
A Novel Approach to Entirely Integrate Virtual Test into Test Development Flow

Ping Lu, Daniel Glaser, Gürkan Uygur, Klaus Helmreich

Chair of Computer Aided Circuit Design
Friedrich-Alexander-University Erlangen-Nuremberg

Erlangen, Germany
{pinglu, glaser, uygur, helmreich}@lrs.eei.uni-erlangen.de

Abstract – In this paper, we present an open architecture
Virtual Test Environment (VTE) which can be easily inte-
grated into various modularized Automatic Test Systems
(ATS) compliant to Open Standard Architecture (OSA). The
focus of this paper is to analyze and address the major issues
that still prevent the application of Virtual Test (VT) from
day-to-day’s practice. As a pilot demonstration, a VHDL-
AMS based VTE is established and an ADC test is per-
formed. The environment is intended to seamlessly in-
teroperate with the test system during test program devel-
opment procedure.

Keywords – Virtual Test, Test generation, Simulation,
Hardware description language, VHDL, ATML, IEEE1641

I. INTRODUCTION

Virtual Test (VT) [1]-[4], defined as developing and
debugging a test with simulation models of the device
under test (DUT) – especially for mixed-signal devices –
and the associated target test environment, is a technique
which has been widely acknowledged as a most promis-
ing methodology significantly reducing time-to-market. It
allows test development to be accomplished off-line or
without a physical device which provides benefits like
concurrent engineering and saving expensive ATE time.
Moreover, it supplies test engineers with enhanced debug
efficiency by full control over the DUT model.

However, though the concept has been introduced over
a decade ago, yet it has not achieved industry wide accep-
tance in test systems as EDA tools have done in the de-
sign world. After exploring the historical efforts and at-
tempts of VT, we summarize the following issues causing
the gap:
a) Interoperability between VTE and test development system

Virtual test is usually performed in a simulation envi-
ronment where test equipment, DUT and DI (device inter-
face) are modeled in languages like VHDL/-AMS,
SystemC/-AMS/-WMS, etc. Driving these simulation
models dynamically to reassemble each test step from the
test program or read back responses is a major problem
with previous approaches. There are very few implemen-

tations (e.g. IMAGE/ExChange with Dantes [2][5]) that
achieved some practical impact.

The reason for this is that in former VTEs, only hard-
ware parts of the tester were modeled in the simulation
environment, however, in order to run a test process simu-
lation without silicon or even without a tester, its software
drivers also need to be covered to interact with the test
program from simulation environment.
b) Co-simulation between different simulation environments

In many cases, DUT models coming from designers
are written for other simulators than that of the VTE, re-
quiring multiple simulators and co-simulation interfaces.
This situation tends to trap the test developer into exces-
sive workload of building interfaces for co-simulation
instead of pursuing his native tasks.
c) Modeling effort of tester and fixture

This is the major effort to establish a VTE and it is
very hardware dependent. The traditional approach of
building a simulation library of everything in a tester with
pin and structure compatible degree usually takes several
person months. Furthermore, now it fails with the emerg-
ing modularized ATE which indicates possible change in
hardware during ATE life cycle, and hence would force
test developers repeatedly to create models of test instru-
ments from scratch.
d) Simulation efficiency

Though it has been widely recognized that the tester
models should be simple enough to save computation
time, the legacy ATE systems tend to expose quite some
hardware detail to the test engineer and offer drivers on
very low layers. This situation avoids tester models being
established in high levels of abstraction leading to an un-
endurable simulation time.
e) Open architecture

Considering the heterogeneous architecture of different
legacy ATE systems and their different data formats,
chances are very small to construct a platform-
independent VTE module which can be easily integrated
into different test systems.

978-3-9810801-5-5/DATE09 © 2009 EDAA

A. Motivation
Our research, under the cooperation project OKTO-

PUS (funded by the German Federal Ministry of Educa-
tion and Research, support code 01M3182x), attempts to
construct a VTE for a modular OSA[6]-compliant rack
test system. After considering the historical roadblocks
and initial concepts [7], we identify the following key
requirements:

a) Open architecture – can seamlessly integrated into
OSA-compliant test systems. This requires an in-depth
understanding of ATS framework, interface boundaries
and information sharing mechanisms.

