebra kernel

Loop with dependencies
OmpSCR

(OpenMP Source Code

Repository)

A series of loop nests with loop

carried dependencies.

LU Decomposition NAS PB

Dense linear algebra kernel.

Lower and upper triangular

systems.

IS (Integer sort) NAS PB

Multiple levels of memory

reference indirection.

Fig. 4. Benchmarks

program runs enabling one of the following optimizations:

• Cacheable - The shared memory is cacheable, but since no

hardware support is given for cache coherency the program

outcomes are NOT CORRECT. This configuration is used to

estimate the results achievable with the use of coherent caches.

Clearly these results are to be considered an upper bound, since

we are not taking into account the cost for invalidating stale

cache lines.

• Flushes - The shared memory is cacheable. The runtime system

and the benchmarks are instrumented to explicitly flush shared

data from the caches at each synchronization point.

• Distributed - The shared memory is NOT cacheable. Arrays

declared as having distributed allocation semantics with our

custom directive are instantiated in the SPMs. No array splitting

takes place.

• Tiled - The shared memory is NOT cacheable. Entire arrays

DO NOT fit into scratchpads, so array partitioning takes place.

Different tiles of the same array are instantiated onto (possibly)

different scratchpads according to the access count profile.

• Split - The shared memory is NOT cacheable. The memory al-

locator has detected that no overlapping accesses from different

processors take place. The parallel regions are annotated with

the custom split clause, and most of the overhead instructions

are removed.

The speedups are referred to the execution time of the configuration

with no optimizations, namely with arrays allocated in the off-chip

shared memory, which is not cacheable.

C. Discussion

Matrix Multiplication - Most of the computation in this

benchmark is done within a single parallel region, but two barriers

are required to synchronize sub-matrices multiplication between

different cores and to prevent the slaves to run the following

loop iteration while the master updates the whole matrix. This

0

0,5

1

1,5

2

2,5

3

4x4 16x16 32x32 64x64

Cacheable

Flushes

Distributed

Tiled

Fig. 5. Speedup for the matrix multiplication benchmark. On the x-axis is
represented the size of the matrix (number of integer elements).

0

1

2

3

4

5

6

7

8

9

128 512 2048 4096 8192 16384

Cacheable

Flushes

Distributed

Tiled

Split

Fig. 6. Speedup for the loop with dependencies benchmark. On the x-axis
is represented the size of the arrays (number of integer elements).

requires two flush instructions per iteration, which carry a significant

overhead, as shown in figure 5. When the size of the matrix is small

(up to 16x16 integers) the short execution time of the program

causes the cost for these flushes to be predominant, thus leading

to execution slowdown. For matrix sizes over 32x32 the speedup

achievable with the (ideal) coherent caches – roughly 1.6X – is

reduced to 1.05X in presence of the software flushes. The distributed

curve show the greatest speedup, as we expected, since data is

always on-chip and no penalty has to be paid for data movement

or overhead instructions. The tiled curve show very good speedup

results (2.2X) for the array partitioning, better than those achievable

with coherent caches, that are limited by the poor data reuse shown

by the benchmark.

Loop With Dependencies - This benchmark features two parallel

regions with threads accessing different non-overlapping portions

of two arrays annotated with the distributed pragma. The

allocator detects the access pattern and enables array partitioning

with the split clause to remove unnecessary overhead instructions.

In figure 6 we report the results for different sizes of the array. It

has to be pointed out that 4096 is the limit size for the arrays to

fit in SPM, so for bigger sizes array partitioning is mandatory. As

already pointed out for the matrix multiplication, since the execution

time of the code kernel is very short (it basically performs array

population, without any computation), the cost for the software

flushes is not negligible, thus limiting any speedups in the flushes

curve. When the size of the array is small (hundreds of elements)

0

1

2

3

4

5

6

7

LU DECOMPOSITION INTEGER SORT

Cacheable

Flushes

Distributed

Tiled

Split

Fig. 7. Speedup for the LU and IS benchmarks

this cost overwhelms the benefits introduced on memory latency

by the cache, thus leading to slowdowns. As the size of the arrays

grow larger this cost is amortized, but since there is no data-reuse in

the application, even using ideal coherent caches does not bring any

significant speedup. On the contrary, due to the memory-bounded

nature of the application, having entire arrays on the local SPM

allows up to 8.6X speedups. Array tiling still brings significant

benefits (4.2X) notwithstanding the overhead instructions, and since

this benchmark is the perfect example for our custom split clause,

the speedup can be boosted up to 8.4X. Since a high percentage

of the parallelism in OpenMP programs is found in doall loops

of this kind (initialization and population kernels), this finding is

representative and generalizable to many similar applications.

LU Decomposition - The core of the computation takes place

inside a parallel region forked within a loop nest. This calls

for repeated invocations to the runtime for data flushes, which

significantly impact performance, as can be seen comparing the

cacheable and flushes bars in figure 7. Array partitioning allows

2.1X speedup, slightly less than the 2.2X achieved with the coherent

cache, but way more than the 1.55X of the cache with flushes.

The big difference with the distributed bar is justified by the fact

that several different locations of the arrays are referenced within

three-level nested loops. Since different processors access the

entire arrays, every memory reference require all of the overhead

instructions for address computation. No split clause can be applied

to the parallel regions of the benchmark.

