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Abstract  – In this paper, we present an open architecture 
Virtual Test Environment (VTE) which can be easily inte-
grated into various modularized Automatic Test Systems 
(ATS) compliant to  Open Standard Architecture (OSA). The 
focus of  this paper is to analyze and address the major issues 
that still  prevent the application of Virtual Test (VT) from 
day-to-day’s practice. As a pilot demonstration, a VHDL-
AMS based VTE is established and an ADC test is per-
formed. The environment is  intended to seamlessly in-
teroperate with the test system during test program devel-
opment procedure. 
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I. INTRODUCTION

Virtual Test (VT) [1]-[4], defined as developing and 
debugging a test with simulation models of the device 
under test (DUT) – especially for mixed-signal devices – 
and the associated target test environment, is a technique 
which has been widely acknowledged as a most promis-
ing methodology significantly reducing time-to-market. It 
allows test development to be accomplished off-line or 
without a physical device which provides benefits like 
concurrent engineering and saving expensive ATE time. 
Moreover, it supplies test engineers with enhanced debug 
efficiency by full control over the DUT model.

However, though the concept has been introduced over 
a decade ago, yet it has not achieved industry wide accep-
tance in test systems as EDA tools have done in the de-
sign world. After exploring the historical efforts and at-
tempts of VT, we summarize the following issues causing 
the gap: 
a) Interoperability between VTE and test development system

Virtual test is usually performed in a simulation envi-
ronment where test equipment, DUT and DI (device inter-
face)  are modeled in languages like VHDL/-AMS, 
SystemC/-AMS/-WMS, etc. Driving these simulation 
models dynamically to reassemble each test step from the 
test program or read back responses is a major problem 
with previous approaches. There are very few implemen-

tations (e.g. IMAGE/ExChange with Dantes [2][5]) that 
achieved some practical impact.

The reason for this is that in former VTEs, only hard-
ware parts of the tester were modeled in the simulation 
environment, however, in order to run a test process simu-
lation without silicon or even without a tester, its software 
drivers also need to be covered to interact with the test 
program from simulation environment.
b) Co-simulation between different simulation environments

In many cases, DUT models coming from designers 
are written for other simulators than that of the VTE, re-
quiring multiple simulators and co-simulation interfaces. 
This situation tends to trap the test developer into exces-
sive workload of building interfaces for co-simulation 
instead of pursuing his native tasks.
c) Modeling effort of tester and fixture

This is the major effort to establish a VTE and it is 
very hardware dependent. The traditional approach of 
building a simulation library of everything in a tester with 
pin and structure compatible degree usually takes several 
person months. Furthermore, now it fails with the emerg-
ing modularized ATE which indicates possible change in 
hardware during ATE life cycle, and hence would force 
test developers repeatedly to create models of test instru-
ments from scratch.
d) Simulation efficiency

Though it has been widely recognized that the tester 
models should be simple enough to save computation 
time, the legacy ATE systems tend to expose quite some 
hardware detail to the test engineer and offer drivers on 
very low layers. This situation avoids tester models being 
established in high levels of abstraction leading to an un-
endurable simulation time.
e) Open architecture

Considering the heterogeneous architecture of different 
legacy ATE systems and their different data formats, 
chances are very small to construct a platform-
independent VTE module which can be easily integrated 
into different test systems.
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A. Motivation
Our research, under the cooperation project OKTO-

PUS (funded by the German Federal Ministry of Educa-
tion and Research, support code 01M3182x), attempts to 
construct a VTE for a modular OSA[6]-compliant rack 
test system. After considering the historical roadblocks 
and initial concepts [7], we identify the following key 
requirements:

a) Open architecture – can seamlessly integrated into 
OSA-compliant test systems. This requires an in-depth 
understanding of ATS framework, interface boundaries 
and information sharing mechanisms.