Over the last two decades, a lot of IEEE standards and
industrial specifications were proposed (mainly lead by
DOD ATS ED [6], SCC20 [8], IVI[9], etc) intending to
define and standardize a modular, interoperable, fast de-
veloping and easily maintainable modularized automatic
test system. Some standards (ABBET, AI-ESTATE, VXI,
STD, etc) focus on individual test services by encapsulat-
ing critical service modules, defining interface boundaries
and data exchange mechanism. Some (ABBET, ATML,
OSA), however, focus on providing a common technical
framework to facilitate the implementation of ATS archi-
tectures based on industry-wide standards interoperability.
At present, the widely acknowledged open test system
architecture is an information sharing architecture which
supports the transfer of information from one life-cycle to
another, between components within an ATS and between
the ATS and the outside world. The underline objective is
to bring together a collection of standard compliant com-
ponents of ATS with a common information interface;
moreover it also grants a new opportunity for an integrat-
able VTE. ATML [10][11] is the most promising candi-
date. It is defined using XML as exchange medium. With
the common format, different tools and systems can ex-
change information, and form cooperative heterogeneous
systems.

‘Seamlessly integratable‘ also indicates to allow suffi-
cient flexibility to cope with different forms of test pro-
grams and be able to interact with them by tester models
including hardware and software behavior. It requires
appropriate data sharing mechanisms to retrieve and feed
back information from and to the test system. Further,
when conversion utilities are needed, open and friendly
interfaces are required.

b) Less modeling effort – This has two facets: First, it
requires less modeling effort for test instruments. Though
we try to offer a VTE which has a wide coverage of test
instruments with certain function and structure consis-
tency, still for a modularized test system, there might be
scenarios where test engineers or test support teams need
to create some of the tester models. The VTE is required
to offer facilities to aid the work. Second, it imposes less

modeling effort for DUT and DI. DUT models are very
test application oriented; one DUT might have different
model descriptions for different test cases. This requires
simulation environments that inherently can handle dif-
ferent modeling languages and methods as well as good
model management facilities.

B. Our Proposal
In this paper, a new VTE is presented to meet the re-

quirements. First, it is an ATML-conformant system,
which is able to bidirectionally exchange test-related in-
formation (e.g. test data, resource data and historic data)
with test systems instead of recreating them. Second, the
proposed VTE system offers sufficient flexibility to inter-
act with test programs of different levels. Accordingly,
models of test environments are established with different
abstraction levels and in such a manner that includes both
hardware and software partition. A friendly user interface
is built for productively planning the virtual test. Finally,
AdvanceMS, a mixed signal simulation environment, is
used, supporting a variety of modeling languages includ-
ing VHDL/-AMS, Verilog/-A(MS), SPICE, C and limited
extension of SystemC and MATLAB®/Simulink. Pres-
ently, VHDL-AMS and C are our major modeling lan-
guages.

II. MODELING OF TEST RESOURCES

Test resources include a collection of instruments with
different functions and interconnects. A test instrument is
a physical device and accompanying driver, firmware that
is used to accomplish a purpose (e.g. stimuli, measure,
switching). In the previous VTE efforts, instruments are
tended to be modeled only covering hardware behavior
which induce the VTE isolated from the test system and
therefore the interoperability is very poor. Nevertheless,
this issue is fixed in our VTE by modeling the instruments
including both hardware and software partitions. In other
words, our instrument models are more conforming to a
test programmer‘s perspective. They are able to interact
with driver API compliant interfaces.

Another benefit, other than interoperability, is achiev-
ing high level of abstraction. The modern tendency of
instrument drivers is targeting at hardware independency;
hence the developing, maintaining and re-hosting efforts
of test programs would be minimized. The situation leads
to instrument class abstraction (e.g. IVI instrument class
[12]) and signal abstraction [13] (e.g. IEEE 1641; IVI-SI)
for instrument control. Both concepts intend to expose the
instruments to the test engineer with their function behav-
ior controlled by common interfaces instead of hardware
implementation. This opens the way for us to generate
models according to the properties specified by the driver.
In our VTE, we support both ways by providing models

of signal abstraction and instrument class abstraction.