IS (Integer Sort) - None of the three main arrays of the program fit

in one SPM, so array partitioning is mandatory. We provide results

for the distributed optimization as a reference of what is achieved

keeping entire arrays in a bigger SPM. Since this application is CPU-

intensive the cost for flushes is negligible. The key ranking kernel

shows a very complex memory access pattern, as arrays are often

indexed with subscripted subscripts. This limits the benefits of the

cache – due to the misses – as well as the tiling, which requires a

big amount of instrumentation. Since several locations are referenced

within a single iteration the array partitioning only provides a 1.15X

speedup. On the other hand, this code kernel is a candidate for our

split clause. Removing the unnecessary overhead instructions brings

the speedup up to 3.2X.

VII. SUMMARY AND CONCLUSIONS

In this paper we presented a custom OpenMP implementation

suitable for non-cache-coherent MPSoCs with explicitly managed

memory hierarchy. Custom directives and clauses are coupled with a

profiler and a memory allocator we designed to automate the process

of mapping array portions onto the scratchpad of the processor that

accessed those memory locations more frequently during a profile

run. Experimental results on a set of four representative benchmarks

and code kernels confirm the effectiveness of the proposed opti-

mizations. Future work will be focused on exploiting per-parallel

region (rather than program-wide) profile information. Coupling

this information with compiler support to dynamically move data

throughout the memory hierarchy promises better performance. Also,

compiler and runtime optimizations for address translation can be

devised to reduce the instrumentation overhead.

ACKNOWLEDGMENT

This work was supported by the SHARE Project funded by the

European Community, Contract FP7-ICT-224170.

REFERENCES

[1] L. Benini, A. Macii, E. Macii, and M. Poncino. Increasing energy effi-
ciency of embedded systems by application-specific memory hierarchy
generation. Design & Test of Computers, IEEE, 17(2):74–85, Apr-Jun
2000.

[2] A. Dominguez, S. Udayakumaran, and R. Barua. Heap data allocation
to scratch-pad memory in embedded systems. J. Embedded Comput.,
1(4):521–540, 2005.

[3] A. C. Federico Angiolini, Luca Benini. An efficient profile-based
algorithm for scratchpad memory partitioning. Computer-Aided Design

of Integrated Circuits and Systems, IEEE Transactions on, 24(11):1660–
1676, 2005.

[4] W.-C. Jeun and S. Ha. Effective openmp implementation and translation
for multiprocessor system-on-chip without using os. Design Automation

Conference, 2007. ASP-DAC ’07. Asia and South Pacific, pages 44–49,
23-26 Jan. 2007.

[5] M. Kandemir, I. Kadayif, A. Choudhary, J. Ramanujam, and I. Kolcu.
Compiler-directed scratch pad memory optimization for embedded
multiprocessors. Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, 12(3):281–287, March 2004.
[6] M. Kandemir, J. Ramanujam, M. Irwin, N. Vijaykrishnan, I. Kadayif,

and A. Parikh. A compiler-based approach for dynamically managing
scratch-pad memories in embedded systems. Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, 23(2):243–260,
Feb. 2004.

[7] T. J. Knight, J. Y. Park, M. Ren, M. Houston, M. Erez, K. Fatahalian,
A. Aiken, W. J. Dally, and P. Hanrahan. Compilation for explicitly
managed memory hierarchies. PPoPP ’07: Proceedings of the 12th

ACM SIGPLAN symposium on Principles and practice of parallel

programming, pages 226–236, 2007.
[8] F. Liu and V. Chaudhary. Extending openmp for heterogeneous chip

multiprocessors. Parallel Processing, 2003. Proceedings. 2003 Interna-

tional Conference on, pages 161–168, 6-9 Oct. 2003.
[9] F. Liu and V. Chaudhary. A practical openmp compiler for system

on chips. International Workshop on OpenMP Applications and Tools,

WOMPAT 2003, pages 54–68, June 2003.
[10] A. Marongiu, L. Benini, and M. Kandemir. Lightweight barrier-

based parallelization support for non-cache-coherent mpsoc platforms.
In CASES ’07: Proceedings of the 2007 international conference on

Compilers, architecture, and synthesis for embedded systems, pages 145–
149, New York, NY, USA, 2007. ACM.

[11] P. R. Panda, N. D. Dutt, and A. Nicolau. On-chip vs. off-chip memory:
the data partitioning problem in embedded processor-based systems.
ACM Trans. Des. Autom. Electron. Syst., 5(3):682–704, 2000.

[12] S. Satoh, K. Kusano, and M. Sato. Compiler optimization techniques
for openmp programs. In Scientific Programming, pages 9–2, 2001.

[13] S. Steinke, L. Wehmeyer, B. sik Lee, and P. Marwedel. Assigning
program and data objects to scratchpad for energy reduction. In

Proceedings of the conference on Design, automation and test in Europe,
page 409, 2002.

[14] S. Udayakumaran, A. Dominguez, and R. Barua. Dynamic allocation for
scratch-pad memory using compile-time decisions. Trans. on Embedded

Computing Sys., 5(2):472–511, 2006.
[15] www.openmp.org. Openmp application program interface v.3.0.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