Over the last two decades, a lot of IEEE standards and 
industrial specifications were proposed (mainly lead by 
DOD ATS ED [6], SCC20 [8], IVI[9], etc) intending to 
define and standardize a modular, interoperable, fast de-
veloping and easily maintainable modularized automatic 
test system. Some standards (ABBET, AI-ESTATE, VXI, 
STD, etc) focus on individual test services by encapsulat-
ing critical service modules, defining interface boundaries 
and data exchange mechanism. Some (ABBET, ATML, 
OSA), however, focus on providing a common technical 
framework to facilitate the implementation of ATS archi-
tectures based on industry-wide standards interoperability. 
At present, the widely acknowledged open test system 
architecture is an information sharing architecture which 
supports the transfer of information from one life-cycle to 
another, between components within an ATS and between 
the ATS and the outside world. The underline objective is 
to bring together a collection of standard compliant com-
ponents of ATS with a common information interface; 
moreover it also grants a new opportunity for an integrat-
able VTE. ATML [10][11]  is the most promising candi-
date. It is defined using XML as exchange medium. With 
the common format, different tools and systems can ex-
change information, and form cooperative heterogeneous 
systems.

‘Seamlessly integratable‘ also indicates to allow suffi-
cient flexibility to cope with different forms of test pro-
grams and be able to interact with them by tester models 
including hardware and software behavior. It requires 
appropriate data sharing mechanisms to retrieve and feed 
back information from and to the test system. Further, 
when conversion utilities are needed, open and friendly 
interfaces are required.

b) Less modeling effort – This has two facets: First, it 
requires less modeling effort for test instruments. Though 
we try to offer a VTE which has a wide coverage of test 
instruments with certain function and structure consis-
tency, still for a modularized test system, there might be 
scenarios where test engineers or test support teams need 
to create some of the tester models. The VTE is required 
to offer facilities to aid the work. Second, it imposes less 

modeling effort for DUT and DI. DUT models are very 
test application oriented; one DUT might have different 
model descriptions for different test cases. This requires 
simulation environments that inherently can handle dif-
ferent modeling languages and methods as well as good 
model management facilities.

B. Our Proposal
In this paper, a new VTE is presented to meet the re-

quirements. First, it is an ATML-conformant system, 
which is able to bidirectionally exchange test-related in-
formation (e.g. test data, resource data and historic data) 
with test systems instead of recreating them. Second, the 
proposed VTE system offers sufficient flexibility to inter-
act with test programs of different levels. Accordingly, 
models of test environments are established with different 
abstraction levels and in such a manner that includes both 
hardware and software partition. A friendly user interface 
is built for productively planning the virtual test. Finally, 
AdvanceMS, a mixed signal simulation environment, is 
used, supporting a variety of modeling languages includ-
ing VHDL/-AMS, Verilog/-A(MS), SPICE, C and limited 
extension of SystemC and MATLAB®/Simulink. Pres-
ently, VHDL-AMS and C are our major modeling lan-
guages.

II. MODELING OF TEST RESOURCES

Test resources include a collection of instruments with 
different functions and interconnects. A test instrument is 
a physical device and accompanying driver, firmware that 
is used to accomplish a purpose (e.g. stimuli, measure, 
switching). In the previous VTE efforts, instruments are 
tended to be modeled only covering hardware behavior 
which induce the VTE isolated from the test system and 
therefore the interoperability is very poor. Nevertheless, 
this issue is fixed in our VTE by modeling the instruments 
including both hardware and software partitions. In other 
words, our instrument models are more conforming to a 
test programmer‘s perspective. They are able to interact 
with driver API compliant interfaces.

Another benefit, other than interoperability, is achiev-
ing high level of abstraction. The modern tendency of 
instrument drivers is targeting at hardware independency; 
hence the developing, maintaining and re-hosting efforts 
of test programs would be minimized. The situation leads 
to instrument class abstraction (e.g. IVI instrument class 
[12])  and signal abstraction [13] (e.g. IEEE 1641; IVI-SI) 
for instrument control. Both concepts intend to expose the 
instruments to the test engineer with their function behav-
ior controlled by common interfaces instead of hardware 
implementation. This opens the way for us to generate 
models according to the properties specified by the driver. 
In our VTE, we support both ways by providing models 



of signal abstraction and instrument class abstraction. 