A. Signal Modeling
Currently, signal oriented test has been widely recog-

nized as the emerging technology in future ATSs. The
method grants test programs being written by specifying
required signals and desired measurements at DUT pins
[14], and likewise, grants the test resource being de-
scribed with signal capabilities [15]. To support this, ATSs
need signal models to define parameters and correspond-
ing behavior, a resource management module to map sig-
nal requirements to instrument controls and information
models describing capabilities and the connectivity of
instruments, switching matrix and fixture. This achieves
automatic resource allocation and routing. The associated
standard that is most widely acknowledged is known as
Signal & Test Definition (STD), developed under the des-
ignation of IEEE 1641[16] which provides the means to
define and describe signals including interface parame-
ters, underpinned behavior and control interfaces.

In our proposed VTE, a simulation library of Basic
Signal Components (BSCs), defined in STD, is built in
VHDL-AMS. STD defines BSCs as fundamental, reus-
able, formally described signal models with more than 60
most basic signal and measurement functions that might
conceivable be required on DUT pins. The BSC models
are categorized in seven types according to their roles:
Source, Conditioner, EventFunction, Sensor, Control,
Digital and Connection. More complex signals can be
constructed by utilizing composition or hierarchy over the
BSCs[16], resulting in a Test Signal Framework (TSF).
Later, a GUI entry is introduced to ease the process.

A VHDL-AMS description of BSCs is modeled cover-
ing both static and dynamic behavior. The static behavior
characterizes the signal with a mathematic expression
while the dynamic behavior specifies the BSC‘s internal
state (e.g. ‘Active’, ‘Paused’, ‘Stopped’). The state transi-
tion of the BSC is controlled by software interface or
hardware events, thus establishing synchronization
mechanisms (fig. 1). The definition can be found in Annex
A, B and C of STD [16]. Namely, the static model is the
entity for simulations with the DUT model, and the dy-
namic model is the key to process instructions from the
test program and consequently attain dynamic configur-
ability. The block diagram of a VHDL-AMS implementa-
tion is shown in fig. 2. To speed up simulation, the BSC
control instructions are modeled with simplified interfaces
passing commands or configurations to the models with-
out really modeling the exact bus behavior. Therefore, a
top-level test bench in VHDL-AMS can be converted
from the signal-based test program easily in a instruction
equivalent manner. Further the test sequences can be exe-
cuted interacting with DUT model through its connected

signal models.

Figure 1. Signal synchronisation example

Figure 2. BSC simulation model diagram

B. Instrument Class Modeling
Since instrument oriented test programs are still widely

used in practice, a simulation library is built to meet the
situation. In order to have a wide coverage of existing
instruments, their simulation representatives are modeled
compliant to IVI instrument class description. The IVI [9]
Foundation develops instrument class standards intending
to achieve interchangeability with unification of the con-
cepts, architecture and control interface. It has been con-
sidered to be included in a runtime signal interface, bridg-
ing between signal requirements and instrument controls.
At the moment, eight major instrument classes have been
published: IviScope, IviDmm, IviFgen, IviDCPwr, Ivi-
Switch, IviPwrMeter, IviSpecAn, IviRFSigGen.

The IVI-class compliant instrument models are imple-
mented considering both hardware behavior and software
interfacing. The hardware part is modeled using behavior-
dominant approach to describe the major functions, while
keeping the interface consistent – both for data and syn-
chronization timing – with the real I/O port. Software
interfacing (represents BUS operations over drivers) is
described with simplified bus transaction to pass com-
mands and configurations. Further, a dynamic FSM model
is built to manage the internal state transitions in terms of
software control or hardware events. All these models are
encapsulated in IVI capability classes. An IVI instrument

class is composed of several IVI capability classes with
most common functionality for an instrument category.
The function behavior of an instrument is typically a sig-
nal nature, therefore we established a mechanism to de-
scribe the instrument capability with the BSC library. An
IVI instrument class compliant model, as depicted in fig.
3 with a hierarchical description, has several capability
models; each capability model is further composed with a
composition of BSC models.