A. Signal Modeling
Currently, signal oriented test has been widely recog-

nized as the emerging technology in future ATSs. The 
method grants test programs being written by specifying 
required signals and desired measurements at DUT pins 
[14], and likewise, grants the test resource being de-
scribed with signal capabilities [15]. To support this, ATSs 
need signal models to define parameters and correspond-
ing behavior, a resource management module to map sig-
nal requirements to instrument controls and information 
models describing capabilities and the connectivity of 
instruments, switching matrix and fixture. This achieves 
automatic resource allocation and routing. The associated 
standard that is most widely acknowledged is known as 
Signal & Test Definition (STD), developed under the des-
ignation of IEEE 1641[16] which provides the means to 
define and describe signals including interface parame-
ters, underpinned behavior and control interfaces.

In our proposed VTE, a simulation library of Basic 
Signal Components (BSCs), defined in STD, is built in 
VHDL-AMS. STD defines BSCs as fundamental, reus-
able, formally described signal models with more than 60 
most basic signal and measurement functions that might 
conceivable be required on DUT pins. The BSC models 
are categorized in seven types according to their roles: 
Source, Conditioner, EventFunction, Sensor, Control, 
Digital and Connection. More complex signals can be 
constructed by utilizing composition or hierarchy over the 
BSCs[16], resulting in a Test Signal Framework (TSF). 
Later, a GUI entry is introduced to ease the process.

A VHDL-AMS description of BSCs is modeled cover-
ing both static and dynamic behavior. The static behavior 
characterizes the signal with a mathematic expression 
while the dynamic behavior specifies the BSC‘s internal 
state (e.g. ‘Active’, ‘Paused’, ‘Stopped’). The  state transi-
tion of the BSC is controlled by software interface or 
hardware events, thus establishing synchronization 
mechanisms (fig. 1). The definition can be found in Annex 
A, B and C of STD [16]. Namely, the static model is the 
entity for simulations with the DUT model, and the dy-
namic model is the key to process instructions from the 
test program and consequently attain dynamic configur-
ability. The block diagram of a VHDL-AMS implementa-
tion is shown in fig. 2. To speed up simulation, the BSC 
control instructions are modeled with simplified interfaces 
passing commands or configurations to the models with-
out really modeling the exact bus behavior. Therefore, a 
top-level test bench in VHDL-AMS can be converted 
from the signal-based test program easily in a instruction 
equivalent manner. Further the test sequences can be exe-
cuted interacting with DUT model through its connected 

signal models.

Figure 1. Signal synchronisation example

Figure 2. BSC simulation model diagram

B. Instrument Class Modeling
Since instrument oriented test programs are still widely 

used in practice, a simulation library is built to meet the 
situation. In order to have a wide coverage of existing 
instruments, their simulation representatives are modeled 
compliant to IVI instrument class description. The IVI [9] 
Foundation develops instrument class standards intending 
to achieve interchangeability with unification of the con-
cepts, architecture and control interface. It has been con-
sidered to be included in a runtime signal interface, bridg-
ing between signal requirements and instrument controls. 
At the moment, eight major instrument classes have been 
published: IviScope, IviDmm, IviFgen, IviDCPwr, Ivi-
Switch, IviPwrMeter, IviSpecAn, IviRFSigGen. 

The IVI-class compliant instrument models are imple-
mented considering both hardware behavior and software 
interfacing. The hardware part is modeled using behavior-
dominant approach to describe the major functions, while 
keeping the interface consistent – both for data and syn-
chronization timing – with the real I/O port. Software 
interfacing (represents BUS operations over drivers) is 
described with simplified bus transaction to pass com-
mands and configurations. Further, a dynamic FSM model 
is built to manage the internal state transitions in terms of 
software control or hardware events. All these models are 
encapsulated in IVI capability classes. An IVI instrument 



class is composed of several IVI capability classes with 
most common functionality for an instrument category. 
The function behavior of an instrument is typically a sig-
nal nature, therefore we established a mechanism to de-
scribe the instrument capability with the BSC library. An 
IVI instrument class compliant model, as depicted in fig. 
3 with a hierarchical description, has several capability 
models; each capability model is further composed with a 
composition of BSC models.

Figure 3. IVI-compliant instrument model diagram

A collection of published IVI class instruments are 
modeled with this approach. In addition, libraries of BSCs 
and instruments also supply symbols for schematic entry.

C. Hardware Consistency
Models of ideal functions alone are not adequate for 

some VTs. More effort need to be done to expose all as-
pects of the signal integrity at the DUT pins including 
timing, waveform levels and waveform shapes together 
with distortion. This is achieved by modeling the instru-
ment with realistic behavior. 

The instrument imperfections are divided into two 
parts: First, static nonlinear behavior (e.g. range, resolu-
tion, precision, linearity) and statistical phenomena – this 
can be encapsulated in the signal model and parameters 
can be easily measured or retrieved from specification. In 
fact, an IEEE 1641 based description of instrument capa-
bilities with certain imperfection is defined in [15] with  
ATML instrument description files. Different instruments 
will have different ATML instance files. This information 
is used, in ATS, to verify and choose instruments accord-
ing to signal requirements; however in our ATE, it is used 
to bridge generic BSC models or IVI-class models to par-

ticular instrument imperfections. During simulation, the 
models will address the specific ATML instance and load 
imperfection parameters autonomously. 

Another part is the electrical interface. It is a complex 
and difficult task to build the complete and accurate 
model even with today’s technology not to speak of its 
expensive simulation cost. In practice, a model with ade-
quate accuracy will obtain more acceptances. It more or 
less depends on the application and simulation require-
ments, in [5]  an example is shown with a digital I/O stage. 
The electrical interface is modeled with primitive compo-
nents like resistor, capacitor, inductor and semiconductor 
circuit components, etc. Our VTE provides models in 
different levels of accuracy, so that test engineers are able 
to make fast and proper choice between efficiency and 
accuracy. These models are built through characterization 
of existing instruments through measurements and calcu-
lations (e.g. TDR techniques).

Therefore, the full model of a specific instrument will 
be a combination of BSC models determining its function 
behavior with some static nonlinearity and noise; and an 
electrical interface which is alternative in terms of simula-
tion accuracy.

Additionally, signal paths from test system to DUT 
pins are also in charge of the signal deterioration. The 
environment provides several models of electrical inter-
faces and wires with different levels of accuracy to ease 
the design and verification of DI with minimized model-
ing efforts.

III. SCHEMATIC ENTRY

In order to run a simulation with a model of the DUT, 
an explicit test setup is necessary other than a test pro-
gram. Accordingly a schematic entry will help greatly to 
enable engineers to graphically construct the test. The 
graphic entry, named “TPConstructor”, is developed with 
Tcl/Tk based on ATML framework. Right now, it can in-
teract with text formats including ATML and VHDL-
AMS. The symbols are in SVG format. TPConstructor is 
capable of parsing relevant ATML or VHDL-AMS files 
for necessary information of models and assigning them 
with automatically generated SVG symbols, if there is no 
manually designed symbol already associated. Afterwards 
the simulation models can be manipulated (setup/
configure) through their graph representatives efficiently 
and easily.

For VT, it helps to generate test benches in two diverse 
ways: signal based test setup and instrument based test 
setup. For signal based test, signal requirements are con-
structed visually on canvas with relevant BSCs and then 
connected to the DUT symbol (fig. 4). A test platform-
independent ATML test description file is generated corre-
sponding to the graphical description. Further edit might 



be needed for completeness and the resulting file may be 
re-hosted in any other ATML based ATS. In our environ-
ment, a VHDL-AMS test bench is able to be generated 
alternatively from the ATML file or directly from the can-
vas. Likewise, an instrument based test bench can be cre-
ated quickly, however using instrument models (fig. 5). 
Besides, an associated script file is automatically gener-
ated to interact with the simulation environment (Ad-
vanceMS) running in background. 