Figure 3. IVI-compliant instrument model diagram

A collection of published IVI class instruments are
modeled with this approach. In addition, libraries of BSCs
and instruments also supply symbols for schematic entry.

C. Hardware Consistency
Models of ideal functions alone are not adequate for

some VTs. More effort need to be done to expose all as-
pects of the signal integrity at the DUT pins including
timing, waveform levels and waveform shapes together
with distortion. This is achieved by modeling the instru-
ment with realistic behavior.

The instrument imperfections are divided into two
parts: First, static nonlinear behavior (e.g. range, resolu-
tion, precision, linearity) and statistical phenomena – this
can be encapsulated in the signal model and parameters
can be easily measured or retrieved from specification. In
fact, an IEEE 1641 based description of instrument capa-
bilities with certain imperfection is defined in [15] with
ATML instrument description files. Different instruments
will have different ATML instance files. This information
is used, in ATS, to verify and choose instruments accord-
ing to signal requirements; however in our ATE, it is used
to bridge generic BSC models or IVI-class models to par-

ticular instrument imperfections. During simulation, the
models will address the specific ATML instance and load
imperfection parameters autonomously.

Another part is the electrical interface. It is a complex
and difficult task to build the complete and accurate
model even with today’s technology not to speak of its
expensive simulation cost. In practice, a model with ade-
quate accuracy will obtain more acceptances. It more or
less depends on the application and simulation require-
ments, in [5] an example is shown with a digital I/O stage.
The electrical interface is modeled with primitive compo-
nents like resistor, capacitor, inductor and semiconductor
circuit components, etc. Our VTE provides models in
different levels of accuracy, so that test engineers are able
to make fast and proper choice between efficiency and
accuracy. These models are built through characterization
of existing instruments through measurements and calcu-
lations (e.g. TDR techniques).

Therefore, the full model of a specific instrument will
be a combination of BSC models determining its function
behavior with some static nonlinearity and noise; and an
electrical interface which is alternative in terms of simula-
tion accuracy.

Additionally, signal paths from test system to DUT
pins are also in charge of the signal deterioration. The
environment provides several models of electrical inter-
faces and wires with different levels of accuracy to ease
the design and verification of DI with minimized model-
ing efforts.

III. SCHEMATIC ENTRY

In order to run a simulation with a model of the DUT,
an explicit test setup is necessary other than a test pro-
gram. Accordingly a schematic entry will help greatly to
enable engineers to graphically construct the test. The
graphic entry, named “TPConstructor”, is developed with
Tcl/Tk based on ATML framework. Right now, it can in-
teract with text formats including ATML and VHDL-
AMS. The symbols are in SVG format. TPConstructor is
capable of parsing relevant ATML or VHDL-AMS files
for necessary information of models and assigning them
with automatically generated SVG symbols, if there is no
manually designed symbol already associated. Afterwards
the simulation models can be manipulated (setup/
configure) through their graph representatives efficiently
and easily.

For VT, it helps to generate test benches in two diverse
ways: signal based test setup and instrument based test
setup. For signal based test, signal requirements are con-
structed visually on canvas with relevant BSCs and then
connected to the DUT symbol (fig. 4). A test platform-
independent ATML test description file is generated corre-
sponding to the graphical description. Further edit might

be needed for completeness and the resulting file may be
re-hosted in any other ATML based ATS. In our environ-
ment, a VHDL-AMS test bench is able to be generated
alternatively from the ATML file or directly from the can-
vas. Likewise, an instrument based test bench can be cre-
ated quickly, however using instrument models (fig. 5).
Besides, an associated script file is automatically gener-
ated to interact with the simulation environment (Ad-
vanceMS) running in background.

Figure 4. Signal based test construction

Figure 5. Instrument based test construction

Potentially, the tool also guides the engineer during
SOC verification process to generate the test bench and
run simulations as easy and fast as any EDA tools do.

With the steps described above, an ATML based inte-
gratable VTE is accomplished, allowing test engineers to
focus more on developing and debugging test programs or
verifying the DUT, instead of modeling the environment.