Figure 4. Signal based test construction

Figure 5. Instrument based test construction

Potentially, the tool also guides the engineer during 
SOC verification process to generate the test bench and 
run simulations as easy and fast as any EDA tools do.

With the steps described above, an ATML based inte-
gratable VTE is accomplished, allowing test engineers to 
focus more on developing and debugging test programs or 
verifying the DUT, instead of modeling the environment.

IV. MODELING OF DUT 

Far before silicon is available, virtual test can be per-
formed with tester models and DUT models which are 
delivered by designers in a refinement manner, according 
to the design process. Hence one DUT might have differ-

ent model descriptions, considering that test engineers 
also generate DUT models from scratch for certain test 
purpose. It is important that the DUT model which is put 
in a test shall meet the test purpose and in the meanwhile 
expose only appropriate detail for simulation perform-
ance. In this work, a Y-chart [17][18] based approach is 
developed to inspire test engineers to make a fast decision 
on the suitable model, individually or combined, for a 
particular test while taking into account DUT‘s structure 
and application. 

As a test case, an existing product, AD1870[19], is 
used to demonstrate VT. AD1870 is a stereo, 16-bit over-
sampling ADC based on sigma-delta technology. Over 20 
block models are associated to describe the ADC in dif-
ferent abstraction levels or views. Using the Y-chart based 
approach, the hierarchical combination of the models are 
evaluated before each test for yielding an appropriate ac-
curacy and efficiency. For comparison, a test board is 
built for real measurements. Experience gained so far 
shows high correlation of real an virtual test.

V. CONCLUSION AND OUTLOOK

The lack of open standard interoperability has been 
one major reason preventing VT from use in commercial 
practice. In order to fill the gap, an ATML framework 
based VTE, consisting of an extendable simulation library 
of test resources and a friendly user interface is presented. 
The objective is, by means of our platform independent 
VTE, to allow the test development process to run effi-
ciently without a physical DUT device or test system. The 
major contribution of this paper is introducing the Open 
Standard Approach into VT technology: Formalized re-
source description – ATS-specific information is encapsu-
lated in a common intermediate format (ATML)  facilitat-
ing to achieve a test platform independent VTE. Formal-
ized resource control – test resources are modeled with 
standard-based control interface (STD, IVI-Class)  to 
achieve interoperability. Formalized test description – a 
graphical assistant tool is developed to aid tests being 
constructed with standard-compliant common instruments 
(IVI-Class) or common signal requirements (STD) and in 
the end generate a test description file in ATML.

To be accepted by the industry, more efforts are re-
quired to enhance the total integration for various test 
systems. At present, the models for test resources, pro-
grammed with VHDL-AMS and C, have some deficien-
cies caused by the language inherent constraints, not be-
ing abstract enough for system modeling and not being 
capable of interacting directly with test programs. Fur-
thermore, it relies on a commercial simulation environ-
ment. We intend to solve the problem by adopting Sys-
temC [20][21] and its extensions (-AMS/-WMS) as our 
major simulation environment. For that reason we are 



currently migrating to SystemC. It is expected to boost the 
integration in following way: first, it supports modeling in 
a wide abstraction level, from specification down to RTL 
level, with SystemC-AMS even to primitive (electrical) 
component level. It is especially apt for describing com-
plex systems while offering significant productivity. Sec-
ond, being able to describe both hardware and software 
partition in C++ language makes it a perfect candidate for 
instrument modeling including its driver set. Further, we 
are looking for means to integrate the SystemC model in 
instrument drivers as an enhanced simulation feature. The 
simulation kernels are class libraries, which facilitates 
SystemC to be integrated into a VTE.

Besides, a lot of enhancement features such as distrib-
uted simulation [22][23] on different hosts, co-simulation 
with other modeling languages and graphical modeling 
are being studied widely with some pilot proposals. 

Further improvements on simulation efficiency are also 
being examined in our project, including modeling algo-
rithm, distributed simulation, other models of computa-
tion [24][25] and potential hardware acceleration.
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