IV. MODELING OF DUT

Far before silicon is available, virtual test can be per-
formed with tester models and DUT models which are
delivered by designers in a refinement manner, according
to the design process. Hence one DUT might have differ-

ent model descriptions, considering that test engineers
also generate DUT models from scratch for certain test
purpose. It is important that the DUT model which is put
in a test shall meet the test purpose and in the meanwhile
expose only appropriate detail for simulation perform-
ance. In this work, a Y-chart [17][18] based approach is
developed to inspire test engineers to make a fast decision
on the suitable model, individually or combined, for a
particular test while taking into account DUT‘s structure
and application.

As a test case, an existing product, AD1870[19], is
used to demonstrate VT. AD1870 is a stereo, 16-bit over-
sampling ADC based on sigma-delta technology. Over 20
block models are associated to describe the ADC in dif-
ferent abstraction levels or views. Using the Y-chart based
approach, the hierarchical combination of the models are
evaluated before each test for yielding an appropriate ac-
curacy and efficiency. For comparison, a test board is
built for real measurements. Experience gained so far
shows high correlation of real an virtual test.

V. CONCLUSION AND OUTLOOK

The lack of open standard interoperability has been
one major reason preventing VT from use in commercial
practice. In order to fill the gap, an ATML framework
based VTE, consisting of an extendable simulation library
of test resources and a friendly user interface is presented.
The objective is, by means of our platform independent
VTE, to allow the test development process to run effi-
ciently without a physical DUT device or test system. The
major contribution of this paper is introducing the Open
Standard Approach into VT technology: Formalized re-
source description – ATS-specific information is encapsu-
lated in a common intermediate format (ATML) facilitat-
ing to achieve a test platform independent VTE. Formal-
ized resource control – test resources are modeled with
standard-based control interface (STD, IVI-Class) to
achieve interoperability. Formalized test description – a
graphical assistant tool is developed to aid tests being
constructed with standard-compliant common instruments
(IVI-Class) or common signal requirements (STD) and in
the end generate a test description file in ATML.

To be accepted by the industry, more efforts are re-
quired to enhance the total integration for various test
systems. At present, the models for test resources, pro-
grammed with VHDL-AMS and C, have some deficien-
cies caused by the language inherent constraints, not be-
ing abstract enough for system modeling and not being
capable of interacting directly with test programs. Fur-
thermore, it relies on a commercial simulation environ-
ment. We intend to solve the problem by adopting Sys-
temC [20][21] and its extensions (-AMS/-WMS) as our
major simulation environment. For that reason we are

currently migrating to SystemC. It is expected to boost the
integration in following way: first, it supports modeling in
a wide abstraction level, from specification down to RTL
level, with SystemC-AMS even to primitive (electrical)
component level. It is especially apt for describing com-
plex systems while offering significant productivity. Sec-
ond, being able to describe both hardware and software
partition in C++ language makes it a perfect candidate for
instrument modeling including its driver set. Further, we
are looking for means to integrate the SystemC model in
instrument drivers as an enhanced simulation feature. The
simulation kernels are class libraries, which facilitates
SystemC to be integrated into a VTE.

Besides, a lot of enhancement features such as distrib-
uted simulation [22][23] on different hosts, co-simulation
with other modeling languages and graphical modeling
are being studied widely with some pilot proposals.

Further improvements on simulation efficiency are also
being examined in our project, including modeling algo-
rithm, distributed simulation, other models of computa-
tion [24][25] and potential hardware acceleration.

REFERENCES

[1]
 Helmreich, K.; Reinwardt, G., "Virtual test of noise and jitter pa-
rameters," Test Conference, 1996. Proceedings., International,
pp.461-470, 20-25 Oct 1996

[2]
 Einwich, K.; Krampl, G.; Hoppenstock, R.; Koutsandreas, P.; Sat-
tler, S., “A multi-level modeling approach rendering virtual test
engineering (VTE) economically viable for highly complex tele-
com circuits,” Design, Automation & Test in Europe Conference &
Exhibition, 1999. DATE '99 User’s Forum, pp.227-231, 1999

[3]
 Perkins, E.G.; Wong, J.J., "VTest program mixed-signal virtual test
approach," AUTOTESTCON, 97. 1997 IEEE Autotestcon Proceed-
ings, pp.60-71, 22-25 Sep 1997

[4]
 Miegler, M.; Wolz, W., "Development of test programs in a virtual
test environment," VLSI Test Symposium, 1996., Proceedings of
14th, pp.99-103, 28 Apr-1 May 1996

[5]
 Jean Qincui Xia; Austin, T.; Khouzam, N., "Dynamic test emula-
tion for EDA-based mixed-signal test development automation,"
Test Conference, 1995. Proceedings., International, pp.761-770,
21-25 Oct 1995

[6]
 http://www.acq.osd.mil/ats/
[7]
 Lu P., Helmreich K., “Standard-Based Construction of a Virtual

Test Environment”, 20. ITG/GI/GMM Workshop "Testmethoden
und Zuverlässigkeit von Schaltungen und Systemen" Proceedings,
pp.19-23, Vienna, 24-26 Feb 2008

[8]
 http://grouper.ieee.org/groups/scc20/
[9]
 http://www.ivifoundation.org/
[10]
 http://grouper.ieee.org/groups/scc20/tii/
[11]
 Malesich, M., "Advances in DoD'S ATS framework," Autotestcon,

2007 IEEE, pp.57-63, 17-20 Sept. 2007
[12]
 Bode, F., "IVI comes of age: an overview of IVI specifications with

current status," AUTOTESTCON Proceedings, 2002. IEEE, pp.
317-323, 2002

[13]
 Ramachandran, N.; Oblad, R.P.; Neag, I.A.; Tyler, D.F., "The role
of a signal interface in supporting instrument interchangeability,"
AUTOTESTCON Proceedings, 2000 IEEE, pp.403-416, 2000

[14]
 Cornish, M.; Brown, M., "Implementing IEEE 1641 - a demonstra-
tion of portability," Autotestcon, 2005. IEEE, pp.144-152, 26-29
Sept. 2005

[15]
 “Capabilities in ATML” Draft Version 0.32, Capabilities Working
Group of ATML

[16]
 "IEEE Guide for the Use of IEEE Std 1641, Standard for Signal
and Test Definition," IEEE Std 1641.1-2006, pp.c1-191, April 30
2007

[17]
 A. Kienhuis, "Design Space Exploration of Stream-Based Dataflow
Architectures: Method and Tools," Ph.D. Thesis, Delft University
of Technology, 1999

[18]
 Waxman, R.; Bergé, J.-M.; Levia, O.; Rouillard, J.; "High-Level
System Modeling: Specification and Design Methodologies",1996

[19]
 http://www.analog.com/
[20]
 http://www.systemc.org/home/
[21]
 Martin, G., "SystemC and the future of design languages: opportu-

nities for users and research," Integrated Circuits and Systems
Design, 2003. SBCCI 2003. Proceedings. 16th Symposium on, pp.
61-62, 8-11 Sept. 2003

[22]
 Kai Huang; Bacivarov, I.; Hugelshofer, F.; Thiele, L., "Scalably
distributed SystemC simulation for embedded applications," Indus-
trial Embedded Systems, 2008. SIES 2008. International Sympo-
sium on, pp.271-274, 11-13 June 2008

[23]
 Amory, A.; Moraes, F.; Oliveira, L.; Calazans, N.; Hessel, F., "A
heterogeneous and distributed co-simulation environment
[hardware/software]," Integrated Circuits and Systems Design,
2002. Proceedings. 15th Symposium on, pp.115-120, 2002

[24]
 Vachoux, A.; Grimm, C.; Einwich, K., "Extending SystemC to
support mixed discrete-continuous system modeling and simula-
tion," Circuits and Systems, 2005. ISCAS 2005. IEEE International
Symposium on , vol. 5, pp. 5166-5169, 23-26 May 2005

[25]
 Patel, H.D.; Shukla, S.K., "Towards a heterogeneous simulation
kernel for system-level models: a SystemC kernel for synchronous
data flow models," Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on , vol. 24, no. 8, pp.1261-1271,
Aug. 2005

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

